JP4570195B2 - BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER - Google Patents

BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER Download PDF

Info

Publication number
JP4570195B2
JP4570195B2 JP2000074186A JP2000074186A JP4570195B2 JP 4570195 B2 JP4570195 B2 JP 4570195B2 JP 2000074186 A JP2000074186 A JP 2000074186A JP 2000074186 A JP2000074186 A JP 2000074186A JP 4570195 B2 JP4570195 B2 JP 4570195B2
Authority
JP
Japan
Prior art keywords
boron carbide
plasma
powder
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000074186A
Other languages
Japanese (ja)
Other versions
JP2001261457A (en
Inventor
祥二 高坂
秀美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000074186A priority Critical patent/JP4570195B2/en
Publication of JP2001261457A publication Critical patent/JP2001261457A/en
Application granted granted Critical
Publication of JP4570195B2 publication Critical patent/JP4570195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置用治具などに用いられ、フッ素系及び塩素系腐食性ガス雰囲気、特にフッ素系や塩素系プラズマに対して高い耐食性を有する炭化硼素接合体であって、特にハロゲンプラズマ中で使用させるフォーカスリング、クランプリング、ベルジャー及びドーム等のプラズマ処理装置用部材、被処理物を支持する支持体などの治具などの精密加工製品などに好適な炭化硼素接合体およびその製造方法と、半導体や液晶などのデバイス製造工程、マイクロマシンの製造工程、電子回路の製造工程、薄膜製造工程などの材料加工工程、特にプラズマ処理を伴う製造工程において好適に用いられる耐プラズマ部材とそれを用いたプラズマ装置に関するものである。
【0002】
【従来技術】
現在、プラズマ装置は、半導体や液晶などのデバイスを製造する工程、エッチングを用いて形成されるマイクロマシンの製造工程、配線基板を形成する電子回路の製造工程、スパッタリングやプラズマCVDなどの薄膜製造工程およびその他のエッチングを伴う工程など、広範な製造工程において用いられている。
【0003】
プラズマ装置とは、特定のガスの一部をイオン化し、電子とイオンと中性粒子からなる気体を形成するための装置であって、真空容器と、ガスの導入装置とプラズマ発生装置と、被処理物を保持する固定治具とを具備する装置であり、具体的には核融合装置、プラズマCVDやスパッタやイオンプレーティングなどの薄膜形成装置、RIE(反応性イオンエッチング)や高密度イオンエッチング装置などのエッチャーなどが挙げられる。
【0004】
プラズマ発生装置は、直流、交流、高周波などにより電磁場を形成し、ガスをイオン化するための装置を言い、特に0.8〜13.56MHzの高周波や2.45GHzのマイクロ波を用いてプラズマを形成するための電源と電極とを備えているものである。
【0005】
特に、プラズマ半導体製造工程や他のエッチング工程を伴う製造工程において用いられるエッチング装置においては、装置内のガスに平板電極やコイル状の誘導電極に高周波を印加してプラズマを発生させたり、マイクロ波を真空容器内に導入してプラズマを発生させ、腐食性ガスのプラズマ雰囲気中で被処理物の表面のエッチング処理等を行っている。
【0006】
このため、これらのプラズマ装置においては、特に装置内部の部材の腐食が激しく、歩留まりや製品コストおよび製品の信頼性に影響を及ぼしてきた。特に、半導体素子などの高集積回路形成に使用されるドライプロセスやプラズマコーティング等に用いるプラズマ装置は、フッ素系や塩素系などのハロゲン系腐食ガスが利用されており、プラズマの腐食性が高く、これらの腐食性ガスに接触する部材は、高い耐食性とともに非処理物を汚染したりパーティクルの原因となる不純物を極力含有しないことが要求されている。
【0007】
すなわち、従来から、これらプラズマに接触する部材は、一般にガラスや石英などのSiO2を主成分とする材料や、ステンレス、モネルなどの金属、および、セラミック材料としてアルミナなどが使用され始めている。特に、アルミナは高純度の焼結体が比較的安価に製造でき、耐食性にも優れることから耐食性部材として半導体製造プロセスに多用され始めている。
【0008】
しかしながら、従来から使用されている石英ガラスなどを用いた部材では、プラズマ中での消耗が激しく、特にフッ素或いは塩素プラズマに接すると接触面がエッチングされ、表面性状が変化してエッチング条件に影響する等の問題が生じていた。また、ステンレスなどの金属を使用した部材でも耐食性が不充分なため、腐食によって特に半導体製造においては不良品発生の原因となる。
【0009】
また、アルミナ、AlNの焼結体は、上記の材料に比較してフッ素系ガスに対して耐食性に優れるものの、高温でプラズマと接すると腐食が徐々に進行して焼結体の表面から結晶粒子の脱粒が生じ、パーティクル発生の原因になるという問題が起きている。
【0010】
このようなパーティクルの発生は、半導体の高集積化、プロセスの更なるクリーン化に伴い、イオン衝撃や、気相で反応生成したごく微細なパーティクルによってメタル配線の断線、パターンの欠陥等により素子特性の劣化や歩留りの低下等の不具合を発生する恐れが生じている。
【0011】
そこで、近年、ハロゲン系腐食ガス、特に塩素系ガスプラズマに対して耐食性に優れ、パーティクルの発生しにくい炭化硼素をドライエッチング装置用電極などに使用することが提案されている(例えば、特開平1−59818号公報)。
【0012】
ところで、炭化硼素は難焼結体として知られ、ボイドがあるとプラズマによるボイド周辺の腐食速度が速くなるため、高温不活性雰囲気中加圧下による焼成によって、すなわちアルゴン気流中2100℃以上でホットプレス法によって緻密体を得る必要があった。例えば、特公昭58−30263号公報には、1μm以下の粒度分布を持つ粉末状炭化硼素に遊離炭素を0.5〜10重量%混合した理論密度の90%以上の密度を有する炭化硼素質焼結体が記載されている。
【0013】
【発明が解決しようとする課題】
しかしながら、炭化硼素質焼結体は難焼結性で、一般にはホットプレス法で形成されるため、まず単純形状の焼結体を作製し、それを切断・加工して目的の形状を得る必要があった。しかし、炭化硼素は、ダイヤモンドに次ぐ硬度を有し、他のセラミックスに比べて膨大なダイヤモンド工具を必要とし、また加工に長時間を要するため、炭化硼素の加工コストが非常に高いという問題があり、実用化への大きな障害であった。
【0014】
また、特公昭58−30263号公報で開示された炭化硼素は、炭化硼素原料自体が非常に高価であり、例えば単純形状の焼結体を加工して目的の形状を得る場合、加工粉として除去される炭化硼素量が多くなり、使用する原料費が高騰し、製品コストが上昇し、特に、製品が複雑形状の時には、原料費と加工費が高騰して製品価格が高くなり、採用されにくいという問題があった。
【0015】
さらにまた、炭化硼素質焼結体からなる部材を接合することによって無駄な原料を減らし、加工費を低減しながら目的とする形状を得ようとしても、接合方法が確立していないために、十分な接合強度が得られないという問題があった。
【0016】
従って、本発明は、実用に耐えうる強度を有する炭化硼素接合体とその製造方法とプラズマ装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は、接合部の組成および接合方法を特定することにより、接合強度を高めることができ、その結果、炭化硼素質焼結体からなる製品のコスト削減が図れるという知見に基づくものである。
【0018】
すなわち、本発明は、炭化硼素質焼結体からなる2つの部材を、接合部を介して一体化せしめてなる炭化硼素接合体において、前記接合部が、80〜99重量%の炭化硼素と、1〜20重量%の周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物または硼化物とからなることを特徴とする。
【0019】
本発明によれば、炭化硼素と、1〜20重量%の周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物または硼化物とによって接合部を形成するため、接合部分の焼結が促進されて緻密化が進むとともに、密着強度の高い接合部を形成でき、その結果、強度低下を防止することができ、加工に関わるコストを低減できる。
【0020】
なお、接合部の厚みが100μm以下であることが好ましく、接合部の炭化硼素の平均粒子径が5μm以下であることが好ましい。接合部の厚みや接合部の炭化硼素の平均粒子径は、接合強度を高める効果があり、上記の範囲に設定することによって、接合強度をさらに高めることができる。
【0021】
また、本発明の炭化硼素接合体の製造方法は、炭化硼素粉末80〜99重量%と、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物粉末または硼化物粉末(以下、化合物粉末ということがある)1〜20重量%の割合からなる混合物に対して、有機バインダーを加えて調製したスラリーを、炭化硼素質焼結体からなる2つの部材の接合面の少なくとも一方の表面に塗布した後、前記部材接合面同士を接触させ、不活性雰囲気中1900℃以上の温度で熱処理することを特徴とするもので、これにより、低コストで接合強度の高い炭化硼素接合体を製造することができるとともに、複雑形状にも対応できる。
【0022】
また、炭化硼素粉末の平均粒子径が5μm以下、周期律表第4a、5a族元素からなる化合物粉末の平均粒子径が5μm以下であることが好ましい。これにより、緻密な接合部が得られ、高い接合強度が得られる。
【0023】
したがって、本発明では、製品コストを削減し、実用に供する接合強度を有する炭化硼素接合体およびその製造方法を提供することができる。
【0024】
また、本発明の耐プラズマ部材は、本発明の炭化硼素接合体を用いたことを特徴とする。これにより、部材の寿命を長くすると共に、信頼性の高い耐プラズマ部材を提供することができる。
【0025】
さらに、本発明のプラズマ装置は、例えば、真空容器と、ガスの導入装置とプラズマ発生装置と、被処理物を保持する固定治具とを具備するプラズマ装置において、該プラズマ装置の真空容器内に用いる部材として、本発明の炭化硼素接合体を用いたことを特徴とする。これにより、部材の寿命が長く、生産性の高く、信頼性の高い製品を製造できるプラズマ装置を実現できる。
【0026】
【発明の実施の形態】
本発明の炭化硼素接合体は、炭化硼素質焼結体からなる2つの部材が接合部を介して一体となった炭化硼素接合体において、接合部が炭化硼素と周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物または硼化物(以下、化合物ということがある)とから構成される。炭化硼素の焼結助剤として作用する周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物からなる接合部を形成することにより、接合界面の焼結を促進させ、強度低下を防止することができる。
【0027】
すなわち、本発明の炭化硼素接合体の接合部組成は、炭化硼素が80〜99重量%、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物が1〜20重量%であることが必要である。特に、炭化硼素は85〜95重量%、さらには88〜92重量%が好ましく、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合は5〜15重量%、さらには8〜12重量%が好ましい。
【0028】
炭化硼素が80重量%未満または周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物が20重量%を越えると、炭化硼素が粒成長を起こし、強度が低下する。また、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物が1重量%未満または炭化硼素が99重量%を越えると、接合部の緻密化が達成できず、接合強度が低下する。
【0029】
したがって、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物の含有量が、上記の範囲になるようにすることで、接合部の緻密化が促進され、その一方で粒成長を比較的抑えることができるため、十分な接合強度を得ることができる。
【0030】
また、接合部の厚みは、100μm以下、特に50μm以下、さらには20μm以下であることが好ましい。接合部の厚みを小さくすると、破壊源となるボイドや他の欠陥の存在確率が小さくなり、その結果高い接合強度が得られる傾向がある。
【0031】
さらに、接合部の炭化硼素の平均粒子径が5μm以下、さらに好ましくは3μm以下であることが好ましい。粒子径が小さいことにより粒子の表面エネルギーが大きくなって拡散しやすいため、接合部は緻密となりやすく、高い接合強度を得ることができる。
【0032】
周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物としては、Ti、Zr、Hf、V、Nb、Taなどが挙げられ、特にTiおよびNbが好ましい。
【0033】
接合に用いる炭化硼素焼結体からなる部材は、炭化硼素粉末に炭化珪素や炭素からなる焼結助剤を1〜5重量%の割合で添加して焼結したものが好適に用いることができる。そのときの焼成は、不活性ガス中での常圧法やホットプレス、または熱間静水圧焼成(HIP)により2000℃以上の温度で行えば良いが、緻密体を得るために特にホットプレスが好ましい。ここで、接合用部材として用いる炭化硼素質焼結体の相対密度は98%以上、特に99%以上であることが耐食性、耐磨耗性、または強度などの特性に優れるために好ましい。
【0034】
接合部は、炭化硼素と周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物を含有するが、不純物としてアルミニウムや鉄などの元素が混入していても、接合強度に影響を与えなければ何ら差し支えない。一般に、これらの不純物は炭化硼素の原料中に数100ppm含まれているが、接合強度に関してこれらの元素が残留しても本発明の目的を達成するためには支障とならない。
【0035】
また、接合強度は200MPaが実用上の目安となる。200MPa未満では、治具や装置構成部材などにおいて、強度不足から使用に耐えなかったり、寿命が短いという問題が発生しやすい。さらに、扱い易さ、寿命または安全性を考慮すると250MPa以上が好ましい。
【0036】
また、本発明の炭化硼素接合体の製造方法は、炭化硼素粉末80〜99重量%と、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物粉末または硼化物粉末1〜20重量%の割合からなる混合物に対して、有機バインダーを加えて調製したスラリーを、炭化硼素質焼結体からなる2つの部材の接合面の少なくとも一方の表面に塗布した後、前記部材接合面同士を接触させ、不活性雰囲気中1900℃以上の温度で熱処理することを特徴とするもので、これにより、低コストで高強度の炭化硼素接合体を製造することができるとともに、緻密な接合部を形成し、強度を高めることができる。
【0037】
この場合、炭化硼素粉末の平均粒子径は5μm以下、特に3μm以下が好ましい。この範囲の平均粒子径を有する粉末は焼結性が良好であり、低温、短時間で緻密体を容易に得やすい。
【0038】
この粉末に、平均粒子径5μm以下、特に2m以下の1種以上の周期律表第4aまたは5a族元素からなる化合物粉末を添加する。平均粒子径を小さくすることで焼結性を促進し、緻密体を容易に得やすくなる。また、その添加量は1〜20重量%であることが重要で、特に5〜15重量%が好適である。添加量をこのように設定することで、接合強度を高めることができる。
【0039】
これらの粉末の混合物100重量部に対して、アクリル樹脂等の有機バインダーを10〜60重量%、好ましくは20〜40重量%を添加する。これは、10重量%より少ないとペースト状にならず、均一に塗布することが難しく、また、60重量%を越えると粉末の充填密度が低く、焼結しにくくなり、接合強度が低下してしまうためである。
【0040】
さらに、必要に応じて可塑剤等を添加し、十分に混合し、スラリー化する。このスラリーを、2つの部材の接合面の少なくとも一方の表面に塗布した後、前記部材接合面同士を接触させる。この時、塗布する方法としては、刷毛で塗る方法、スラリー中に部材をいれてスラリーを接合面に付着させるディッピング法、または、印刷法を用いて塗布することができる。
【0041】
その後、アルゴンガス等の不活性雰囲気中で、添加する化合物粉末が酸化物粉末の場合は1900℃以上、好ましくは1950℃以上、硼化物粉末の場合は2100℃以上、好ましくは2150℃以上の温度で1〜10時間熱処理して形成する。この時、熱処理温度が低いと接合部が緻密化不足を招き、強度低下の原因になりやすい。
【0042】
焼結時には、接合面に部材側から圧力を加えることが好ましい。単純形状で有れば、ホットプレス装置を用いて加圧できる。また、部材の上に重量物を重石として乗せても良い。さらに、一旦焼成して気孔を閉塞させた後に、100気圧以上のアルゴンなどの不活性ガス雰囲気でHIP処理などにより加圧し、残った閉気孔を縮小させることも可能である。
【0043】
次に、プラズマ装置について、例えば図1のプラズマ装置の概略配置図に基づき説明する。図1のプラズマ装置は、半導体や液晶などの製造工程などで用いられるエッチング装置1であり、チャンバー壁2を構成要素とする真空容器と、シャワーヘッド3とそれに接続された配管などからなるガス導入装置と、高周波コイル4とそれに電気的に接続された高周波発信機を含むプラズマ発生装置と、ウエハ5を固定すると共に電極を兼ねる固定治具6と、プラズマによるエッチング範囲を制御するフォーカスリング7から構成されている。
【0044】
これらの中で、チャンバー壁2、シャワーヘッド3、固定治具6およびフォーカスリング7などが、ウエハの上方に形成されるプラズマと接しており、上述のように本発明の炭化硼素接合体を使用することができる。
【0045】
なお、プラズマに接する部材とは、プラズマ中のイオンや活性種の影響を受け、腐食が進行する部材をいい、特にプラズマ内部に配置された部材、プラズマを閉じこめる容器、あるいはプラズマとの間に遮断する物体の存在しないような部材などである。
【0046】
また、真空容器とは、大気から分離され、容器内部を1気圧未満の減圧状態を可能とするものであり、特に、真空度は残留ガスの影響を考慮し、100Pa以下、さらには1Pa以下の真空度が好ましい。そのためには、真空排気を行うための真空ポンプを用いて真空状態を達成するとともに、ガスの導入に対しては容器内の圧力を一定に保つことができるものが好ましい。
【0047】
さらに、ガス導入装置とは、少なくとも所望のガスを真空容器内に導入するための設備であり、一般には、ガスボンベなどのガス供給設備から所定の流量のガスを真空容器内に導入する設備であり、ガス流量は、通常マスフローコントローラなどにより調整されている。
【0048】
さらに、プラズマ発生装置とは、プラズマを発生するために必要な電場を形成するための設備で、特に1MHz〜10GHz、特に0.4〜5GHz、さらには0.7〜2.6GHzの高周波の発生装置と、発生した高周波を電極または装置に導く配線または導波管である。
【0049】
さらにまた、被処理物の固定治具6とは、ウエハ5などの被処理物に対してエッチングや成膜などの処理を行うために、ウエハ5を一定の位置に固定するものであり、サセプタや静電チャックなどを用いることができる。また、真空容器内の真空度が低い場合には、真空チャックを用いても差し支えない。なお、図1に示した例のように、固定治具6が電極を兼ねても良く、またヒータを兼ねたり、冷却する機能を有していても差し支えない。
【0050】
このように構成されたエッチング装置などのプラズマ装置は、本発明の炭化硼素接合体を用いており、過酷な環境に曝された部材の寿命を長くし、部品交換までの時間を長くすることによって、交換時の装置停止回数を減らしてスループットを高めるとともに、部材にかかる費用を節約でき、その結果低コストに大きく貢献できる。また、プラズマ中への不純物混入を低下できるため、安定した処理が可能となる。
【0051】
なお、本発明の炭化硼素接合体は、高硬度、高剛性、高強度などの特性を有しており、プラズマを使用しない半導体や液晶の製造工程およびその他の加工装置において用いることによって、炭化硼素の特性を十分に活用することができ、その結果、装置コスト並びに製品コストを低下させることができる。
【0052】
【実施例】
炭化硼素粉末として、純度99.8%、平均粒子径が0.8μmのA1原料(シュタルクビテック(株)製商品名HS)を主として用いた。また、平均粒子径が8μmのA2原料(電気化学工業(株)製商品名F2)を用いた。
【0053】
また、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物粉末として、表1に示した種類と平均粒子径の酸化物粉末または硼化物粉末を用いた。
【0054】
上記炭化硼素粉末と周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物粉末または硼化物粉末からなる混合原料粉末に対し、バインダとしてアクリル樹脂、可塑剤としてDBP(ジ・ブチル・フタレート)を添加し、プラスティックボールを用いて混合して、スラリーを得た。
【0055】
一方、接合に用いる部材は、ホットプレス法にて30MPaの圧力および2100℃の条件で作製した炭化硼素質焼結体を用いた。相対密度は99.9%、室温での抗折強度は600MPaであった。この炭化硼素質焼結体を一辺が20mmの立方体に加工した。
【0056】
そして、立方体の一面に、上記のスラリーを塗布させた後、他の立方体を貼りあわせて角柱を形成し、この角柱を、アルゴンガス中で、表1に示す条件により2時間保持して熱処理した。スラリーの塗布には、刷毛を用いてスラリーを接合面に塗布した。
【0057】
焼成した炭化硼素接合体から、接合面が長径方向の中心に位置するように強度試験片を切り出し、研磨した。そして、JIS R1601に基づき、4点曲げ試験により、強度を測定し、これを接合強度とした。
【0058】
また、接合部の組成は蛍光X線分析により求め、接合部の厚みは、走査型電子顕微鏡(SEM)による写真を用いて算出した。さらに、炭化硼素の平均粒子径SEMを用いて、100個の粒子サイズを測定した。結果を表1に示す。
【0059】
【表1】

Figure 0004570195
【0060】
本発明の試料No.3〜7および9〜28は、接合強度が200MPa以上であった。
【0061】
一方、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の化合物を含まない試料No.1、炭化硼素粉末の含有量が99.5重量%と本発明の範囲外の試料No.2、炭化硼素粉末の含有量が80重量%に満たない本発明の範囲の試料No.8は、接合強度が180MPa以下と200MPaに達しなかった。
【0062】
【発明の効果】
本発明では、窒化硼素質焼結体の間に特定の組成からなる接合部を設け、特定の熱処理により、原料および加工コストを低減し、接合強度を高くすることができる。
【図面の簡単な説明】
【図1】本発明のエッチング装置の概略断面図である。
【符号の説明】
1・・・エッチング装置
2・・・チャンバー壁
3・・・シャワーヘッド
4・・・高周波コイル
5・・・ウエハ
6・・・固定治具
7・・・フォーカスリング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boron carbide joined body that is used in a jig for semiconductor manufacturing equipment and the like and has high corrosion resistance against fluorine-based and chlorine-based corrosive gas atmospheres, particularly fluorine-based and chlorine-based plasmas, particularly halogen plasma. Boron carbide joined body suitable for precision processing products such as a focus ring, a clamp ring, a member for a plasma processing apparatus such as a bell jar and a dome, and a jig such as a support for supporting an object to be processed, and a method for manufacturing the same And a plasma-resistant member suitably used in a material manufacturing process such as a semiconductor or liquid crystal device manufacturing process, a micromachine manufacturing process, an electronic circuit manufacturing process, or a thin film manufacturing process, particularly a manufacturing process involving plasma processing. The present invention relates to a plasma apparatus.
[0002]
[Prior art]
Currently, the plasma apparatus is a process for manufacturing devices such as semiconductors and liquid crystals, a manufacturing process for micromachines formed using etching, a manufacturing process for electronic circuits for forming wiring boards, a thin film manufacturing process such as sputtering and plasma CVD, and the like. It is used in a wide range of manufacturing processes such as other processes involving etching.
[0003]
A plasma device is a device for ionizing a part of a specific gas to form a gas composed of electrons, ions, and neutral particles, and includes a vacuum vessel, a gas introduction device, a plasma generation device, It is a device equipped with a fixture that holds the processed material. Specifically, it is a nuclear fusion device, a thin film forming device such as plasma CVD, sputtering or ion plating, RIE (reactive ion etching) or high-density ion etching. Examples include etchers such as devices.
[0004]
A plasma generator is an apparatus for ionizing a gas by generating an electromagnetic field by direct current, alternating current, high frequency, etc. Especially, plasma is formed by using a high frequency of 0.8 to 13.56 MHz and a microwave of 2.45 GHz. A power source and an electrode.
[0005]
In particular, in an etching apparatus used in a plasma semiconductor manufacturing process or a manufacturing process involving other etching processes, plasma is generated by applying a high frequency to a flat electrode or a coiled induction electrode as a gas in the apparatus, or microwaves are generated. Is introduced into a vacuum vessel to generate plasma, and the surface of the object to be processed is etched in a corrosive gas plasma atmosphere.
[0006]
For this reason, in these plasma apparatuses, corrosion of members inside the apparatus is particularly severe, which has affected yield, product cost, and product reliability. In particular, plasma processes used for dry process and plasma coating used in the formation of highly integrated circuits such as semiconductor elements use halogen-based corrosive gases such as fluorine and chlorine, and are highly corrosive to plasma. Members that come into contact with these corrosive gases are required to have as much corrosion resistance as possible and to contain as little impurities as possible that contaminate untreated materials and cause particles.
[0007]
That is, conventionally, members that come into contact with plasma have generally started to use materials such as glass and quartz whose main component is SiO 2 , metals such as stainless steel and monel, and alumina as a ceramic material. In particular, alumina is starting to be widely used in semiconductor manufacturing processes as a corrosion-resistant member because a high-purity sintered body can be produced at a relatively low cost and has excellent corrosion resistance.
[0008]
However, in the members using quartz glass or the like that have been used conventionally, the consumption in the plasma is severe, especially when contacting with fluorine or chlorine plasma, the contact surface is etched, and the surface properties change to affect the etching conditions. Etc. had occurred. Further, even a member using a metal such as stainless steel has insufficient corrosion resistance, so that corrosion causes a defective product particularly in semiconductor manufacturing.
[0009]
In addition, although the sintered body of alumina and AlN is superior in corrosion resistance to fluorine-based gas as compared with the above materials, corrosion gradually proceeds when contacting with plasma at high temperature, and crystal particles are formed from the surface of the sintered body. This causes a problem that the degranulation occurs and causes the generation of particles.
[0010]
The generation of such particles is due to device characteristics due to ion bombardment, breakage of metal wiring, pattern defects, etc., due to ion bombardment and extremely fine particles generated by reaction in the gas phase as semiconductors become more highly integrated and processes become cleaner. There is a risk of problems such as deterioration of the product and a decrease in yield.
[0011]
In recent years, therefore, it has been proposed to use boron carbide, which is excellent in corrosion resistance against halogen-based corrosive gas, particularly chlorine-based gas plasma, and is less likely to generate particles, as an electrode for a dry etching apparatus (for example, Japanese Patent Laid-Open No. Hei 1). -59818).
[0012]
By the way, boron carbide is known as a hard-to-sinter body, and if there are voids, the corrosion rate around the voids due to plasma increases, so hot pressing by pressing in a high-temperature inert atmosphere, that is, in an argon stream at 2100 ° C. or higher. It was necessary to obtain a dense body by the method. For example, Japanese Examined Patent Publication No. 58-30263 discloses a boron carbide firing having a density of 90% or more of the theoretical density in which 0.5 to 10% by weight of free carbon is mixed with powdered boron carbide having a particle size distribution of 1 μm or less. Conjunctions are described.
[0013]
[Problems to be solved by the invention]
However, since boron carbide sintered bodies are difficult to sinter and are generally formed by a hot press method, it is necessary to first produce a simple-shaped sintered body and then cut and process it to obtain the desired shape. was there. However, boron carbide has the second highest hardness after diamond, requires an enormous amount of diamond tools compared to other ceramics, and requires a long time for processing, so there is a problem that the processing cost of boron carbide is very high. It was a big obstacle to practical use.
[0014]
Further, the boron carbide disclosed in Japanese Patent Publication No. 58-30263 is very expensive as a boron carbide raw material itself. For example, when a simple shaped sintered body is processed to obtain a desired shape, it is removed as processed powder. The amount of boron carbide to be used increases, the raw material cost to use increases, and the product cost rises. Especially when the product has a complicated shape, the raw material cost and the processing cost increase so that the product price becomes high and is difficult to adopt. There was a problem.
[0015]
Furthermore, even when trying to obtain the target shape while reducing the wasteful raw material by joining the members made of boron carbide sintered body and reducing the processing cost, the joining method has not been established. There was a problem that a sufficient bonding strength could not be obtained.
[0016]
Accordingly, an object of the present invention is to provide a boron carbide joined body having a strength that can withstand practical use, a manufacturing method thereof, and a plasma apparatus.
[0017]
[Means for Solving the Problems]
The present invention is based on the knowledge that the bonding strength can be increased by specifying the composition of the bonding portion and the bonding method, and as a result, the cost of the product made of the boron carbide sintered body can be reduced.
[0018]
That is, the present invention relates to a boron carbide joined body in which two members made of a boron carbide sintered body are integrated through a joint portion, wherein the joint portion is 80 to 99 wt% boron carbide, It comprises 1 to 20% by weight of at least one oxide or boride selected from Group 4a and 5a elements of the Periodic Table.
[0019]
According to the present invention, the boron carbide, to form the joint by the at least one acid halide or borides selected from the periodic table 4a and 5a group element of 1 to 20 wt%, the bonding portion Sintering is promoted and densification progresses, and a bonded portion with high adhesion strength can be formed. As a result, strength reduction can be prevented, and processing costs can be reduced.
[0020]
In addition, it is preferable that the thickness of a junction part is 100 micrometers or less, and it is preferable that the average particle diameter of the boron carbide of a junction part is 5 micrometers or less. The thickness of the joint and the average particle diameter of boron carbide in the joint have the effect of increasing the joint strength, and the joint strength can be further increased by setting the above range.
[0021]
In addition, the method for producing a boron carbide joined body of the present invention comprises 80 to 99% by weight of boron carbide powder and at least one oxide powder or boride powder (hereinafter referred to as the group 4a and 5a elements of the periodic table). The slurry prepared by adding an organic binder to a mixture having a ratio of 1 to 20% by weight may be at least one of the joint surfaces of two members made of a boron carbide sintered body. After being applied to the surface, the member bonding surfaces are brought into contact with each other and heat-treated at a temperature of 1900 ° C. or higher in an inert atmosphere, whereby a boron carbide bonded body having high bonding strength at low cost can be obtained. It can be manufactured and can handle complex shapes.
[0022]
Moreover, it is preferable that the average particle diameter of boron carbide powder is 5 μm or less, and the average particle diameter of the compound powder composed of Group 4a and 5a elements of the periodic table is 5 μm or less. As a result, a dense joint is obtained, and a high joint strength is obtained.
[0023]
Therefore, according to the present invention, it is possible to provide a boron carbide bonded body having a bonding strength for practical use and a method for manufacturing the same, with reduced product costs.
[0024]
The plasma-resistant member of the present invention is characterized by using the boron carbide joined body of the present invention. Thereby, while extending the lifetime of a member, a reliable plasma-resistant member can be provided.
[0025]
Furthermore, the plasma apparatus of the present invention is, for example, a plasma apparatus including a vacuum vessel, a gas introduction device, a plasma generation device, and a fixing jig for holding an object to be processed. As a member to be used, the boron carbide joined body of the present invention is used. Thereby, the plasma apparatus which can manufacture a product with a long lifetime of a member, high productivity, and high reliability is realizable.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The boron carbide joined body of the present invention is a boron carbide joined body in which two members made of a boron carbide sintered body are integrated with each other through a joint, and the joint is made of boron carbide and groups 4a and 5a of the periodic table. It is composed of at least one oxide or boride (hereinafter sometimes referred to as a compound ) selected from elements. By forming a joint made of at least one compound selected from Group 4a and 5a elements of the Periodic Table that acts as a boron carbide sintering aid, sintering of the joint interface is promoted and strength reduction is achieved. Can be prevented.
[0027]
That is, the bonding part composition of the boron carbide bonded body of the present invention is 80 to 99% by weight of boron carbide and 1 to 20% by weight of at least one compound selected from Group 4a and 5a elements of the periodic table. It is necessary. In particular, boron carbide 85 to 95 wt%, more preferably 88 to 92 wt%, at least one compound selected from the periodic table 4a and 5a group element is 5-15 wt%, more 8 ˜12% by weight is preferred.
[0028]
When boron carbide is less than 80% by weight or when at least one compound selected from Group 4a and 5a elements of the periodic table exceeds 20% by weight, boron carbide causes grain growth and the strength decreases. Further, if at least one compound selected from Group 4a and 5a elements of the periodic table is less than 1% by weight or boron carbide exceeds 99% by weight, densification of the joint cannot be achieved and joint strength is reduced. To do.
[0029]
Therefore, by making the content of at least one compound selected from Group 4a and 5a elements of the Periodic Table within the above range, densification of the joint is promoted, while grain growth. Therefore, sufficient bonding strength can be obtained.
[0030]
Further, the thickness of the joint is preferably 100 μm or less, particularly 50 μm or less, and more preferably 20 μm or less. When the thickness of the joint portion is reduced, the existence probability of voids and other defects that become a fracture source is reduced, and as a result, high joint strength tends to be obtained.
[0031]
Furthermore, the average particle diameter of boron carbide at the joint is preferably 5 μm or less, more preferably 3 μm or less. Since the surface energy of the particles increases due to the small particle diameter and is easily diffused, the bonded portion is likely to be dense and high bonding strength can be obtained.
[0032]
The at least one compound selected from the periodic table 4a and 5a group element, Ti, Zr, Hf, V, Nb, Ta and the like, is not preferable particularly Ti and Nb.
[0033]
Members made of boron carbide sintered body to be used for bonding, that those sintering sintering aids made of silicon carbide or carbon in the boron carbide powder was added in an amount of 1-5% by weight suitably used it can. Firing at that time may be performed at a temperature of 2000 ° C. or higher by an atmospheric pressure method in an inert gas, hot pressing, or hot isostatic pressing (HIP), but in order to obtain a dense body, hot pressing is particularly preferable. . Here, the relative density of the boron carbide sintered body used as the joining member is preferably 98% or more, particularly 99% or more, because of excellent properties such as corrosion resistance, wear resistance, and strength.
[0034]
The joint portion contains boron carbide and at least one compound selected from Group 4a and 5a elements of the periodic table. However, even if an element such as aluminum or iron is mixed as an impurity, the joint strength is affected. If you don't give it, there is no problem. In general, these impurities are contained in the raw material of boron carbide by several hundred ppm. However, even if these elements remain with respect to the bonding strength, it does not hinder the achievement of the object of the present invention.
[0035]
In addition, a bonding strength of 200 MPa is a practical standard. When the pressure is less than 200 MPa, there is a tendency for jigs and apparatus constituent members to be unusable due to insufficient strength or have a short life. Furthermore, 250 MPa or more is preferable in consideration of ease of handling, life, or safety.
[0036]
Further, the method for producing a boron carbide joined body of the present invention comprises 80 to 99% by weight of boron carbide powder and at least one oxide powder or boride powder 1 to 1 selected from Group 4a and 5a elements of the periodic table. After applying a slurry prepared by adding an organic binder to a mixture having a proportion of 20% by weight on at least one surface of the joint surfaces of two members made of a boron carbide sintered body , the member joint surface It is characterized in that they are brought into contact with each other and heat-treated at a temperature of 1900 ° C. or higher in an inert atmosphere, whereby a high-strength boron carbide bonded body can be produced at a low cost and a dense bonded portion The strength can be increased.
[0037]
In this case, the average particle diameter of the boron carbide powder is preferably 5 μm or less, particularly preferably 3 μm or less. A powder having an average particle diameter in this range has good sinterability, and a dense body can be easily obtained at a low temperature in a short time.
[0038]
To this powder is added a compound powder composed of one or more elements of Group 4a or 5a of the periodic table having an average particle diameter of 5 μm or less, particularly 2 m or less. By reducing the average particle size, the sinterability is promoted and a dense body can be easily obtained. Moreover, it is important that the addition amount is 1 to 20% by weight, and 5 to 15% by weight is particularly preferable. By setting the addition amount in this way, the bonding strength can be increased.
[0039]
An organic binder such as an acrylic resin is added in an amount of 10 to 60% by weight, preferably 20 to 40% by weight, based on 100 parts by weight of the powder mixture. If it is less than 10% by weight, it does not become a paste and it is difficult to apply uniformly, and if it exceeds 60% by weight, the packing density of the powder is low, it becomes difficult to sinter, and the bonding strength decreases. It is because it ends.
[0040]
Furthermore, if necessary, a plasticizer or the like is added, mixed well, and slurried. After applying this slurry to at least one surface of the joint surfaces of the two members, the member joint surfaces are brought into contact with each other. At this time, as a method of applying, a method of applying with a brush, a dipping method in which a member is put in the slurry and the slurry is adhered to the bonding surface, or a printing method can be used.
[0041]
Thereafter, in an inert atmosphere such as argon gas, when the compound powder to be added is an oxide powder , the temperature is 1900 ° C. or more, preferably 1950 ° C. or more, and in the case of a boride powder , the temperature is 2100 ° C. or more, preferably 2150 ° C. or more. And heat-treated for 1 to 10 hours. At this time, if the heat treatment temperature is low, the joint portion is insufficiently densified, which tends to cause a decrease in strength.
[0042]
At the time of sintering, it is preferable to apply pressure to the joint surface from the member side. If it is a simple shape, it can be pressurized using a hot press apparatus. Moreover, you may place a heavy article on a member as a heavy stone. Furthermore, after firing and clogging the pores, the remaining closed pores can be reduced by pressurization by HIP treatment or the like in an inert gas atmosphere such as argon at 100 atm or higher.
[0043]
Next, the plasma apparatus will be described based on, for example, a schematic layout diagram of the plasma apparatus in FIG. The plasma apparatus of FIG. 1 is an etching apparatus 1 used in a manufacturing process of a semiconductor, liquid crystal, or the like, and introduces a gas including a vacuum vessel having a chamber wall 2 as a constituent element, a shower head 3 and piping connected thereto. From a device, a plasma generator including a high-frequency coil 4 and a high-frequency transmitter electrically connected thereto, a fixing jig 6 that fixes the wafer 5 and also serves as an electrode, and a focus ring 7 that controls an etching range by plasma It is configured.
[0044]
Among these, the chamber wall 2, the shower head 3, the fixing jig 6, the focus ring 7 and the like are in contact with the plasma formed above the wafer, and the boron carbide bonded body of the present invention is used as described above. can do.
[0045]
The member in contact with plasma refers to a member that undergoes corrosion under the influence of ions and active species in the plasma. In particular, it is blocked between the member placed inside the plasma, the container that contains the plasma, or the plasma. Such as a member that does not have an object to be performed.
[0046]
A vacuum vessel is one that is separated from the atmosphere and allows the inside of the vessel to be depressurized to less than 1 atm. In particular, the degree of vacuum is 100 Pa or less, further 1 Pa or less in consideration of the influence of residual gas. A degree of vacuum is preferred. For that purpose, it is preferable to achieve a vacuum state using a vacuum pump for evacuation and to keep the pressure in the container constant with respect to the introduction of gas.
[0047]
Further, the gas introduction device is an equipment for introducing at least a desired gas into the vacuum vessel, and is generally an equipment for introducing a predetermined flow rate of gas from a gas supply facility such as a gas cylinder into the vacuum vessel. The gas flow rate is usually adjusted by a mass flow controller or the like.
[0048]
Furthermore, the plasma generator is a facility for generating an electric field necessary for generating plasma, and particularly generates a high frequency of 1 MHz to 10 GHz, particularly 0.4 to 5 GHz, and further 0.7 to 2.6 GHz. The device and the wiring or waveguide that guides the generated high frequency to the electrode or device.
[0049]
Furthermore, the workpiece fixing jig 6 is for fixing the wafer 5 at a fixed position in order to perform processing such as etching and film formation on the workpiece such as the wafer 5. Or an electrostatic chuck can be used. Further, when the degree of vacuum in the vacuum container is low, a vacuum chuck may be used. As in the example shown in FIG. 1, the fixing jig 6 may also serve as an electrode, or may serve as a heater or have a cooling function.
[0050]
A plasma apparatus such as an etching apparatus configured as described above uses the boron carbide bonded body of the present invention, and by extending the life of a member exposed to a harsh environment and increasing the time until replacement of a part. In addition to reducing the number of stoppages at the time of replacement and increasing the throughput, it is possible to save the cost of the members, and as a result, greatly contribute to the low cost. Moreover, since impurities can be mixed into the plasma, stable processing can be performed.
[0051]
The boron carbide joined body of the present invention has characteristics such as high hardness, high rigidity, and high strength, and boron carbide is used in semiconductor and liquid crystal manufacturing processes and other processing apparatuses that do not use plasma. This characteristic can be fully utilized, and as a result, the apparatus cost and the product cost can be reduced.
[0052]
【Example】
As the boron carbide powder, an A1 material (trade name HS, manufactured by Stark Vitec Co., Ltd.) having a purity of 99.8% and an average particle diameter of 0.8 μm was mainly used. Moreover, A2 raw material (Electrochemical Industry Co., Ltd. product name F2) whose average particle diameter is 8 micrometers was used.
[0053]
In addition, as at least one compound powder selected from Group 4a and 5a elements of the Periodic Table, oxide powders or boride powders having the types and average particle sizes shown in Table 1 were used.
[0054]
Mixing raw material powder composed of at least one oxide powder or borides powder selected from the boron carbide powder and the Periodic Table 4a and 5a group element to, acrylic resin, DBP (di-butyl as a plasticizer as a binder -Phthalate) was added and mixed using a plastic ball to obtain a slurry.
[0055]
On the other hand, a boron carbide sintered body produced by hot pressing under a pressure of 30 MPa and a condition of 2100 ° C. was used as a member used for joining. The relative density was 99.9%, and the bending strength at room temperature was 600 MPa. This boron carbide sintered body was processed into a cube having a side of 20 mm.
[0056]
And after apply | coating said slurry to one surface of a cube, another cube was bonded together and a prism was formed, and this prism was hold | maintained in argon gas for 2 hours by the conditions shown in Table 1, and heat-processed. . For applying the slurry, the slurry was applied to the joint surface using a brush.
[0057]
From the fired boron carbide joined body, a strength test piece was cut out and polished so that the joining surface was positioned at the center in the major axis direction. Then, based on JIS R1601, the strength was measured by a four-point bending test, and this was defined as the bonding strength.
[0058]
The composition of the joint was determined by fluorescent X-ray analysis, and the thickness of the joint was calculated using a photograph taken with a scanning electron microscope (SEM). Further, the average particle diameter of boron carbide was measured using 100 SEM particles. The results are shown in Table 1.
[0059]
[Table 1]
Figure 0004570195
[0060]
Sample No. of the present invention. 3-7 and 9-28 had a bonding strength of 200 MPa or more.
[0061]
On the other hand, Sample No. which does not contain at least one compound selected from Group 4a and 5a elements of the Periodic Table. 1. The content of boron carbide powder was 99.5% by weight, which was outside the scope of the present invention. 2. Sample No. in the scope of the present invention in which the content of boron carbide powder is less than 80% by weight. In No. 8, the bonding strength was 180 MPa or less and did not reach 200 MPa.
[0062]
【The invention's effect】
In the present invention, a joint portion having a specific composition is provided between the boron nitride sintered bodies, and a specific heat treatment can reduce raw materials and processing costs and increase the bonding strength.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an etching apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Etching apparatus 2 ... Chamber wall 3 ... Shower head 4 ... High frequency coil 5 ... Wafer 6 ... Fixing jig 7 ... Focus ring

Claims (7)

炭化硼素質焼結体からなる2つの部材を、接合部を介して一体化せしめてなる炭化硼素接合体において、前記接合部が80〜99重量%の炭化硼素と、1〜20重量%の周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物または硼化物とからなることを特徴とする炭化硼素接合体。In a boron carbide joined body obtained by integrating two members made of a boron carbide sintered body through a joint portion, the joint portion has 80 to 99% by weight of boron carbide and a period of 1 to 20% by weight. A boron carbide joined body comprising at least one oxide or boride selected from Group 4a and 5a elements of Table 4. 前記接合部の厚みが100μm以下であることを特徴とする請求項1記載の炭化硼素接合体。Boron carbide conjugate of claim 1 Symbol placement, wherein the thickness of the joint portion is 100μm or less. 前記接合部の炭化硼素の平均粒子径が5μm以下であることを特徴とする請求項1または2記載の炭化硼素接合体。The boron carbide joined body according to claim 1 or 2, wherein an average particle diameter of boron carbide in the joined portion is 5 µm or less. 炭化硼素粉末80〜99重量%と、周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物粉末または硼化物粉末1〜20重量%の割合からなる混合物に対して、有機バインダーを加えて調製したスラリーを、炭化硼素質焼結体からなる2つの部材の接合面の少なくとも一方の表面に塗布した後、前記部材接合面同士を接触させ、不活性雰囲気中1900℃以上の温度で熱処理することを特徴とする炭化硼素接合体の製造方法。Organic binder with respect to a mixture comprising 80 to 99% by weight of boron carbide powder and 1 to 20% by weight of at least one oxide powder or boride powder selected from Group 4a and 5a elements of the Periodic Table Is applied to at least one surface of the joint surfaces of two members made of a boron carbide sintered body, the member joint surfaces are brought into contact with each other, and a temperature of 1900 ° C. or higher in an inert atmosphere. A process for producing a boron carbide joined body characterized by heat-treating. 前記混合物中の炭化硼素粉末の平均粒子径が5μm以下、前記周期律表第4aおよび5a族元素から選ばれた少なくとも1種の酸化物粉末または硼化物粉末の平均粒子径が5μm以下であることを特徴とする請求項記載の炭化硼素接合体の製造方法。Said average particle size of the boron carbide powder in the mixture is 5μm or less, an average particle diameter of at least one oxide powder or boride powder is selected from the periodic table 4a and 5a group element is 5μm or less The method for producing a boron carbide joined body according to claim 4 . 請求項1乃至のいずれかに記載の炭化硼素接合体を用いたことを特徴とする耐プラズマ部材。A plasma-resistant member using the boron carbide joined body according to any one of claims 1 to 3 . 請求項1乃至のいずれかに記載の炭化硼素接合体を、少なくとも装置内の一構成部品として具備することを特徴とするプラズマ装置。The boron carbide-assembly according to any one of claims 1 to 3, a plasma apparatus characterized by comprising as a component in the least device.
JP2000074186A 2000-03-16 2000-03-16 BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER Expired - Fee Related JP4570195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074186A JP4570195B2 (en) 2000-03-16 2000-03-16 BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074186A JP4570195B2 (en) 2000-03-16 2000-03-16 BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER

Publications (2)

Publication Number Publication Date
JP2001261457A JP2001261457A (en) 2001-09-26
JP4570195B2 true JP4570195B2 (en) 2010-10-27

Family

ID=18592280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074186A Expired - Fee Related JP4570195B2 (en) 2000-03-16 2000-03-16 BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER

Country Status (1)

Country Link
JP (1) JP4570195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762190B (en) * 2020-02-12 2022-04-21 南韓商Skc索米克斯股份有限公司 Ceramic component, method of preparing the same, and plasma etcher applied the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936261B2 (en) * 2010-08-31 2012-05-23 美濃窯業株式会社 BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP5809884B2 (en) * 2011-08-30 2015-11-11 美濃窯業株式会社 BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP5809896B2 (en) * 2011-09-15 2015-11-11 美濃窯業株式会社 BORON CARBIDE-CONTAINING CERAMIC-OXIDE CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
US9789671B2 (en) 2012-02-28 2017-10-17 Mino Ceramic Co., Ltd. Shock absorbing member
JP6278394B2 (en) * 2014-02-27 2018-02-14 国立大学法人名古屋大学 Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body
US20200051793A1 (en) * 2018-08-13 2020-02-13 Skc Solmics Co., Ltd. Ring-shaped element for etcher and method for etching substrate using the same
WO2021162424A1 (en) * 2020-02-12 2021-08-19 에스케이씨솔믹스 주식회사 Ceramic component and plasma etching apparatus comprising same
KR102266986B1 (en) * 2020-02-12 2021-06-21 에스케이씨솔믹스 주식회사 A focus ring, method for preparing a focus ring, and method for preparing a semiconductor element
JP7454983B2 (en) * 2020-03-30 2024-03-25 東京エレクトロン株式会社 Edge ring and plasma treatment equipment
KR102513077B1 (en) * 2021-02-09 2023-03-24 주식회사 티씨케이 Semiconductor manufacturing parts including boron carbide resistant plasma members

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236763A (en) * 1987-03-25 1988-10-03 イビデン株式会社 Boron carbide sintered body and manufacture
JPH035381A (en) * 1989-05-31 1991-01-11 Ibiden Co Ltd Adhesive for ceramic blank
JPH06116028A (en) * 1992-10-07 1994-04-26 Hitachi Chem Co Ltd Material confronting nuclear fusion plasma made of b/c composite material and its production
JPH11157951A (en) * 1997-11-28 1999-06-15 Kyocera Corp Aluminum nitride bonded structure and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4373560B2 (en) * 2000-01-28 2009-11-25 京セラ株式会社 Boron carbide joined body and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236763A (en) * 1987-03-25 1988-10-03 イビデン株式会社 Boron carbide sintered body and manufacture
JPH035381A (en) * 1989-05-31 1991-01-11 Ibiden Co Ltd Adhesive for ceramic blank
JPH06116028A (en) * 1992-10-07 1994-04-26 Hitachi Chem Co Ltd Material confronting nuclear fusion plasma made of b/c composite material and its production
JPH11157951A (en) * 1997-11-28 1999-06-15 Kyocera Corp Aluminum nitride bonded structure and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762190B (en) * 2020-02-12 2022-04-21 南韓商Skc索米克斯股份有限公司 Ceramic component, method of preparing the same, and plasma etcher applied the same

Also Published As

Publication number Publication date
JP2001261457A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US6645585B2 (en) Container for treating with corrosive-gas and plasma and method for manufacturing the same
CN100545304C (en) The ceramic member that is used for semiconductor processing equipment
KR100704220B1 (en) Yttria sintered body, ceramic member using yttria sintered body, and manufacturing method of yttria sintered body
US6861122B2 (en) Ceramic member with fine protrusions on surface and method of producing the same
JP2003146751A (en) Plasma-resistant member and method of producing the same
JPH10236871A (en) Plasma resistant member
JP4570195B2 (en) BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
JP7481509B2 (en) Sintered ceramic bodies containing magnesium aluminate spinel
JP2000191370A (en) Member for treatment chamber
EP0680075B1 (en) Electrode for generating plasma and method for manufacturing the electrode
KR20220002943A (en) Controlled Porous Yttrium Oxide for Etching Applications
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
KR20020062843A (en) Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing
JP2016124734A (en) Corrosion resistant member, electrostatic chuck device and method for producing corrosion resistant member
CN112334433B (en) Ceramic sintered body and member for plasma processing apparatus
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP2009280483A (en) Corrosion resistant member, method for producing the same and treatment device
JP3456915B2 (en) Components for semiconductor manufacturing equipment
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP3784180B2 (en) Corrosion resistant material
JP4373560B2 (en) Boron carbide joined body and method for producing the same
JP2000143348A (en) Aluminum nitride sintered compact and its production and member for apparatus for producing semiconductor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees