JPH0552671A - Compact for detecting heat history - Google Patents

Compact for detecting heat history

Info

Publication number
JPH0552671A
JPH0552671A JP3213749A JP21374991A JPH0552671A JP H0552671 A JPH0552671 A JP H0552671A JP 3213749 A JP3213749 A JP 3213749A JP 21374991 A JP21374991 A JP 21374991A JP H0552671 A JPH0552671 A JP H0552671A
Authority
JP
Japan
Prior art keywords
compact
baked
temperature
mgo
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3213749A
Other languages
Japanese (ja)
Other versions
JP2958166B2 (en
Inventor
Kenichi Shimizu
憲一 清水
Junichiro Kawano
潤一郎 川野
Koichi Umagome
幸一 馬込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3213749A priority Critical patent/JP2958166B2/en
Publication of JPH0552671A publication Critical patent/JPH0552671A/en
Application granted granted Critical
Publication of JP2958166B2 publication Critical patent/JP2958166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To measure indicating temperature at high accuracy, and to strictly manage a baking process by forming a compact for detection out of a ceramic non-baked compact mainly composed of MgO of not less than a specified weight percentage. CONSTITUTION:A compact 10 for detecting heat history 10 is formed out of ceramic non-baked compact mainly composed of MgO of not less than 70wt%. More preferably, it is composed of a ceramic non-baked compact composed of combinations that fall in a range formed by points A(MgO100%), B(MgO90%, SiO210%), C(MgO70%, CaO30%) in a three-component structural diagram of SiO2. A chord part 12 in parallel to a disc body is formed by this compact 10, while the other arc part is defined as a surface 11 for measuring excellent circularity, while a recessed part 13 is formed on one side so as to discriminate the surface side from rear side, and the angular parts of the upper and lower surfaces are chamfered and are press-molded. The mold body 10 is baked along with a material to be baked, and the difference in the size after baking is measured, and a indicating temperature is determined based on a conversion table. Baking management in high temperature region of no more than 1700 deg.C can be carried out within the measurement accuracy of + or -2 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスなどの焼
成工程における熱履歴を検知するためのものであり、特
に炭化珪素、窒化珪素、あるいはマグネシア、アルミナ
などにおいて1700℃を超える高温域の焼成における
熱履歴検知用成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for detecting the thermal history in the firing process of ceramics and the like, and particularly in the firing of silicon carbide, silicon nitride, magnesia, alumina, etc. in a high temperature range exceeding 1700 ° C. The present invention relates to a heat history detection molded body.

【0002】[0002]

【従来の技術】セラミックスの焼成工程において、温度
プロファイル、焼成炉の種類、炉内のセッティング等に
よって被焼成体の受ける熱履歴は変化する。即ち、焼成
温度が同じでも他の条件が異なれば熱履歴は異なること
となり、この熱履歴を正しく検知する必要があった。
2. Description of the Related Art In the firing process of ceramics, the thermal history of the body to be fired changes depending on the temperature profile, the type of firing furnace, the settings in the furnace, and the like. That is, even if the firing temperature is the same, if the other conditions are different, the thermal history is different, and it is necessary to correctly detect this thermal history.

【0003】例えば、実開昭56−29441号公報な
どに示されているゼーゲルコーンを用いて被焼成体の熱
履歴を検知することが行われていた。ゼーゲルコーンと
は、溶倒温度の異なる複数の三角錐状体を支持台上に備
えたものであり、このゼーゲルコーンを被焼成体と共に
焼成した後、各三角錐状体の倒れ方によって、熱履歴を
検知するようになっていた。しかし、これでは正確な検
知ができないことから、現在では使用されることが少な
くなっている。
For example, the thermal history of a body to be fired has been detected using a Zegel cone as disclosed in Japanese Utility Model Laid-Open No. 56-29441. Zegel cones are provided with a plurality of triangular pyramids having different melting temperatures on a support, and after firing this Zegel cone together with the object to be fired, the thermal history of the triangular pyramids falls, It was supposed to detect. However, this method cannot be used for accurate detection, so that it is now less used.

【0004】そこで、例えば特開平1−184388号
公報等に示されているように、セラミックスの未焼成成
形体を用いて、この成形体を被焼成体と共に焼成した
後、収縮による寸法変化を測定することによって、熱履
歴を検知することが行われていた。例えば、図3に示す
ようなリング状の成形体20、あるいは図4に示すよう
なシート状の成形体30が用いられていた。
Therefore, as disclosed in, for example, Japanese Unexamined Patent Publication No. 1-184388, an unfired ceramic body is used, and this body is fired together with the body to be fired, and then the dimensional change due to shrinkage is measured. By doing so, the thermal history has been detected. For example, a ring-shaped molded body 20 as shown in FIG. 3 or a sheet-shaped molded body 30 as shown in FIG. 4 was used.

【0005】なお、このような焼成収縮による寸法変化
を測定する場合、寸法変化は便宜的に温度に変換される
が、この温度は実温を測定したものではなく、熱履歴を
表すものであって、本発明では指示温度と呼ぶこととす
る。
When measuring such a dimensional change due to firing shrinkage, the dimensional change is expediently converted into a temperature, but this temperature does not represent an actual temperature but represents a thermal history. Therefore, in the present invention, it is referred to as an instruction temperature.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の熱履
歴検知用セラミックス成形体は、Al2 3 −Si
2 、またはSiO2 −MgO系を主成分とし、多量の
不純物を含む天然原料からなるものであったため、焼成
収縮率にバラツキがあり、検知された指示温度の精度が
悪かった。また、1700℃以上の高温域において、熱
履歴を検知するセラミックス成形体はなかった。
However, the above-mentioned ceramic molded body for thermal history detection has a problem of Al 2 O 3 --Si.
Since it was made of a natural raw material containing O 2 or SiO 2 —MgO system as a main component and containing a large amount of impurities, the firing shrinkage ratio varied, and the accuracy of the detected indicated temperature was poor. In addition, in the high temperature region of 1700 ° C. or higher, there was no ceramic molded body whose thermal history was detected.

【0007】さらに、図3に示すリング状のものでは、
体積が大きいため、焼成炉内で広いスペースを必要と
し、図4に示すシート状のものでは、ソリが発生して正
しく寸法を測定できないなどの問題点があった。
Further, in the ring shape shown in FIG. 3,
Since the volume is large, a large space is required in the firing furnace, and the sheet-like material shown in FIG. 4 has a problem that warpage occurs and the dimension cannot be measured correctly.

【0008】[0008]

【課題を解決するための手段】そこで本発明は、70重
量%以上のMgOを主成分とするセラミックス未焼成成
形体、より好ましくは、MgO−CaO−SiO2 の三
成分組成図における、点A(MgO100、CaO0、
SiO2 0)、点B(MgO90、CaO0、SiO2
10)、点C(MgO70、CaO30、SiO2 0)
を結ぶ範囲内の組成をもったセラミックス未焼成成形体
を熱履歴検知用成形体としたものである。
Therefore, according to the present invention, a ceramic unfired compact containing 70% by weight or more of MgO as a main component, more preferably, a point A in the three-component composition diagram of MgO-CaO-SiO 2 (MgO100, CaO0,
SiO 2 0), point B (MgO 90, CaO 0, SiO 2
10), point C (MgO70, CaO30, SiO 2 0)
A ceramics unfired molded body having a composition within the range of is used as a thermal history detection molded body.

【0009】本発明において、組成を上記範囲内とした
のは、この範囲外であると1700℃で緻密化してしま
うためである。なお、本発明において上記三成分以外の
成分を微量に含んでいてもよい。
In the present invention, the reason why the composition is within the above range is that if the composition is out of this range, the composition is densified at 1700 ° C. In the present invention, the components other than the above three components may be included in a trace amount.

【0010】[0010]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0011】図1(a)(b)に示すように、本発明の
熱履歴検知用成形体10は、円板体に平行な弦部12、
12を形成したものであり、残された円弧部は優れた真
円度の測定面11、11としてある。また、表裏を区別
するためのドットあるいはアルファベットなどの刻印に
よる凹部13が片面に形成され、上下面の角部には面取
り14が施されている。
As shown in FIGS. 1 (a) and 1 (b), the thermal history detecting molded body 10 of the present invention comprises a chord portion 12 parallel to the disc body.
12 is formed, and the remaining circular arc portions are the measurement surfaces 11 and 11 having excellent roundness. Further, a concave portion 13 is formed on one surface by marking such as dots or alphabets for distinguishing the front side and the back side, and chamfers 14 are provided at upper and lower corners.

【0012】さらに、この成形体10は、70重量%以
上のMgOを主成分として、CaO、SiO2 などを含
んだものであり、詳細には図2のMgO2 −CaO−S
iO2 三成分組成図に示すように、点A(MgO10
0、CaO0、SiO2 0)、点B(MgO90、Ca
O0、SiO2 10)、点C(MgO70、CaO3
0、SiO2 0)を結ぶ範囲内の組成からなっており、
原料粉末の粒径、成形体の生密度などを極めて厳密に管
理し、プレス成形してなる、未焼成成形体である。そし
て、後述するように、ある条件の下で焼成温度を変化さ
せて、この成形体10の焼成後の寸法を測定し、寸法と
焼成温度の関係を換算表として用意しておく。その後、
異なる条件で焼成を行う際に、被焼成体と共にこの成形
体10を焼成し、焼成後の寸法変化を測定することによ
って、上記換算表より指示温度を求めることができる。
Further, the molded body 10 contains 70% by weight or more of MgO as a main component and contains CaO, SiO 2 and the like, and in detail, MgO 2 --CaO--S shown in FIG.
As shown in the io 2 ternary composition diagram, point A (MgO 10
0, CaO0, SiO 2 0) , point B (MgO90, Ca
O0, SiO 2 10), point C (MgO70, CaO3)
0, SiO 2 0) and the composition within the range
It is an unsintered compact formed by press molding while controlling the particle size of the raw material powder, the green density of the compact, and the like very strictly. Then, as will be described later, the firing temperature is changed under a certain condition, the dimension of the molded body 10 after firing is measured, and the relationship between the dimension and the firing temperature is prepared as a conversion table. afterwards,
When firing is performed under different conditions, the molded body 10 is fired together with the body to be fired, and the dimensional change after firing is measured, so that the indicated temperature can be obtained from the conversion table.

【0013】なお、前記したように、この指示温度と
は、実際の温度ではなく、熱履歴を便宜的に表したもの
である。即ち、本発明の熱履歴検知用成形体を用いれ
ば、焼成条件が異なる場合でも、指示温度を求めること
によって、熱履歴自体を管理することが可能となる。
As described above, the indicated temperature is not an actual temperature but a thermal history for convenience. That is, if the heat history detecting molded body of the present invention is used, the heat history itself can be managed by obtaining the indicated temperature even when the firing conditions are different.

【0014】また、本発明の成形体は、さまざまな焼成
雰囲気の下で使用できるが、非酸化性雰囲気で使用する
場合は、仮焼して脱バインダーを行った方がよい。
The molded product of the present invention can be used in various firing atmospheres, but when used in a non-oxidizing atmosphere, it is better to perform calcination to remove the binder.

【0015】さらに、本発明の成形体10は、弦部1
2、12をもっていることから、図2に示した従来例に
比べて面積が小さく、焼成炉内で大きなスペースを必要
としない。なお、この弦部12、12は互いに平行でな
くてもよく、一ヶ所のみに形成してもよい。さらに、本
発明の成形体10は、3〜10mm程度の肉厚をもった
プレス成形品であるからソリなどが生じることはなく、
また寸法測定時には図1(a)に示すように、円弧をし
た測定面11、11間を低定圧マイクロメータで測定す
ればよく、測定位置がずれても同じ直径Dを正確に測定
できる。
Further, the molded body 10 of the present invention comprises the chord portion 1
Since it has 2 and 12, it has a smaller area than the conventional example shown in FIG. 2 and does not require a large space in the firing furnace. The string portions 12 and 12 do not have to be parallel to each other, and may be formed at only one place. Furthermore, since the molded product 10 of the present invention is a press-molded product having a wall thickness of about 3 to 10 mm, warpage does not occur,
Further, at the time of dimension measurement, as shown in FIG. 1A, a low constant pressure micrometer may be used to measure between the arcuate measurement surfaces 11, 11 and the same diameter D can be accurately measured even if the measurement position is deviated.

【0016】また、本発明の成形体10の形状について
は、密度が均一となるような単純な形状であれば、さま
ざまなものとすることができる。
Further, the shape of the molded body 10 of the present invention can be various as long as it is a simple shape having a uniform density.

【0017】実施例1 精製した純度99.9%以上のMgO原料にCaO、S
iO2 を添加して、表1および図2に示す組成とした。
組成No.1はジェットミルにより乾式粉砕し、組成N
o.2以降はアルミナボールにより湿式粉砕し、レーザ
ー光散乱法による粒度分析を行って、平均粒径2.0±
0.1μmの範囲とした。また、蛍光X線分析法により
組成分析を行った。この原料粉末に11重量%のワック
ス系バインダーを添加混合し、噴霧乾燥することによっ
て、流動性の良い顆粒を得、この顆粒を、空調された成
形室にて、図1(a)(b)に示す形状にプレス成形す
るが、このとき成形体の生密度を1.400±0.00
5g/cm3 の範囲内として、本発明の熱履歴検知用成
形体を得た。
Example 1 Purified MgO raw material having a purity of 99.9% or more was added with CaO and S.
iO 2 was added to obtain the composition shown in Table 1 and FIG.
Composition No. 1 is dry pulverized with a jet mill and has a composition N
o. After 2 is wet pulverized with alumina balls and subjected to particle size analysis by a laser light scattering method to obtain an average particle size of 2.0 ±
The range was 0.1 μm. In addition, composition analysis was performed by a fluorescent X-ray analysis method. 11% by weight of a wax-based binder was added to and mixed with this raw material powder, and spray-dried to obtain granules with good fluidity. The granules were placed in an air-conditioned molding chamber as shown in FIGS. Press-molding into the shape shown in Fig. 1, but at this time, the green density of the molded body is 1.400 ± 0.00
Within the range of 5 g / cm 3 , a heat history detecting molding of the present invention was obtained.

【0018】これらの成形体を、1700℃で2時間、
1900℃で2時間の2種類の条件で焼成した。結果は
表2に示す通りである。なお、表2の組成比は調合比で
あるが、分析値を括弧内に示した。
These molded bodies were treated at 1700 ° C. for 2 hours,
Firing was performed under two kinds of conditions of 1900 ° C. for 2 hours. The results are shown in Table 2. The composition ratios in Table 2 are compounding ratios, but the analysis values are shown in parentheses.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表1、表2より明らかに、点A、点B、点
Cを結ぶ範囲外の、No.6、7、8は、1700℃で
緻密化してしまい、目的とする高温域での使用はできな
かった。
It is apparent from Tables 1 and 2 that No. 1 outside the range connecting the points A, B and C. Nos. 6, 7, and 8 were densified at 1700 ° C. and could not be used in the intended high temperature range.

【0022】これに対し、点A、点B、点Cを結ぶ範囲
内にある、No.1〜5の本発明実施例では、その収縮
過程が1700℃以上の範囲にあり、高温域での使用が
可能であることがわかった。ただしNo.1は、MgO
以外の成分を全く含まず、1900℃でも収縮しなかっ
た。したがって、1900℃よりも高い温度域で使用で
きるものである。これに対し、No.2は、アルミナボ
ールで粉砕したため微少のSiO2 、Al2 3 を含ん
でおり、1700〜1900℃の範囲で収縮し、この温
度域で使用可能であった。
On the other hand, No. 10 within the range connecting points A, B and C In Examples 1 to 5 of the present invention, the shrinking process was in the range of 1700 ° C. or higher, and it was found that it can be used in a high temperature range. However, No. 1 is MgO
Other components were not included at all, and did not shrink even at 1900 ° C. Therefore, it can be used in a temperature range higher than 1900 ° C. On the other hand, No. Since No. 2 was crushed with alumina balls, it contained minute amounts of SiO 2 and Al 2 O 3 , contracted in the range of 1700 to 1900 ° C., and was usable in this temperature range.

【0023】実験例2 実験例1と全く同様にして、表1中No.2の組成で、
直径Dが22.300mmの熱履歴検知用成形体10を
用意した。この成形体10を厳密に管理校正された焼成
炉を用いて、酸化雰囲気にて、昇温速度200℃/時、
最高焼成温度で2時間保持、降温速度300℃/時とし
て焼成し、350℃で1時間脱脂した。焼成後の成形体
10の寸法を、20℃にて低定圧マイクロメータで測定
した。
Experimental Example 2 In the same manner as in Experimental Example 1, No. 1 in Table 1 was used. With the composition of 2,
A heat history detecting molded body 10 having a diameter D of 22.300 mm was prepared. This molded body 10 was heated in an oxidizing atmosphere at a temperature rising rate of 200 ° C./hour using a firing furnace that was rigorously controlled and calibrated.
It was held at the maximum firing temperature for 2 hours, fired at a temperature lowering rate of 300 ° C./hour, and degreased at 350 ° C. for 1 hour. The dimensions of the molded body 10 after firing were measured at 20 ° C. with a low constant pressure micrometer.

【0024】焼成温度(指示温度)をさまざまに変化さ
せて、それぞれ20個の成形体10の焼成の焼成を3回
繰り返して行った。この結果は、表3および図5に示す
通りである。
The firing temperature (instructed temperature) was variously changed, and the firing of 20 molded bodies 10 was repeated three times. The results are shown in Table 3 and FIG.

【0025】また、各温度における、寸法のばらつき
(3σ)と、その温度での1℃当たりの寸法変化量(接
線の傾き)から、 指示温度の検知精度=±寸法のばらつき/1℃当たりの
寸法変化量 により、指示温度の検知精度(3σ)を算出した。結果
は、表3に示す通り、1700〜1900℃の範囲内
で、指示温度の検知精度を±2℃以内とすることができ
た。
Further, from the dimensional variation (3σ) at each temperature and the dimensional change amount (tangent slope) per 1 ° C. at that temperature, the detection accuracy of the indicated temperature = ± dimensional variation / per 1 ° C. The detection accuracy (3σ) of the indicated temperature was calculated from the dimensional change amount. As a result, as shown in Table 3, in the range of 1700 to 1900 ° C, the detection accuracy of the indicated temperature could be within ± 2 ° C.

【0026】さらに、表3では指示温度50℃ごとの成
形体の寸法を示しているが、もっと細かな指示温度ごと
の寸法を測定しておくことによって、成形体の寸法と指
示温度の換算表とすることができる。
Further, although Table 3 shows the dimensions of the molded body for each indicated temperature of 50 ° C., a conversion table for the dimensions of the molded body and the indicated temperature can be obtained by measuring the dimensions for each of the more detailed indicated temperatures. Can be

【0027】[0027]

【表3】 [Table 3]

【0028】また、上記実施例では、熱履歴検知用成形
体10を得るために、原料の粒径2.0±0.1μm、
成形体の生密度1.400±0.005g/cm3 とし
たが、いずれもこの値に限定されるものではなく、さま
ざまに変化させることができる。通常、粒径については
±0.2μmで管理し、生密度については±0.01g
/cm3 の範囲内にバラツキを押さえれば、指示温度の
検知精度を±2℃とすることが可能であった。
Further, in the above embodiment, in order to obtain the heat history detecting molded body 10, the grain size of the raw material is 2.0 ± 0.1 μm,
The green density of the molded body was 1.400 ± 0.005 g / cm 3 , but the green density is not limited to this value and can be variously changed. Normally, the particle size is controlled at ± 0.2 μm, and the raw density is ± 0.01 g
By suppressing the variation within the range of / cm 3 , it was possible to make the detection accuracy of the indicated temperature ± 2 ° C.

【0029】[0029]

【発明の効果】このように本発明によれば、70重量%
以上のMgOを主成分とし、特にMgO−CaO−Si
2 の三成分組成図における、点A(MgO100、C
aO0、SiO2 0)、点B(MgO90、CaO0、
SiO2 10)、点C(MgO70、CaO30、Si
20)を結ぶ範囲内の組成をもったセラミックス未焼
成成形体を熱履歴検知用成形体としたことによって、指
示温度の測定精度を±2℃以内と極めて高精度にできる
ことから、焼成条件が変わっても焼成工程を厳密に管理
することができ、優れた焼結体を得ることが可能とな
る。また、特に1700℃以下の高温域での焼成管理を
可能とすることができる。
As described above, according to the present invention, 70% by weight
The above MgO as a main component, especially MgO-CaO-Si
In the ternary composition diagram of the O 2, the point A (MgO100, C
aO0, SiO 2 0), point B (MgO90, CaO0,
SiO 2 10), point C (MgO70, CaO30, Si
By using a ceramics unfired molded body having a composition within the range connecting O 2 0) as the thermal history detection molded body, the measurement accuracy of the indicated temperature can be made extremely accurate to within ± 2 ° C. Even if the temperature changes, the firing process can be strictly controlled, and an excellent sintered body can be obtained. Further, it is possible to enable firing control particularly in a high temperature range of 1700 ° C. or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明実施例の熱履歴検知用成形体を
示す平面図、(b)は同図(a)中のX−X線断面図で
ある。
FIG. 1 (a) is a plan view showing a heat history detection molded body according to an embodiment of the present invention, and FIG. 1 (b) is a sectional view taken along line XX in FIG. 1 (a).

【図2】本発明の熱履歴検知用成形体の組成範囲を示す
三成分組成図である。
FIG. 2 is a three-component composition diagram showing the composition range of the molded article for heat history detection of the present invention.

【図3】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 3 is a perspective view showing a conventional molded body for heat history detection.

【図4】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 4 is a perspective view showing a conventional heat history detection molded body.

【図5】本発明の熱履歴検知用成形体における、焼成収
縮率と指示温度の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the firing shrinkage rate and the indicated temperature in the heat history detection molded body of the present invention.

【符号の説明】[Explanation of symbols]

10・・・熱履歴検知用成形体 11・・・測定面 12・・・弦部 13・・・凹部 14・・・面取り 10 ... Mold for thermal history detection 11 ... Measurement surface 12 ... Chord portion 13 ... Recessed portion 14 ... Chamfer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】70重量%以上のMgOを主成分とするセ
ラミックス未焼成成形体からなることを特徴とする熱履
歴検知用成形体。
1. A molded article for thermal history detection, comprising a ceramic unfired molded article containing 70% by weight or more of MgO as a main component.
JP3213749A 1991-08-26 1991-08-26 Molded body for thermal history detection Expired - Fee Related JP2958166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213749A JP2958166B2 (en) 1991-08-26 1991-08-26 Molded body for thermal history detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213749A JP2958166B2 (en) 1991-08-26 1991-08-26 Molded body for thermal history detection

Publications (2)

Publication Number Publication Date
JPH0552671A true JPH0552671A (en) 1993-03-02
JP2958166B2 JP2958166B2 (en) 1999-10-06

Family

ID=16644391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213749A Expired - Fee Related JP2958166B2 (en) 1991-08-26 1991-08-26 Molded body for thermal history detection

Country Status (1)

Country Link
JP (1) JP2958166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor

Also Published As

Publication number Publication date
JP2958166B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JPS6060983A (en) Ceramic heater and manufacture
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JP2892229B2 (en) Molded body for thermal history detection
JPH0552671A (en) Compact for detecting heat history
JP2941495B2 (en) Molded body for thermal history detection
JP2899920B2 (en) Molded body for thermal history detection
JPH05240716A (en) Molding for detecting heat history
JP3266352B2 (en) Molded body for thermal history detection
JPH01108177A (en) Ceramic foam
JPH0672061B2 (en) Molded body for heat history detection
JP3170341B2 (en) Molded body for thermal history detection
Hall Secondary Expansion of High‐Alumina Refractories
Tomaszewski Effects of Cr2O3 additions on the sintering and mechanical properties of Al2O3
GB2191997A (en) Sintered materials
JP3142663B2 (en) Zirconia kiln tools
JP4762092B2 (en) Thermal history sensor
JP2004224607A (en) Method for manufacturing low thermal expansion ceramic
US5110772A (en) Fabrication of dense SI3 N4 ceramics using CaO-TiO2 SiO.sub.2
JPH04293290A (en) Smooth ceramic substrate and manufacture thereof
JP2000007428A (en) Zirconyl phosphate-base composite material and precision apparatus using the same
JP2002173366A (en) Cordierite based ceramic material
De Pretis et al. Influence of the Preparation Method on the Technological Properties of Zirconia Based Ceramics
JPH0773081B2 (en) Method for manufacturing oxide semiconductor porcelain for thermistor
JP3368035B2 (en) Setter
JPH1164118A (en) Thermal hysteresis sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees