JP4373560B2 - Boron carbide joined body and method for producing the same - Google Patents

Boron carbide joined body and method for producing the same Download PDF

Info

Publication number
JP4373560B2
JP4373560B2 JP2000024704A JP2000024704A JP4373560B2 JP 4373560 B2 JP4373560 B2 JP 4373560B2 JP 2000024704 A JP2000024704 A JP 2000024704A JP 2000024704 A JP2000024704 A JP 2000024704A JP 4373560 B2 JP4373560 B2 JP 4373560B2
Authority
JP
Japan
Prior art keywords
boron carbide
weight
boron
silicon carbide
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000024704A
Other languages
Japanese (ja)
Other versions
JP2001213672A (en
Inventor
秀美 松本
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000024704A priority Critical patent/JP4373560B2/en
Publication of JP2001213672A publication Critical patent/JP2001213672A/en
Application granted granted Critical
Publication of JP4373560B2 publication Critical patent/JP4373560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置用治具、フッ素系及び塩素系腐食性ガス雰囲気、特にフッ素系や塩素系プラスマに対して高い耐食性を有する炭化硼素接合体であって、特にハロゲンプラズマ中で使用させるフォーカスリング、クランプリング、ベルジャー及びドーム等のプラズマ処理装置用部材、被処理物を支持する支持体などの治具などの精密加工製品などに好適な炭化硼素接合体およびその製造方法に関するものである。
【0002】
【従来技術】
半導体素子や液晶などの高集積回路素子の製造に使用されるドライプロセスやプラズマコーティング等プラズマの利用は、近年急速に進んでいる。半導体製造におけるプラズマプロセスとしては、塩素系等のハロゲン系腐食ガスがその反応性の高さから、気相成長、エッチングやクリーニングに利用されている。
【0003】
これら腐食性ガスに曝される部材は、高い耐食性が要求される。従来より被処理物以外のこれらプラズマに接触する部材は、高い耐食性とともに非処理物を汚染したりパーティクルの原因となる不純物を極力含有しないことが要求される。すなわち、従来から、これらプラズマに接触する部材は、一般にガラスや石英などのSiO2を主成分とする材料や、ステンレス、モネルなどの金属、および、セラミック材料としてアルミナなどが使用され始めている。特に、アルミナは高純度の焼結体が比較的安価に製造でき、耐食性にも優れることから耐食性部材として半導体製造プロセスに多用され始めている。
【0004】
しかしながら、従来から使用されている石英ガラスなどを使用した部材では、プラズマ中での耐食性が低いため、消耗が激しく、特にフッ素或いは塩素プラズマに接すると接触面がエッチングされ、表面性状が変化してエッチング条件に影響する等の問題が生じていた。また、ステンレスなどの金属を使用した部材でも耐食性が不充分なため、腐食によって特に半導体製造においては不良品発生の原因となる。
【0005】
また、アルミナ、AlNの焼結体は、上記の材料に比較してフッ素系ガスに対して耐食性に優れるものの、高温でプラズマと接すると腐食が徐々に進行して焼結体の表面から結晶粒子の脱粒が生じ、パーティクル発生の原因になるという問題が起きている。
【0006】
このようなパーティクルの発生は、半導体の高集積化、プロセスの更なるクリーン化に伴い、イオン衝撃や、気相で反応生成したごく微細なパーティクルによってメタル配線の断線、パターンの欠陥等により素子特性の劣化や歩留りの低下等の不具合を発生する恐れが生じている。
【0007】
そこで、近年、ハロゲン系腐食ガス、特に塩素系ガスプラズマに対して耐食性に優れ、パーティクルの発生しにくい炭化硼素をドライエッチング装置用電極などに使用することが提案されている(例えば、特開平1−59818号公報)。
【0008】
ところで、炭化硼素は難焼結体として知られ、ボイドがあるとプラズマによるボイド周辺の腐食速度が速くなるため、高温不活性雰囲気中加圧下による焼成によって、すなわちアルゴン気流中2100℃以上でホットプレス法によって緻密体を得る必要があった。例えば、特公昭58−30263号公報には、1μm以下の粒度分布を持つ粉末状炭化硼素に遊離炭素を0.5〜10重量%混合した理論密度の90%以上の密度を有する炭化硼素質焼結体が記載されている。
【0009】
【発明が解決しようとする課題】
しかしながら、炭化硼素質焼結体は、一般にホットプレス法で形成されるため、まず単純形状の焼結体を作製し、それを切断・加工して目的の形状を得る必要があった。しかし、炭化硼素は、ダイヤモンドに次ぐ硬度を有し、他のセラミックスに比べて膨大なダイヤモンド工具を必要とし、また加工に長時間を要するため、炭化硼素の加工コストが非常に高いという問題があり、実用化への大きな障害であった。
【0010】
また、特公昭58−30263号公報で開示された炭化硼素は、炭化硼素原料自体が非常に高価であり、単純形状の焼結体を加工して目的の形状を得る場合、加工粉として除去される炭化硼素量が多くなり、使用する原料費が高騰し、製品コストが上昇し、特に、製品が複雑形状の時には、原料費と加工費が高騰して製品価格が高くなり、採用されにくいという問題があった。
【0011】
また、炭化硼素質焼結体からなる部材を接合することによって無駄な原料を減らし、加工費を低減しながら目的とする形状を得ようとしても、接合方法が確立していないために、十分な接合強度が得られないという問題があった。
【0012】
従って、本発明は、実用に耐えうる強度を有する炭化硼素接合体とその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、接合部の組成および接合方法を特定することにより、接合強度を高めることができ、その結果、炭化硼素質焼結体からなる製品のコスト削減が図れるという知見に基づくものである。
【0014】
すなわち、炭化硼素質焼結体からなる2つの部材を、接合部を介して一体化せしめてなる炭化硼素接合体において、前記接合部が90〜99.45重量%の炭化硼素と、0.05〜5重量%の炭化珪素と、0.5〜5重量%の遊離炭素とからなることを特徴とする。
【0015】
本発明によれば、炭化硼素と炭化珪素と遊離炭素とによって接合部を形成するため、部材と接合部との熱膨張率差で発生する応力を低減できる。また、上記の組成により、固相拡散が促進されて緻密化が進むとともに、密着強度の高い接合部を形成できるため、強度低下を防止することができ、加工に関わるコストを低減できる。
【0016】
なお、接合部の厚みが100μm以下であることが好ましく、接合部の炭化硼素の平均粒径が5μm以下であることが好ましい。接合部の厚みや接合部の炭化硼素の平均粒径は、接合強度を高める効果があり、上記の範囲に設定することによって、接合強度をさらに高めることができる。
【0017】
また、本発明の炭化硼素接合体の製造方法は、炭化硼素粉末90〜99.45重量%と、炭化珪素粉末および/または熱分解で炭化珪素に変化しうる有機硅素化合物を炭化珪素換算で0.05〜5重量%と、遊離炭素および/または熱分解で炭素に変化しうる有機化合物を遊離炭素換算で0.5〜5重量%からなる混合物100重量部に対して、有機バインダーを加えて調製したスラリーを、炭化硼素質焼結体からなる2つの部材の接合面の少なくとも一方に塗布した後、前記部材接合面同士を接触させ、不活性雰囲気中2100℃以上の温度で熱処理することを特徴とするもので、これにより、低コストで接合強度の高い炭化硼素接合体を製造することができるとともに、複雑形状にも対応できる。
【0018】
また、炭化硼素粉末の平均粒径が5μm以下、炭化珪素粉末の平均粒径が1μm以下であることが好ましい。これにより、緻密な接合部が得られ、高い接合強度が得られる。
【0019】
したがって、本発明では、製品コストを削減し、実用に供する接合強度を有する炭化硼素接合体およびその製造方法を提供することができる。
【0020】
【発明の実施の形態】
本発明の炭化硼素接合体は、炭化硼素質焼結体からなる2つの部材が接合部を介して一体となった炭化硼素接合体において、接合部が炭化硼素と炭化珪素と遊離炭素とから構成される。部材と略同一な組成からなる接合部を形成すことにより、部材と接合部との熱膨張率差により発生する応力を低減し、強度低下を防止することができる。
【0021】
すなわち、本発明の炭化硼素接合体の接合部組成は、炭化硼素が90〜99.45重量%、炭化珪素が0.05〜5重量%、遊離炭素が0.5〜5重量%であることが必要である。特に、炭化珪素が0.1〜2重量%、遊離炭素が1〜4重量%であることが望ましい。ここで、炭化珪素が0.05重量%よりも小さいと緻密化が難しく、5重量%を越えると炭化硼素が粒成長を起こし、強度を低下させる原因となる。また、炭化硼素が90%未満では接合部に発生する応力が大きくなり、接合強度が低下し、99.45%を超えると拡散が制限され、接合強度が低下するためであり、遊離炭素が0.5重量%未満では炭化硼素の拡散を低下させ、5重量%以上では接合部の焼結性を低下させる。
【0022】
また、接合部の厚みは、100μm以下、さらに好ましくは20μm以下であることが好ましい。接合部の厚みを小さくすると、破壊源となるボイドや他の欠陥の存在確率が小さくなり、その結果高い接合強度が得られる傾向がある。
【0023】
さらに、接合部の炭化硼素粉末の平均粒径が5μm以下、さらに好ましくは3μm以下、さらには1μm以下であることが好ましい。平均粒径が小さいことにより粒子の表面エネルギーが大きくなって拡散しやすいため、接合部は緻密となりやすく、高い接合強度を得ることができる。
【0024】
接合に用いる炭化硼素部材は、炭化硼素粉末に焼結助剤を添加して焼結したものを用いることができる。そのときの焼成は、不活性ガス中での常圧法やホットプレス、またはHIPにより2000℃以上の温度で行えば良いが、緻密体を得るために特にホットプレスが好ましい。用いる炭化硼素の相対密度は98%以上、特に99%以上であることが耐食性、耐磨耗性、または強度などの特性に優れるために好ましい。
【0025】
接合部は、炭化硼素、炭化珪素および遊離炭素を含有するが、不純物としてアルミニウムや鉄などの元素が混入していても、接合強度に影響を与えなければ何ら差し支えない。一般に、これらの不純物は炭化珪素や炭化硼素の原料中に数100ppm含まれているが、接合強度に関してこれらの元素が残留しても本発明の目的を達成するためには支障とならない。
【0026】
また、接合強度は200MPaが実用上の目安となる。200MPa未満では、治具や装置構成部材などにおいて、強度不足から使用に耐えなかったり、寿命が短いという問題が発生しやすい。さらに、扱い易さ、寿命または安全性を考慮すると250MPa以上が好ましい。
【0027】
また、本発明の炭化硼素接合体の製造方法は、炭化硼素粉末90〜99.45重量%と、炭化珪素粉末および/または熱分解で炭化珪素に変化しうる有機硅素化合物を炭化珪素換算で0.05〜5重量%と、遊離炭素および/または熱分解で炭素に変化しうる有機化合物を遊離炭素換算で0.5〜5重量%からなる混合物100重量部に対して、有機バインダーを加えて調製したスラリーを、炭化硼素質焼結体からなる2つの部材の接合面の少なくとも一方に塗布した後、前記部材接合面同士を接触させ、不活性雰囲気中2100℃以上の温度で熱処理することを特徴とするもので、これにより、低コストで高強度の炭化硼素接合体を製造することができるとともに、緻密な接合部を形成し、強度を高めることができる。
【0028】
この場合、炭化素粉末の平均粒径は5μm以下、特に2μm以下が好ましい。この範囲の平均粒径を有する粉末は焼結性が良好であり、緻密体を容易に得やすい。この平均粒径が5μmを越えると、緻密化しにくくなり、焼成温度を高めたり焼成時間を長くする必要が生じ、条件設定が難しくなる傾向がある。
【0029】
この粉末に、平均粒径1μm以下、特に0.8μm以下の炭化珪素粉末および/または熱分解で炭化珪素に変化しうる有機硅素化合物を加えることが好ましい。炭化珪素は硼素の拡散を促進する役割を有するため、平均粒径が1μm以下の粒子にして表面積を増やすことにより、焼結性を促進し、緻密体を容易に得やすくなる。
【0030】
スラリーに用いる原料粉末の組成は、炭化硼素粉末が90〜99.45重量%と、炭化珪素粉末が0.05〜5重量%および/または熱分解で0.05〜5重量%の炭化珪素に変化しうる有機硅素化合物と、熱分解で0.5〜5重量%の炭素に変化しうる有機化合物との混合物であることが重要である。すなわち、焼成の際に、揮発成分が無く、この組成がほぼそのまま接合部組成となるためで、この組成により高い接合強度を実現できる。
【0031】
炭化硅素粉末は0.05〜5重量%添加するが、0.1〜2重量%が好ましく、特に0.2〜1重量%が好適である。この範囲に設定することにより接合部の緻密化が容易となり、その結果接合強度をさらに高めることにつながる。また、有機硅素化合物も、熱分解により得られる炭化珪素が上記範囲になるように添加量を設定することが好ましい。
【0032】
有機硅素化合物としては、ポリカルボシラン、ポリシラスチレン、ポリシラザン、ポリカルボシラザン等が、炭化珪素に添加しやすく好適に使用できる。
【0033】
さらに、遊離炭素および/または熱分解によって炭素に変化し得る有機化合物を遊離炭素換算で0.5〜5重量%添加するが、特に1〜4重量%添加することが好ましい。有機化合物が熱分解により遊離炭素が生じるが、遊離炭素が緻密化に貢献し、上記の範囲にすることにより、緻密な接合部を形成できる。
【0034】
炭素に変化し得る有機化合物としては、コールタールピッチ、フリフリルアルコール、フェノール樹脂等が良い。
【0035】
これらの粉末の混合物100重量部に対して、アクリル樹脂等の有機バインダーを10〜60重量%、好ましくは20〜40重量%を添加する。これは、10重量%より少ないとペースト状にならず、均一に塗布することが難しく、また、60重量%を越えると粉末の充填密度が低く、焼結しにくくなり、接合強度が低下してしまうためである。
【0036】
さらに、必要に応じて可塑剤等を添加し、十分に混合し、スラリー化する。このスラリーを、2つの部材の接合面の少なくとも一方の表面に塗布した後、前記部材接合面同士を接触させる。この時、塗布する方法としては、刷毛で塗る方法、スラリー中に部材をいれてスラリーを接合面に付着させるディッピング法、または、印刷法を用いて塗布することができる。
【0037】
その後、アルゴンガス等の不活性雰囲気中2100℃以上、好ましくは2150℃以上の温度で1〜10時間熱処理して形成する。この時、熱処理温度が2100℃より低いと接合部が緻密化不足を招き、強度低下を引き起こす。
【0038】
焼結時には、接合面に部材側から圧力を加えることが好ましい。単純形状で有れば、ホットプレス装置を用いて加圧できる。また、部材の上に重量物を重石として乗せても良い。さらに、一旦焼成して気孔を閉塞させた後に、HIP処理などにより加圧し、残った閉気孔を縮小させることも可能である。
【0039】
【実施例】
炭化硼素粉末として、純度99.8%、平均粒径が0.8μmのA1原料(シュタルクビテック(株)製商品名HS)を主として用いた。
【0040】
炭化珪素粉末として、平均粒径0.6μmのB1原料(屋久島電工(株)製商品名OY−15)と、高温熱分解で炭化珪素に変化するB2原料(日本カーボン(株)製商品名ポリカルボシランNIPUSI−S)を主として用いた。
【0041】
熱分解での炭素に変化しうる有機化合物として、炭化率が40%のフェノール樹脂からなるC1原料(住友デゥレス(株)製)を主として用いた。
【0042】
また、炭化硼素粉末として平均粒径が8μmのA2原料(電気化学工業(株)製商品名F2)、炭化珪素粉末として平均粒径が2μmのB3原料(昭和電工(株)製)と炭素粉末として平均粒径が400ÅのC2原料(電気化学工業(株)製商品名アセチレンブラック デンカブラック)を用いた。
【0043】
上記炭化硼素粉末、炭化珪素および/または炭化珪素源、遊離炭素および/または炭素源からなる混合原料粉末にバインダとして、アクリル樹脂を用いた。
各原料およびバインダを表1に示す組み合わせで秤量した。これに可塑剤としてDBP(ジ・ブチル・フタレート)を添加し、プラスティックボールを用いて混合して、スラリーを得た。
【0044】
接合に用いる部材は、ホットプレス法にて30MPaの圧力および2100℃の条件で作製した炭化硼素質焼結体を用いた。相対密度は99.9%、室温での抗折強度は600MPaであった。この炭化硼素質焼結体を一辺が20mmの立方体に加工した。
【0045】
そして、立方体の一面に、上記のスラリーを塗布させた後、他の立方体を貼りあわせて角柱を形成し、この角柱を、アルゴンガス中で、表1に示す条件により2時間保持して熱処理した。
【0046】
スラリーの塗布には、刷毛を用いてスラリーを接合面に塗布した。
【0047】
焼成した角柱から、接合面が長径方向の中心に位置するように強度試験片を切り出し、研磨した。そして、JIS R1601に基づき、4点曲げ試験により、強度を測定し、これを接合強度とした。
【0048】
また、接合部の厚みは、走査型電子顕微鏡(SEM)による写真を用いて算出した。さらに、炭化硼素の平均粒子径SEMを用いて、100個の粒子サイズを測定した。結果を表1に示す。
【0049】
【表1】

Figure 0004373560
【0050】
本発明の試料No.6〜11、14〜16および18〜29は、接合強度が200MPa以上であった。
【0051】
一方、炭化珪素と遊離炭素を含まない試料No.1、遊離炭素を含まない試料No.2、炭化珪素を含まない試料No.3、炭化硼素を含まない試料No.4は、いずれも本発明の範囲外であり、接合強度は200MPaに達しなかった。
【0052】
また、炭化珪素の含有量が本発明の範囲外の試料No.5および12と、遊離炭素の含有量が本発明の範囲外の試料No.13と17とは、接合強度が200MPa未満であった。
【0053】
【発明の効果】
本発明の炭化硼素接合体およびその製造方法では、窒化硼素質焼結体の間に特定の組成からなる接合部を設け、特定の熱処理により、原料および加工コストを低減し、接合強度を高くすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a jig for a semiconductor manufacturing apparatus, a boron carbide joined body having high corrosion resistance against fluorine-based and chlorine-based corrosive gas atmospheres, particularly fluorine-based and chlorine-based plasmas, and particularly used in a halogen plasma. The present invention relates to a boron carbide bonded body suitable for precision processing products such as a focus ring, a clamp ring, a member for a plasma processing apparatus such as a bell jar and a dome, and a jig such as a support for supporting an object to be processed, and a manufacturing method thereof. .
[0002]
[Prior art]
In recent years, the use of plasma such as dry process and plasma coating used in the manufacture of highly integrated circuit elements such as semiconductor elements and liquid crystals has been rapidly progressing. As a plasma process in semiconductor manufacturing, halogen-based corrosive gases such as chlorine are used for vapor phase growth, etching and cleaning because of their high reactivity.
[0003]
A member exposed to these corrosive gases is required to have high corrosion resistance. Conventionally, members that are in contact with plasma other than the object to be processed are required to have as much corrosion resistance as possible and to contain as little impurities as possible that contaminate non-processed objects or cause particles. That is, conventionally, members that come into contact with plasma have generally started to use materials such as glass and quartz whose main component is SiO 2 , metals such as stainless steel and monel, and alumina as a ceramic material. In particular, alumina is starting to be widely used in semiconductor manufacturing processes as a corrosion-resistant member because a high-purity sintered body can be produced at a relatively low cost and has excellent corrosion resistance.
[0004]
However, the members using quartz glass and the like that have been used in the past have low wear resistance due to low corrosion resistance in plasma, and particularly when they come into contact with fluorine or chlorine plasma, the contact surface is etched and the surface properties change. There have been problems such as affecting the etching conditions. Further, even a member using a metal such as stainless steel has insufficient corrosion resistance, so that corrosion causes a defective product particularly in semiconductor manufacturing.
[0005]
In addition, although the sintered body of alumina and AlN is superior in corrosion resistance to fluorine-based gas as compared with the above materials, corrosion gradually proceeds when contacting with plasma at high temperature, and crystal particles are formed from the surface of the sintered body. This causes a problem that the degranulation occurs and causes the generation of particles.
[0006]
The generation of such particles is due to device characteristics due to ion bombardment, breakage of metal wiring, pattern defects, etc., due to ion bombardment and extremely fine particles generated by reaction in the gas phase as semiconductors become more highly integrated and processes become cleaner. There is a risk of problems such as deterioration of the product and a decrease in yield.
[0007]
In recent years, therefore, it has been proposed to use boron carbide, which is excellent in corrosion resistance against halogen-based corrosive gas, particularly chlorine-based gas plasma, and is less likely to generate particles, as an electrode for a dry etching apparatus (for example, Japanese Patent Laid-Open No. Hei 1). -59818).
[0008]
By the way, boron carbide is known as a hard-to-sinter body, and if there are voids, the corrosion rate around the voids due to plasma increases, so that hot pressing is performed by firing in a high-temperature inert atmosphere under pressure, that is, in an argon stream at 2100 ° C or higher. It was necessary to obtain a dense body by the method. For example, Japanese Examined Patent Publication No. 58-30263 discloses a boron carbide firing having a density of 90% or more of the theoretical density in which 0.5 to 10% by weight of free carbon is mixed with powdered boron carbide having a particle size distribution of 1 μm or less. Conjunctions are described.
[0009]
[Problems to be solved by the invention]
However, since the boron carbide sintered body is generally formed by a hot press method, it is necessary to first prepare a sintered body having a simple shape and cut and process it to obtain a desired shape. However, boron carbide has the second highest hardness after diamond, requires a huge amount of diamond tools compared to other ceramics, and takes a long time for processing, so there is a problem that the processing cost of boron carbide is very high. It was a big obstacle to practical use.
[0010]
Further, the boron carbide disclosed in Japanese Patent Publication No. 58-30263 is very expensive as the boron carbide raw material itself, and is removed as a processing powder when a desired shape is obtained by processing a sintered body having a simple shape. The amount of boron carbide to be used increases, and the cost of raw materials used increases, resulting in an increase in product costs. Especially when the product has a complicated shape, the cost of raw materials and processing increases, resulting in higher product prices and difficulty in adoption. There was a problem.
[0011]
In addition, it is sufficient to join the members made of boron carbide sintered body to reduce the useless raw materials and obtain the desired shape while reducing the processing cost. There was a problem that the bonding strength could not be obtained.
[0012]
Accordingly, an object of the present invention is to provide a boron carbide joined body having a strength that can withstand practical use and a method for producing the same.
[0013]
[Means for Solving the Problems]
The present invention is based on the knowledge that the bonding strength can be increased by specifying the composition of the bonding portion and the bonding method, and as a result, the cost of the product made of the boron carbide sintered body can be reduced.
[0014]
That is, in a boron carbide joined body obtained by integrating two members made of a boron carbide sintered body through a joint portion, the joint portion is 90 to 99.45 wt% boron carbide, 0.05 It consists of ˜5 wt% silicon carbide and 0.5-5 wt% free carbon.
[0015]
According to the present invention, since the joint portion is formed by boron carbide, silicon carbide, and free carbon, it is possible to reduce the stress generated due to the difference in thermal expansion coefficient between the member and the joint portion. Further, with the above composition, solid phase diffusion is promoted and densification progresses, and a bonded portion with high adhesion strength can be formed. Therefore, strength reduction can be prevented and processing costs can be reduced.
[0016]
In addition, it is preferable that the thickness of a junction part is 100 micrometers or less, and it is preferable that the average particle diameter of the boron carbide of a junction part is 5 micrometers or less. The thickness of the bonded portion and the average particle size of boron carbide in the bonded portion have an effect of increasing the bonding strength, and the bonding strength can be further increased by setting within the above range.
[0017]
In addition, the method for producing a boron carbide bonded body according to the present invention includes a boron carbide powder in an amount of 90 to 99.45% by weight and a silicon carbide powder and / or an organic silicon compound that can be changed to silicon carbide by pyrolysis in terms of silicon carbide. The organic binder is added to 100 parts by weight of a mixture of 0.05 to 5% by weight and 0.5 to 5% by weight of free carbon and / or an organic compound that can be converted to carbon by thermal decomposition. the slurry prepared Te, was coated on at least one hand of the joining surfaces of the two members consisting of boron carbide sintered material, it is brought into contact with the joining members faces, a heat treatment at 2100 ° C. or higher temperature in an inert atmosphere Thus, it is possible to manufacture a boron carbide bonded body with high bonding strength at low cost, and to cope with complicated shapes.
[0018]
The average particle diameter of the boron carbide powder is preferably 5 μm or less, and the average particle diameter of the silicon carbide powder is preferably 1 μm or less. As a result, a dense joint is obtained, and a high joint strength is obtained.
[0019]
Therefore, according to the present invention, it is possible to provide a boron carbide bonded body having a bonding strength for practical use and a method for manufacturing the same, with reduced product costs.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The boron carbide bonded body of the present invention is a boron carbide bonded body in which two members made of a boron carbide sintered body are integrated via a bonded portion, and the bonded portion is composed of boron carbide, silicon carbide, and free carbon. Is done. By forming a joint portion having substantially the same composition as that of the member, it is possible to reduce stress generated due to a difference in coefficient of thermal expansion between the member and the joint portion, and to prevent a decrease in strength.
[0021]
That is, the joint composition of the boron carbide joined body of the present invention is 90 to 99.45% by weight of boron carbide, 0.05 to 5% by weight of silicon carbide, and 0.5 to 5% by weight of free carbon. is required. In particular, it is desirable that silicon carbide is 0.1 to 2% by weight and free carbon is 1 to 4% by weight. Here, if silicon carbide is less than 0.05% by weight, densification is difficult, and if it exceeds 5% by weight, boron carbide causes grain growth and causes a decrease in strength. Further, if boron carbide is less than 90%, the stress generated in the joint portion is increased, the joint strength is lowered, and if it exceeds 99.45%, diffusion is restricted and the joint strength is lowered. If it is less than 5% by weight, the diffusion of boron carbide is reduced, and if it is 5% by weight or more, the sinterability of the joint is reduced.
[0022]
Further, the thickness of the joint is preferably 100 μm or less, more preferably 20 μm or less. When the thickness of the joint portion is reduced, the existence probability of voids and other defects that become a fracture source is reduced, and as a result, high joint strength tends to be obtained.
[0023]
Furthermore, the average particle size of the boron carbide powder in the joint is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 1 μm or less. Since the surface energy of the particles is increased due to the small average particle diameter, and the particles are easily diffused, the bonded portion is likely to be dense and high bonding strength can be obtained.
[0024]
As the boron carbide member used for bonding, a sintered material obtained by adding a sintering aid to boron carbide powder can be used. Firing at that time may be carried out at a temperature of 2000 ° C. or higher by an atmospheric pressure method or hot pressing in an inert gas, or HIP, but in order to obtain a dense body, hot pressing is particularly preferable. The relative density of boron carbide to be used is preferably 98% or more, particularly 99% or more because of excellent properties such as corrosion resistance, wear resistance, and strength.
[0025]
The joint portion contains boron carbide, silicon carbide, and free carbon, but even if elements such as aluminum and iron are mixed as impurities, there is no problem as long as the joint strength is not affected. In general, these impurities are contained in the raw material of silicon carbide or boron carbide by several hundred ppm, but even if these elements remain with respect to the bonding strength, this does not hinder the achievement of the object of the present invention.
[0026]
In addition, a bonding strength of 200 MPa is a practical standard. When the pressure is less than 200 MPa, there is a tendency for jigs and apparatus constituent members to be unusable due to insufficient strength or have a short life. Furthermore, 250 MPa or more is preferable in consideration of ease of handling, life, or safety.
[0027]
In addition, the method for producing a boron carbide bonded body according to the present invention includes a boron carbide powder in an amount of 90 to 99.45% by weight and a silicon carbide powder and / or an organic silicon compound that can be changed to silicon carbide by pyrolysis in terms of silicon carbide. The organic binder is added to 100 parts by weight of a mixture of 0.05 to 5% by weight and 0.5 to 5% by weight of free carbon and / or an organic compound that can be converted to carbon by thermal decomposition. the slurry prepared Te, was coated on at least one hand of the joining surfaces of the two members consisting of boron carbide sintered material, it is brought into contact with the joining members faces, a heat treatment at 2100 ° C. or higher temperature in an inert atmosphere This makes it possible to produce a high-strength boron carbide joined body at a low cost, and to form a dense joined portion to increase the strength.
[0028]
In this case, the average particle size of the carbide the boron-containing powder is 5μm or less, particularly 2μm or less. A powder having an average particle diameter in this range has good sinterability and is easy to obtain a dense body. When this average particle diameter exceeds 5 μm, it becomes difficult to densify, it becomes necessary to increase the firing temperature or the firing time, and the condition setting tends to be difficult.
[0029]
It is preferable to add a silicon carbide powder having an average particle diameter of 1 μm or less, particularly 0.8 μm or less, and / or an organic silicon compound that can be changed to silicon carbide by thermal decomposition to this powder. Since silicon carbide has a role of promoting the diffusion of boron, by increasing the surface area by making the average particle diameter 1 μm or less, the sinterability is promoted and a dense body can be easily obtained.
[0030]
The composition of the raw material powder used in the slurry is 90 to 99.45% by weight of boron carbide powder, 0.05 to 5% by weight of silicon carbide powder and / or 0.05 to 5% by weight of pyrolytic silicon carbide. It is important to be a mixture of an organic silicon compound that can change and an organic compound that can change to 0.5-5 wt% carbon upon pyrolysis. That is, there is no volatile component during firing, and this composition becomes the joint composition almost as it is, so that high bonding strength can be realized by this composition.
[0031]
The silicon carbide powder is added in an amount of 0.05 to 5% by weight, preferably 0.1 to 2% by weight, particularly preferably 0.2 to 1% by weight. Setting within this range facilitates densification of the joint, and as a result, further increases the joint strength. Moreover, it is preferable to set the addition amount of the organic silicon compound so that silicon carbide obtained by thermal decomposition falls within the above range.
[0032]
As the organic silicon compound, polycarbosilane, polysilastyrene, polysilazane, polycarbosilazane and the like can be suitably used because they can be easily added to silicon carbide.
[0033]
Further, free carbon and / or an organic compound that can be converted to carbon by thermal decomposition is added in an amount of 0.5 to 5% by weight in terms of free carbon, and it is particularly preferable to add 1 to 4% by weight. Although free carbon is generated by thermal decomposition of the organic compound, the free carbon contributes to densification, and a dense junction can be formed by setting the above range.
[0034]
As the organic compound that can be changed to carbon, coal tar pitch, furfuryl alcohol, phenol resin, and the like are preferable.
[0035]
An organic binder such as an acrylic resin is added in an amount of 10 to 60% by weight, preferably 20 to 40% by weight, based on 100 parts by weight of the powder mixture. If it is less than 10% by weight, it does not become a paste and it is difficult to apply uniformly, and if it exceeds 60% by weight, the packing density of the powder is low, it becomes difficult to sinter, and the bonding strength decreases. It is because it ends.
[0036]
Furthermore, if necessary, a plasticizer or the like is added, mixed well, and slurried. After applying this slurry to at least one surface of the joint surfaces of the two members, the member joint surfaces are brought into contact with each other. At this time, as a method of applying, a method of applying with a brush, a dipping method in which a member is put in the slurry and the slurry is adhered to the bonding surface, or a printing method can be used.
[0037]
Thereafter, it is formed by heat treatment in an inert atmosphere such as argon gas at a temperature of 2100 ° C. or higher, preferably 2150 ° C. or higher for 1 to 10 hours. At this time, if the heat treatment temperature is lower than 2100 ° C., the joint portion is insufficiently densified, causing a decrease in strength.
[0038]
At the time of sintering, it is preferable to apply pressure to the joint surface from the member side. If it is a simple shape, it can be pressurized using a hot press apparatus. Moreover, you may place a heavy article on a member as a heavy stone. Furthermore, after firing and closing the pores, it is also possible to reduce the remaining closed pores by pressurizing by HIP processing or the like.
[0039]
【Example】
As the boron carbide powder, an A1 material (trade name HS, manufactured by Stark Vitec Co., Ltd.) having a purity of 99.8% and an average particle size of 0.8 μm was mainly used.
[0040]
As silicon carbide powder, average and particle size 0.6μm of B1 material (Yakushima Denko Co., Ltd. trade name OY-15), high temperature pyrolysis in B2 material which changes carbide (Japan Carbon Co., trade name Polycarbosilane NIPUSI-S) was mainly used.
[0041]
As an organic compound that can be changed to carbon by pyrolysis, a C1 raw material (manufactured by Sumitomo Durres Co., Ltd.) made of a phenol resin having a carbonization rate of 40% was mainly used.
[0042]
The average particle size 8μm the A2 material (electrical Chemical Co., Ltd. trade name F2) as boron carbide powder, B3 raw material having an average particle size as the silicon carbide powder is 2 [mu] m (manufactured by Showa Denko KK) and carbon A C2 raw material (trade name acetylene black DENKA BLACK manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 400 mm was used as the powder.
[0043]
An acrylic resin was used as a binder in the mixed raw material powder composed of boron carbide powder, silicon carbide and / or silicon carbide source, free carbon and / or carbon source.
Each raw material and binder were weighed in the combinations shown in Table 1. To this was added DBP (dibutyl phthalate) as a plasticizer and mixed using a plastic ball to obtain a slurry.
[0044]
As a member used for bonding, a boron carbide sintered body produced by a hot press method under a pressure of 30 MPa and a condition of 2100 ° C. was used. The relative density was 99.9%, and the bending strength at room temperature was 600 MPa. This boron carbide sintered body was processed into a cube having a side of 20 mm.
[0045]
And after apply | coating said slurry to one surface of a cube, another cube was bonded together, a prism was formed, and this prism was hold | maintained in argon gas for 2 hours by the conditions shown in Table 1, and heat-processed. .
[0046]
For applying the slurry, the slurry was applied to the joint surface using a brush.
[0047]
A strength test piece was cut out from the fired prism and polished so that the joint surface was located in the center of the major axis direction. Then, based on JIS R1601, the strength was measured by a four-point bending test, and this was defined as the bonding strength.
[0048]
Moreover, the thickness of the junction part was calculated using the photograph by a scanning electron microscope (SEM). Furthermore, 100 particle sizes were measured using an average particle size SEM of boron carbide. The results are shown in Table 1.
[0049]
[Table 1]
Figure 0004373560
[0050]
Sample No. of the present invention. 6-11, 14-16, and 18-29 had a joint strength of 200 MPa or more.
[0051]
On the other hand, Sample No. containing no silicon carbide and free carbon. 1. Sample No. containing no free carbon 2. Sample No. containing no silicon carbide 3. Sample No. containing no boron carbide No. 4 was outside the scope of the present invention, and the bonding strength did not reach 200 MPa.
[0052]
In addition, the sample No. 5 whose silicon carbide content is outside the scope of the present invention. Nos. 5 and 12 and sample Nos. 5 and 12 whose free carbon content is outside the scope of the present invention. 13 and 17 had a bonding strength of less than 200 MPa.
[0053]
【The invention's effect】
In the boron carbide bonded body and the manufacturing method thereof according to the present invention, a bonding portion having a specific composition is provided between the boron nitride sintered bodies, and the raw material and processing cost are reduced and the bonding strength is increased by a specific heat treatment. be able to.

Claims (5)

炭化硼素質焼結体からなる2つの部材を、接合部を介して一体化せしめてなる炭化硼素接合体において、前記接合部が90〜99.45重量%の炭化硼素と、0.05〜5重量%の炭化珪素と、0.5〜5重量%の遊離炭素とからなることを特徴とする炭化硼素接合体。  In a boron carbide joined body obtained by integrating two members made of a boron carbide sintered body through a joint portion, the joint portion is 90 to 99.45 wt% boron carbide, and 0.05 to 5 A boron carbide joined body comprising weight percent silicon carbide and 0.5 to 5 weight percent free carbon. 前記接合部の厚みが100μm以下であることを特徴とする請求項1記載の炭化硼素接合体。  The boron carbide joined body according to claim 1, wherein a thickness of the joined portion is 100 μm or less. 前記接合部の炭化硼素の平均粒径が5μm以下であることを特徴とする請求項1または2記載の炭化硼素接合体。The boron carbide bonded body according to claim 1 or 2, wherein an average particle size of boron carbide in the bonded portion is 5 µm or less. 炭化硼素粉末90〜99.45重量%と、炭化珪素粉末および/または熱分解で炭化珪素に変化しうる有機硅素化合物を炭化珪素換算で0.05〜5重量%と、遊離炭素および/または熱分解で炭素に変化しうる有機化合物を遊離炭素換算で0.5〜5重量%からなる混合物100重量部に対して、有機バインダーを加えて調製したスラリーを、炭化硼素質焼結体からなる2つの部材の接合面の少なくとも一方に塗布した後、前記部材接合面同士を接触させ、不活性雰囲気中2100℃以上の温度で熱処理することを特徴とする炭化硼素接合体の製造方法。Boron carbide powder 90 to 99.45% by weight, silicon carbide powder and / or organic silicon compound which can be converted to silicon carbide by thermal decomposition, 0.05 to 5% by weight in terms of silicon carbide, free carbon and / or heat the organic compound can vary to carbon in the decomposition on 100 parts by weight of a mixture consisting of 0.5 to 5% by weight of free carbon equivalent, a slurry prepared by adding an organic binder, consisting of boron carbide sintered material after coating on at least one hand of the joining surfaces of the two members, the contacting members joining faces, the method for manufacturing the boron conjugates, characterized in that the heat treatment at 2100 ° C. or higher temperature in an inert atmosphere. 前記混合物中の炭化硼素粉末の平均粒径が5μm以下、炭化珪素粉末の平均粒径が1μm以下であることを特徴とする請求項4記載の炭化硼素接合体の製造方法。The mixture of the boron carbide powder having an average particle diameter of 5μm or less, according to claim 4 manufacturing method of the boron carbide-assembly according to the average particle diameter of the fine silicon carbide powder is characterized in that it is 1μm or less.
JP2000024704A 2000-01-28 2000-01-28 Boron carbide joined body and method for producing the same Expired - Fee Related JP4373560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024704A JP4373560B2 (en) 2000-01-28 2000-01-28 Boron carbide joined body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024704A JP4373560B2 (en) 2000-01-28 2000-01-28 Boron carbide joined body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001213672A JP2001213672A (en) 2001-08-07
JP4373560B2 true JP4373560B2 (en) 2009-11-25

Family

ID=18550647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024704A Expired - Fee Related JP4373560B2 (en) 2000-01-28 2000-01-28 Boron carbide joined body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4373560B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570195B2 (en) * 2000-03-16 2010-10-27 京セラ株式会社 BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
JP5809884B2 (en) * 2011-08-30 2015-11-11 美濃窯業株式会社 BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP7454983B2 (en) 2020-03-30 2024-03-25 東京エレクトロン株式会社 Edge ring and plasma treatment equipment

Also Published As

Publication number Publication date
JP2001213672A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
US20020018921A1 (en) Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
US5407504A (en) Method for joining ceramic to ceramic or to carbon
JPH1012692A (en) Dummy wafer
JP4570195B2 (en) BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
KR20090040430A (en) Aluminum nitride sintered body and method for producing the same
JP4373560B2 (en) Boron carbide joined body and method for producing the same
US9676631B2 (en) Reaction bonded silicon carbide bodies made from high purity carbonaceous preforms
JP2009179507A (en) Silicon carbide/boron nitride composite material sintered compact, method for producing the same, and member using the sintered compact
CN112521154A (en) SiC ceramic device with high-purity working surface and preparation method and application thereof
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
Ahmad et al. Microwave-assisted pyrolysis of SiC and its application to joining
JP2003095744A (en) Silicon carbide sintered compact and member for manufacturing semiconductor using the same, member for manufacturing magnetic head, wear resistant sliding member and method of manufacturing the same
JP2006188415A (en) Ceramic for glass forming mold
JP5748586B2 (en) Carbon-silicon carbide composite
JP3602931B2 (en) Low hardness silicon nitride sintered body and semiconductor manufacturing parts using the same
JP2019055897A (en) Production method of silicon carbide member
JP2009107864A (en) Parts for manufacturing semiconductor
JP4002325B2 (en) Method for producing sintered silicon carbide
EP1357098A1 (en) Joining methode for high-purity ceramic parts
JP2001278675A (en) SINTERED SiC CONJUGATE AND METHOD FOR MANUFACTURING PARTS FOR SEMICONDUCTOR USING IT
JP2002201070A (en) Silicon carbide sintered compact and its manufacturing method
JP5132541B2 (en) Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees