JP2958166B2 - Molded body for thermal history detection - Google Patents

Molded body for thermal history detection

Info

Publication number
JP2958166B2
JP2958166B2 JP3213749A JP21374991A JP2958166B2 JP 2958166 B2 JP2958166 B2 JP 2958166B2 JP 3213749 A JP3213749 A JP 3213749A JP 21374991 A JP21374991 A JP 21374991A JP 2958166 B2 JP2958166 B2 JP 2958166B2
Authority
JP
Japan
Prior art keywords
molded body
firing
temperature
thermal history
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3213749A
Other languages
Japanese (ja)
Other versions
JPH0552671A (en
Inventor
憲一 清水
潤一郎 川野
幸一 馬込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3213749A priority Critical patent/JP2958166B2/en
Publication of JPH0552671A publication Critical patent/JPH0552671A/en
Application granted granted Critical
Publication of JP2958166B2 publication Critical patent/JP2958166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスなどの焼
成工程における熱履歴を検知するためのものであり、特
に炭化珪素、窒化珪素、あるいはマグネシア、アルミナ
などにおいて1700℃を超える高温域の焼成における
熱履歴検知用成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for detecting a thermal history in a firing process for ceramics or the like, and particularly for firing in a high temperature range exceeding 1700 ° C. in silicon carbide, silicon nitride, magnesia, alumina or the like. The present invention relates to a molded body for detecting heat history.

【0002】[0002]

【従来の技術】セラミックスの焼成工程において、温度
プロファイル、焼成炉の種類、炉内のセッティング等に
よって被焼成体の受ける熱履歴は変化する。即ち、焼成
温度が同じでも他の条件が異なれば熱履歴は異なること
となり、この熱履歴を正しく検知する必要があった。
2. Description of the Related Art In the process of firing ceramics, the thermal history of the object to be fired changes depending on the temperature profile, the type of firing furnace, the settings in the furnace, and the like. That is, even if the firing temperature is the same, if other conditions are different, the thermal history will be different, and it is necessary to correctly detect the thermal history.

【0003】例えば、実開昭56−29441号公報な
どに示されているゼーゲルコーンを用いて被焼成体の熱
履歴を検知することが行われていた。ゼーゲルコーンと
は、溶倒温度の異なる複数の三角錐状体を支持台上に備
えたものであり、このゼーゲルコーンを被焼成体と共に
焼成した後、各三角錐状体の倒れ方によって、熱履歴を
検知するようになっていた。しかし、これでは正確な検
知ができないことから、現在では使用されることが少な
くなっている。
For example, the thermal history of a body to be fired has been detected using a Zegel cone disclosed in Japanese Utility Model Application Laid-Open No. 56-29441. A Zegel cone is one in which a plurality of triangular pyramids having different melting temperatures are provided on a support base.After firing this Zegel cone together with the object to be calcined, the thermal history is determined by the manner in which each triangular pyramid falls. Was to be detected. However, since accurate detection is not possible with this, it is rarely used at present.

【0004】そこで、例えば特開平1−184388号
公報等に示されているように、セラミックスの未焼成成
形体を用いて、この成形体を被焼成体と共に焼成した
後、収縮による寸法変化を測定することによって、熱履
歴を検知することが行われていた。例えば、図3に示す
ようなリング状の成形体20、あるいは図4に示すよう
なシート状の成形体30が用いられていた。
Therefore, as shown in, for example, Japanese Patent Application Laid-Open No. 1-184388, a green compact of ceramics is used, and the green compact is fired together with a body to be fired. By doing so, the thermal history has been detected. For example, a ring-shaped molded body 20 as shown in FIG. 3 or a sheet-shaped molded body 30 as shown in FIG. 4 has been used.

【0005】なお、このような焼成収縮による寸法変化
を測定する場合、寸法変化は便宜的に温度に変換される
が、この温度は実温を測定したものではなく、熱履歴を
表すものであって、本発明では指示温度と呼ぶこととす
る。
When such a dimensional change due to firing shrinkage is measured, the dimensional change is conveniently converted to a temperature. However, this temperature is not a measurement of the actual temperature, but a thermal history. Therefore, in the present invention, it is referred to as an indicated temperature.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の熱履
歴検知用セラミックス成形体は、Al2 3 −Si
2 、またはSiO2 −MgO系を主成分とし、多量の
不純物を含む天然原料からなるものであったため、焼成
収縮率にバラツキがあり、検知された指示温度の精度が
悪かった。また、1700℃以上の高温域において、熱
履歴を検知するセラミックス成形体はなかった。
However, the above ceramic molded body for detecting thermal history is made of Al 2 O 3 —Si.
Since it was made of a natural raw material containing O 2 or SiO 2 —MgO as a main component and containing a large amount of impurities, the firing shrinkage ratio varied, and the accuracy of the detected indicated temperature was poor. Further, in a high temperature range of 1700 ° C. or higher, there was no ceramic molded body for detecting a heat history.

【0007】さらに、図3に示すリング状のものでは、
体積が大きいため、焼成炉内で広いスペースを必要と
し、図4に示すシート状のものでは、ソリが発生して正
しく寸法を測定できないなどの問題点があった。
Further, in the ring-shaped one shown in FIG.
Since the volume is large, a large space is required in the firing furnace, and the sheet-shaped one shown in FIG. 4 has a problem that warpage occurs and dimensions cannot be measured correctly.

【0008】[0008]

【課題を解決するための手段】そこで本発明は、70重
量%以上のMgOを主成分とするセラミックス未焼成成
形体、より好ましくは、MgO−CaO−SiO2 の三
成分組成図における、点A(MgO100、CaO0、
SiO2 0)、点B(MgO90、CaO0、SiO2
10)、点C(MgO70、CaO30、SiO2 0)
を結ぶ範囲内の組成をもったセラミックス未焼成成形体
を熱履歴検知用成形体としたものである。
Means for Solving the Problems] The present invention is a ceramic green shaped body mainly composed of 70 wt% or more of MgO, more preferably, in the ternary composition diagram of the MgO-CaO-SiO 2, the point A (MgO100, CaO0,
SiO 2 0), point B (MgO 90, CaO 0, SiO 2
10), point C (MgO70, CaO30, SiO 2 0)
The ceramic unsintered molded body having a composition within the range connecting the two is used as a molded body for thermal history detection.

【0009】本発明において、組成を上記範囲内とした
のは、この範囲外であると1700℃で緻密化してしま
うためである。なお、本発明において上記三成分以外の
成分を微量に含んでいてもよい。
In the present invention, the reason for setting the composition within the above range is that if the composition is out of this range, the composition will be densified at 1700 ° C. In the present invention, components other than the above three components may be contained in trace amounts.

【0010】[0010]

【実施例】以下本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0011】図1(a)(b)に示すように、本発明の
熱履歴検知用成形体10は、円板体に平行な弦部12、
12を形成したものであり、残された円弧部は優れた真
円度の測定面11、11としてある。また、表裏を区別
するためのドットあるいはアルファベットなどの刻印に
よる凹部13が片面に形成され、上下面の角部には面取
り14が施されている。
As shown in FIGS. 1 (a) and 1 (b), a heat history detecting molded body 10 of the present invention has a chord portion 12 parallel to a disk body.
12 are formed, and the remaining arc portions are measurement surfaces 11 and 11 having excellent roundness. In addition, a concave portion 13 is formed on one side by engraving such as a dot or an alphabet for distinguishing the front and back sides, and a chamfer 14 is formed on the corners of the upper and lower surfaces.

【0012】さらに、この成形体10は、70重量%以
上のMgOを主成分として、CaO、SiO2 などを含
んだものであり、詳細には図2のMgO2 −CaO−S
iO2 三成分組成図に示すように、点A(MgO10
0、CaO0、SiO2 0)、点B(MgO90、Ca
O0、SiO2 10)、点C(MgO70、CaO3
0、SiO2 0)を結ぶ範囲内の組成からなっており、
原料粉末の粒径、成形体の生密度などを極めて厳密に管
理し、プレス成形してなる、未焼成成形体である。そし
て、後述するように、ある条件の下で焼成温度を変化さ
せて、この成形体10の焼成後の寸法を測定し、寸法と
焼成温度の関係を換算表として用意しておく。その後、
異なる条件で焼成を行う際に、被焼成体と共にこの成形
体10を焼成し、焼成後の寸法変化を測定することによ
って、上記換算表より指示温度を求めることができる。
Further, the molded body 10 contains 70% by weight or more of MgO as a main component and contains CaO, SiO 2 , and the like, and more specifically, MgO 2 —CaO—S of FIG.
As shown in the ternary composition diagram of iO 2 , point A (MgO 10
0, CaO0, SiO 2 0), point B (MgO90, Ca
O0, SiO 2 10), point C (MgO70, CaO3
0, SiO 2 0).
It is an unsintered compact obtained by press-molding by controlling the particle size of the raw material powder, the green density of the compact and the like very strictly. As will be described later, the firing temperature is changed under certain conditions to measure the dimensions of the molded body 10 after firing, and the relationship between the dimensions and the firing temperature is prepared as a conversion table. afterwards,
When firing under different conditions, the molded body 10 is fired together with the object to be fired, and the indicated temperature can be determined from the above conversion table by measuring the dimensional change after firing.

【0013】なお、前記したように、この指示温度と
は、実際の温度ではなく、熱履歴を便宜的に表したもの
である。即ち、本発明の熱履歴検知用成形体を用いれ
ば、焼成条件が異なる場合でも、指示温度を求めること
によって、熱履歴自体を管理することが可能となる。
As described above, the indicated temperature is not an actual temperature but a heat history for convenience. That is, by using the heat history detecting molded body of the present invention, even when firing conditions are different, it is possible to manage the heat history itself by obtaining the indicated temperature.

【0014】また、本発明の成形体は、さまざまな焼成
雰囲気の下で使用できるが、非酸化性雰囲気で使用する
場合は、仮焼して脱バインダーを行った方がよい。
Although the molded article of the present invention can be used in various firing atmospheres, when it is used in a non-oxidizing atmosphere, it is better to calcine and remove the binder.

【0015】さらに、本発明の成形体10は、弦部1
2、12をもっていることから、図2に示した従来例に
比べて面積が小さく、焼成炉内で大きなスペースを必要
としない。なお、この弦部12、12は互いに平行でな
くてもよく、一ヶ所のみに形成してもよい。さらに、本
発明の成形体10は、3〜10mm程度の肉厚をもった
プレス成形品であるからソリなどが生じることはなく、
また寸法測定時には図1(a)に示すように、円弧をし
た測定面11、11間を低定圧マイクロメータで測定す
ればよく、測定位置がずれても同じ直径Dを正確に測定
できる。
Further, the molded body 10 of the present invention has the chord 1
2 and 12, the area is smaller than that of the conventional example shown in FIG. 2, and a large space is not required in the firing furnace. Note that the chords 12 and 12 need not be parallel to each other, and may be formed only at one location. Furthermore, since the molded body 10 of the present invention is a press-molded article having a thickness of about 3 to 10 mm, no warpage or the like occurs,
Further, at the time of dimension measurement, as shown in FIG. 1 (a), it is only necessary to measure between the arc-shaped measurement surfaces 11, 11 with a low constant-pressure micrometer, and the same diameter D can be accurately measured even if the measurement position is shifted.

【0016】また、本発明の成形体10の形状について
は、密度が均一となるような単純な形状であれば、さま
ざまなものとすることができる。
The shape of the molded body 10 of the present invention can be various as long as it is a simple shape having a uniform density.

【0017】実施例1 精製した純度99.9%以上のMgO原料にCaO、S
iO2 を添加して、表1および図2に示す組成とした。
組成No.1はジェットミルにより乾式粉砕し、組成N
o.2以降はアルミナボールにより湿式粉砕し、レーザ
ー光散乱法による粒度分析を行って、平均粒径2.0±
0.1μmの範囲とした。また、蛍光X線分析法により
組成分析を行った。この原料粉末に11重量%のワック
ス系バインダーを添加混合し、噴霧乾燥することによっ
て、流動性の良い顆粒を得、この顆粒を、空調された成
形室にて、図1(a)(b)に示す形状にプレス成形す
るが、このとき成形体の生密度を1.400±0.00
5g/cm3 の範囲内として、本発明の熱履歴検知用成
形体を得た。
Example 1 CaO and S were added to a purified MgO raw material having a purity of 99.9% or more.
The composition shown in Table 1 and FIG. 2 was obtained by adding iO 2 .
Composition No. No. 1 was dry-pulverized by a jet mill and had composition N
o. After that, the particles were wet-pulverized with alumina balls and subjected to particle size analysis by a laser light scattering method.
The range was 0.1 μm. The composition was analyzed by a fluorescent X-ray analysis method. The raw material powder was mixed with 11% by weight of a wax-based binder, and spray-dried to obtain granules having good fluidity. The granules were placed in an air-conditioned molding room as shown in FIGS. 1 (a) and 1 (b). Press molding into the shape shown in the figure, and at this time, the green density of the compact was 1.400 ± 0.00
The heat history detecting molded article of the present invention was obtained within the range of 5 g / cm 3 .

【0018】これらの成形体を、1700℃で2時間、
1900℃で2時間の2種類の条件で焼成した。結果は
表2に示す通りである。なお、表2の組成比は調合比で
あるが、分析値を括弧内に示した。
[0018] These compacts are heated at 1700 ° C for 2 hours.
Baking was performed at 1900 ° C. for two hours under two conditions. The results are as shown in Table 2. The composition ratios in Table 2 are compounding ratios, and the analytical values are shown in parentheses.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表1、表2より明らかに、点A、点B、点
Cを結ぶ範囲外の、No.6、7、8は、1700℃で
緻密化してしまい、目的とする高温域での使用はできな
かった。
It is apparent from Tables 1 and 2 that the No. 3 out of the range connecting the points A, B, and C is the same. 6, 7, and 8 were densified at 1700 ° C., and could not be used in a target high temperature range.

【0022】これに対し、点A、点B、点Cを結ぶ範囲
内にある、No.1〜5の本発明実施例では、その収縮
過程が1700℃以上の範囲にあり、高温域での使用が
可能であることがわかった。ただしNo.1は、MgO
以外の成分を全く含まず、1900℃でも収縮しなかっ
た。したがって、1900℃よりも高い温度域で使用で
きるものである。これに対し、No.2は、アルミナボ
ールで粉砕したため微少のSiO2 、Al2 3 を含ん
でおり、1700〜1900℃の範囲で収縮し、この温
度域で使用可能であった。
On the other hand, in the range connecting point A, point B and point C, no. In Examples 1 to 5 of the present invention, the shrinkage process was in the range of 1700 ° C. or more, and it was found that use in a high temperature range was possible. However, no. 1 is MgO
And no shrinkage even at 1900 ° C. Therefore, it can be used in a temperature range higher than 1900 ° C. On the other hand, no. Sample No. 2 contained fine amounts of SiO 2 and Al 2 O 3 because it was pulverized with alumina balls, shrank in the range of 1700 to 1900 ° C., and was usable in this temperature range.

【0023】実験例2 実験例1と全く同様にして、表1中No.2の組成で、
直径Dが22.300mmの熱履歴検知用成形体10を
用意した。この成形体10を厳密に管理校正された焼成
炉を用いて、酸化雰囲気にて、昇温速度200℃/時、
最高焼成温度で2時間保持、降温速度300℃/時とし
て焼成し、350℃で1時間脱脂した。焼成後の成形体
10の寸法を、20℃にて低定圧マイクロメータで測定
した。
Experimental Example 2 In the same manner as in Experimental Example 1, Table 1 With the composition of 2,
A heat history detecting molded body 10 having a diameter D of 22.300 mm was prepared. The molded body 10 was heated in an oxidizing atmosphere at a rate of 200 ° C./hour in a sintering furnace strictly controlled and calibrated.
It was held at the highest firing temperature for 2 hours, fired at a temperature lowering rate of 300 ° C./hour, and degreased at 350 ° C. for 1 hour. The dimensions of the molded body 10 after firing were measured at 20 ° C. with a low constant pressure micrometer.

【0024】焼成温度(指示温度)をさまざまに変化さ
せて、それぞれ20個の成形体10の焼成の焼成を3回
繰り返して行った。この結果は、表3および図5に示す
通りである。
The firing temperature (indicated temperature) was changed variously, and firing of the 20 compacts 10 was repeated three times. The results are as shown in Table 3 and FIG.

【0025】また、各温度における、寸法のばらつき
(3σ)と、その温度での1℃当たりの寸法変化量(接
線の傾き)から、 指示温度の検知精度=±寸法のばらつき/1℃当たりの
寸法変化量 により、指示温度の検知精度(3σ)を算出した。結果
は、表3に示す通り、1700〜1900℃の範囲内
で、指示温度の検知精度を±2℃以内とすることができ
た。
Further, from the dimensional variation (3σ) at each temperature and the dimensional change per 1 ° C. (tangent slope) at that temperature, the detection accuracy of the indicated temperature = ± the dimensional variation / per 1 ° C. The detection accuracy of the indicated temperature (3σ) was calculated from the dimensional change. As a result, as shown in Table 3, within the range of 1700 to 1900 ° C, the detection accuracy of the indicated temperature was able to be within ± 2 ° C.

【0026】さらに、表3では指示温度50℃ごとの成
形体の寸法を示しているが、もっと細かな指示温度ごと
の寸法を測定しておくことによって、成形体の寸法と指
示温度の換算表とすることができる。
Further, Table 3 shows the dimensions of the compact at each indicated temperature of 50 ° C. By measuring the dimensions at each designated temperature more finely, a conversion table of the dimensions of the compact and the designated temperature is obtained. It can be.

【0027】[0027]

【表3】 [Table 3]

【0028】また、上記実施例では、熱履歴検知用成形
体10を得るために、原料の粒径2.0±0.1μm、
成形体の生密度1.400±0.005g/cm3 とし
たが、いずれもこの値に限定されるものではなく、さま
ざまに変化させることができる。通常、粒径については
±0.2μmで管理し、生密度については±0.01g
/cm3 の範囲内にバラツキを押さえれば、指示温度の
検知精度を±2℃とすることが可能であった。
In the above embodiment, in order to obtain the heat history detecting molded body 10, the raw material has a particle size of 2.0 ± 0.1 μm.
Although the green density of the molded body was set to 1.400 ± 0.005 g / cm 3 , none of these values is limited to this value, and various changes can be made. Usually, the particle size is controlled at ± 0.2 μm, and the green density is ± 0.01 g
/ Cm 3 , the detection accuracy of the indicated temperature could be made ± 2 ° C.

【0029】[0029]

【発明の効果】このように本発明によれば、70重量%
以上のMgOを主成分とし、特にMgO−CaO−Si
2 の三成分組成図における、点A(MgO100、C
aO0、SiO2 0)、点B(MgO90、CaO0、
SiO2 10)、点C(MgO70、CaO30、Si
20)を結ぶ範囲内の組成をもったセラミックス未焼
成成形体を熱履歴検知用成形体としたことによって、指
示温度の測定精度を±2℃以内と極めて高精度にできる
ことから、焼成条件が変わっても焼成工程を厳密に管理
することができ、優れた焼結体を得ることが可能とな
る。また、特に1700℃以下の高温域での焼成管理を
可能とすることができる。
As described above, according to the present invention, 70% by weight
MgO as a main component, especially MgO-CaO-Si
In the three-component composition diagram of O 2 , point A (MgO100, C
aO0, SiO 2 0), point B (MgO90, CaO0,
SiO 2 10), point C (MgO70, CaO30, Si
By using a ceramic unfired molded body having a composition within the range connecting O 2 0) as a thermal history detection molded body, the measurement accuracy of the indicated temperature can be made extremely high within ± 2 ° C. Even if the temperature changes, the firing step can be strictly controlled, and an excellent sintered body can be obtained. In addition, it is possible to control firing in a high temperature range of 1700 ° C. or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明実施例の熱履歴検知用成形体を
示す平面図、(b)は同図(a)中のX−X線断面図で
ある。
FIG. 1A is a plan view showing a heat history detecting molded body according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line XX in FIG. 1A.

【図2】本発明の熱履歴検知用成形体の組成範囲を示す
三成分組成図である。
FIG. 2 is a three-component composition diagram showing a composition range of a molded article for heat history detection of the present invention.

【図3】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 3 is a perspective view showing a conventional heat history detecting molded body.

【図4】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 4 is a perspective view showing a conventional heat history detecting molded body.

【図5】本発明の熱履歴検知用成形体における、焼成収
縮率と指示温度の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the firing shrinkage and the indicated temperature in the molded article for heat history detection of the present invention.

【符号の説明】[Explanation of symbols]

10・・・熱履歴検知用成形体 11・・・測定面 12・・・弦部 13・・・凹部 14・・・面取り DESCRIPTION OF SYMBOLS 10 ... Heat history detection molded body 11 ... Measurement surface 12 ... String part 13 ... Depression 14 ... Chamfer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−184388(JP,A) 特開 昭47−12094(JP,A) 特開 平4−110738(JP,A) 実開 昭56−29441(JP,U) 実開 昭62−30131(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01K 11/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-184388 (JP, A) JP-A-47-12094 (JP, A) JP-A-4-110738 (JP, A) 29441 (JP, U) Actually open Sho 62-30131 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) G01K 11/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】70重量%以上のMgOを主成分とするセ
ラミックス未焼成成形体からなることを特徴とする熱履
歴検知用成形体。
1. A molded article for detecting heat history, comprising a ceramic unsintered molded article containing 70% by weight or more of MgO as a main component.
JP3213749A 1991-08-26 1991-08-26 Molded body for thermal history detection Expired - Fee Related JP2958166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213749A JP2958166B2 (en) 1991-08-26 1991-08-26 Molded body for thermal history detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213749A JP2958166B2 (en) 1991-08-26 1991-08-26 Molded body for thermal history detection

Publications (2)

Publication Number Publication Date
JPH0552671A JPH0552671A (en) 1993-03-02
JP2958166B2 true JP2958166B2 (en) 1999-10-06

Family

ID=16644391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213749A Expired - Fee Related JP2958166B2 (en) 1991-08-26 1991-08-26 Molded body for thermal history detection

Country Status (1)

Country Link
JP (1) JP2958166B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762092B2 (en) * 2006-09-07 2011-08-31 京セラ株式会社 Thermal history sensor

Also Published As

Publication number Publication date
JPH0552671A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JPS6060983A (en) Ceramic heater and manufacture
US4325710A (en) Sintered ceramics for cutting tools and manufacturing process thereof
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JP2958166B2 (en) Molded body for thermal history detection
JP2892229B2 (en) Molded body for thermal history detection
JP2948973B2 (en) Molded body for thermal history detection
JP2899920B2 (en) Molded body for thermal history detection
JP2941495B2 (en) Molded body for thermal history detection
JP3170341B2 (en) Molded body for thermal history detection
JP3266352B2 (en) Molded body for thermal history detection
JP4970712B2 (en) Aluminum nitride sintered body, aluminum nitride production method, and aluminum nitride evaluation method
JPH0672061B2 (en) Molded body for heat history detection
JP2777679B2 (en) Spinel ceramics and manufacturing method thereof
Hall Secondary Expansion of High‐Alumina Refractories
JP3744703B2 (en) Reference device
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
GB2191997A (en) Sintered materials
JPH0967169A (en) Firing jig and production of ceramic substrate formed by using the same
JP3142663B2 (en) Zirconia kiln tools
JP2002173366A (en) Cordierite based ceramic material
JPH0773081B2 (en) Method for manufacturing oxide semiconductor porcelain for thermistor
JPH04293290A (en) Smooth ceramic substrate and manufacture thereof
SU697467A1 (en) Ceramic material
Trigg et al. The reactions of silicon nitride with vanadium oxides
De Portu et al. Young's modulus of silicon nitride hot pressed with ceria additions

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees