JP5132541B2 - Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor - Google Patents

Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor Download PDF

Info

Publication number
JP5132541B2
JP5132541B2 JP2008332248A JP2008332248A JP5132541B2 JP 5132541 B2 JP5132541 B2 JP 5132541B2 JP 2008332248 A JP2008332248 A JP 2008332248A JP 2008332248 A JP2008332248 A JP 2008332248A JP 5132541 B2 JP5132541 B2 JP 5132541B2
Authority
JP
Japan
Prior art keywords
mass
sic
resistant
heat
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008332248A
Other languages
Japanese (ja)
Other versions
JP2010153699A (en
Inventor
康人 伏井
守 山比羅
正人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2008332248A priority Critical patent/JP5132541B2/en
Publication of JP2010153699A publication Critical patent/JP2010153699A/en
Application granted granted Critical
Publication of JP5132541B2 publication Critical patent/JP5132541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Description


本発明は、InGaNAl(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表される3−5族化合物半導体の製造装置用部材、特にヒーター及びその周辺部材に関するものである。

The present invention relates to a member for a manufacturing apparatus of a Group 3-5 compound semiconductor represented by In x Ga y NAl z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1), The present invention relates to a heater and its peripheral members.

InGaNAl(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表される3−5族化合物半導体は、紫外領域を中心とした発光素子材料として注目されており、高輝度白色光用素子、殺菌・滅菌光用素子などに実用化が進んでいる。高温でも半導体特性を持つことから耐熱性の素子となることが期待されている。 A Group 3-5 compound semiconductor represented by In x Ga y NAl z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) is a light-emitting element material mainly in the ultraviolet region. As a device for high-intensity white light, a device for sterilization / sterilization light, etc., it has been put into practical use. Since it has semiconductor characteristics even at high temperatures, it is expected to be a heat-resistant element.

当該化合物半導体の製造方法にはいくつかあるが、現在は主として有機金属気相成長法(以下MOVPE法)が用いられている。有機金属化合物とアンモニア等の窒素化合物を高温に保持された基板上に供給し、目的の化合物半導体を基板上にエピタキシャル成長させる方法で、結晶成長のパラメータである温度、圧力、材料ガス供給量などを広範に操作可能であり、薄膜結晶成長を得意とすることなどから多彩な積層構造が可能であり、研究用途から産業用途まで広く利用されている。   Although there are several methods for producing the compound semiconductor, the metal organic chemical vapor deposition method (hereinafter referred to as MOVPE method) is mainly used at present. A method in which an organometallic compound and a nitrogen compound such as ammonia are supplied onto a substrate held at a high temperature, and the target compound semiconductor is epitaxially grown on the substrate. The temperature, pressure, material gas supply amount, etc., which are parameters for crystal growth, are adjusted. It can be operated in a wide range, and since it excels at thin-film crystal growth, it can be used in a variety of laminated structures, and is widely used for research and industrial purposes.

MOVPE法においては、GaAsのように比較的低温で合成を行う場合を除いて、1000℃以上で活性なガスを混合しながら結晶成長させる。製造装置の部材は、高温で有機金属化合物やアンモニアガス等の非常に反応性に富んだ原料ガス雰囲気に晒されるため、化学的に高い安定性が求められ、高純度の半導体を製造するために不純物の放出が少ないことが必要である。特に、InGaNAl(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表される3−5族化合物半導体の場合、合成温度は最高1300℃程度であり、ヒーターやその周辺では更に高温となる、当然ながら部材は、この温度域で安定でなければならない。 In the MOVPE method, crystals are grown while mixing an active gas at 1000 ° C. or higher, except when synthesis is performed at a relatively low temperature such as GaAs. The manufacturing equipment is exposed to a highly reactive source gas atmosphere, such as organometallic compounds and ammonia gas, at high temperatures. It is necessary that the emission of impurities is small. In particular, in the case of a Group 3-5 compound semiconductor represented by In x Ga y NAl z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1), the synthesis temperature is a maximum of 1300 ° C. Of course, the temperature will be higher in the heater and its surroundings. Of course, the member must be stable in this temperature range.

MOVPE法において、安定操業を繰り返すためには、目的とする場所以外に析出してしまうデポ物の除去が必要である。不活性雰囲気で反応温度より100〜300℃高温にしてデポ物を取り除く「加熱クリーニング処理」を行う場合、更に高い耐熱性が要求されている。また、InGaNAl(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で、z≠0の場合は、AlNに近い組成のデポ物も生じるが、AlNは高温でも安定な材料であるため、「加熱クリーニング処理」での除去は難しく、物理的に研磨剤を吹き付けて除去する方法が採用される。この方法は、ショットブラスト、ホーニング、或いはボンバーディングなどと称されているが、AlNより十分耐摩耗性が高い素材を使用しないと、部材が削れてしまうため、繰り返しの使用には耐えられないという問題がある。 In the MOVPE method, in order to repeat a stable operation, it is necessary to remove deposits that deposit outside the target location. When performing “heat cleaning treatment” in which the deposits are removed by raising the temperature 100 to 300 ° C. higher than the reaction temperature in an inert atmosphere, higher heat resistance is required. In addition, when In x Ga y NAl z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) and z ≠ 0, a deposit having a composition close to AlN is generated. Since AlN is a stable material even at high temperatures, it is difficult to remove it by “heat cleaning treatment”, and a method of physically removing the abrasive by spraying is employed. This method is called shot blasting, honing, bombarding, etc., but if you do not use a material that is sufficiently higher in wear resistance than AlN, the material will be scraped, so it cannot be used repeatedly. There's a problem.

現在、これらの部材にはSiC或いはSiCを表面にコーティングした黒鉛が使用されている。これらの内、SiCは代表的な難焼結性材料であって、高純度で緻密な焼結体は非常に高価である上、難加工性材料でもあり、精密な加工を施すのは難しく、精密加工を行えば、更に高価な材料となる。一方、SiCコーティング黒鉛は、1300℃以上の高温に晒された場合や1000℃以上の高温と室温付近への熱履歴の繰り返しを行うとコーティング層に亀裂やピンホールが生じ、アンモニアガス等によって内部の黒鉛への腐食が生じるという問題があった。また、SiCコーティング黒鉛も高価である上、コーティング層を厚くして耐食性を上げると寸法精度が低下してしまい、カーボンとの熱膨張差によって反りや変形等の歪みが生ずる、剥離が発生する等の問題があった。更に、SiC層そのものが不完全であるため、1300℃以上では、昇華や分解による重量減少が生じるため、高温用途には根本的に不向きな材料である。   At present, these members are made of SiC or graphite having a surface coated with SiC. Of these, SiC is a representative difficult-to-sinter material, and a high-purity and dense sintered body is very expensive and difficult to process. It is difficult to perform precise processing. If precision processing is performed, it becomes a more expensive material. On the other hand, when SiC-coated graphite is exposed to a high temperature of 1300 ° C or higher, or when a heat history of 1000 ° C or higher and near the room temperature is repeated, cracks and pinholes are generated in the coating layer, and ammonia gas etc. There is a problem that corrosion of graphite occurs. In addition, SiC coated graphite is also expensive, and if the coating layer is thickened to increase the corrosion resistance, the dimensional accuracy will decrease, and distortion such as warping and deformation will occur due to the difference in thermal expansion from carbon, peeling will occur, etc. There was a problem. Furthermore, since the SiC layer itself is incomplete, a weight loss due to sublimation or decomposition occurs at 1300 ° C. or higher, which is fundamentally unsuitable for high temperature applications.

SiCやSiCコーティング黒鉛に変わる材料として、窒化ホウ素を含有する技術(特許文献1)が提案されているが、例示された材料は、BN単身系を除いては重量減少が大きいため、高温用途の実用にはとうてい耐え得ないものである。一方、BN単身系は、耐熱性はあるものの、強度、硬度が低く簡単に削れてしまうため、ダストが発生しやすく、高純度な半導体の製造装置としては、ごく限られた部品にしか使えない。一般に、ヒーターやその周辺部材は結晶成長が生じる部材の直ぐ側に配置され、ダストの発生が容易な素材は、不適切である。
特開2001−44128号公報
As a material that replaces SiC or SiC-coated graphite, a technology (Patent Document 1) containing boron nitride has been proposed, but the exemplified materials have a large weight loss except for a single BN system. It is unbearable for practical use. On the other hand, the BN single body system has heat resistance, but it is low in strength and hardness and can be easily scraped. Therefore, dust is easily generated, and a high-purity semiconductor manufacturing apparatus can be used only for limited parts. . In general, a heater and its peripheral members are arranged immediately on the side where crystal growth occurs, and materials that easily generate dust are inappropriate.
JP 2001-44128 A

本発明の目的は、3−5族化合物半導体の製造装置用耐熱耐摩耗部材として、十分な高温安定性を有して、揮発分が少なく、機械部品としての寸法精度を確保出来、かつ研磨材を吹き付けてデポ物を除去する際に、AlNより十分摩耗量が少ない部品を提供することである。   An object of the present invention is a heat-resistant and wear-resistant member for a group 3-5 compound semiconductor manufacturing apparatus, having sufficient high-temperature stability, low volatile content, ensuring dimensional accuracy as a machine part, and polishing material When removing deposits by spraying, it is to provide a part with a wear amount sufficiently smaller than that of AlN.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)InGaNAl(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表される3−5族化合物半導体を有機金属気相成長法により製造する装置において、相対密度97%以上かつ下記の測定方法によるSiCの最大粒子径が4.0μm以下のSiC−BN複合焼結体を用いることを特徴とする3−5族化合物半導体の製造装置用耐熱耐摩耗部材。
[最大粒子の測定方法]
破断面をSEM(走査型電子顕微鏡)で5000倍に拡大し、SEM写真上で各粒子の同一方向における最大長さを測り、無作為に1000個の粒子を測定して、その中の最大値を求める。
(2)1400℃の窒素ガス中で6時間加熱した後の減量が0.1質量%以下、かつ下記の条件を用いた耐ブラスト性試験が0.05質量%/回以下のSiC−BN複合焼結体を用いることを特徴とする前記(1)に記載の3−5族化合物半導体の製造装置用耐熱耐摩耗部材。
[耐ブラスト性試験条件]
装置:不二製作所 PNEUMA BLASTER ニューマブラスター
型式:SG−7BAR−406−R200
研磨剤:不二製作所 コランダム WA−220
ノズル:5本
搬送速度:100rpm(2.5min./回)
被研磨試料:直径50mm×厚さ1mm
(3) InGaNAl(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表される3−5族化合物半導体を有機金属気相成長法により製造する装置において、SiCが62質量%以上82質量%以下、BNが15質量%以上35質量%以下、Y23が1質量%以上3質量%以下の原料を用いてホットプレス焼成する前記(1)又は(2)に記載のSiC−BN複合焼結体の製造方法。
The present invention employs the following means in order to solve the above problems.
(1) A Group 3-5 compound semiconductor represented by In x Ga y NAl z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) is formed by metal organic vapor phase epitaxy. An apparatus for manufacturing a Group 3-5 compound semiconductor, characterized in that an SiC-BN composite sintered body having a relative density of 97% or more and a maximum SiC particle size of 4.0 μm or less by the following measurement method is used in an apparatus for manufacturing Heat resistant and wear resistant member.
[Maximum particle measurement method]
The fracture surface was magnified 5000 times with a SEM (scanning electron microscope), the maximum length of each particle in the same direction was measured on the SEM photograph, and 1000 particles were randomly measured. Ask for.
(2) SiC-BN composite whose weight loss after heating for 6 hours in nitrogen gas at 1400 ° C. is 0.1% by mass or less and blast resistance test using the following conditions is 0.05% by mass or less The heat-resistant and wear-resistant member for a Group 3-5 compound semiconductor manufacturing apparatus according to (1), wherein a sintered body is used.
[Blast resistance test conditions]
Equipment: Fuji Seisakusho PNEUMA BLASTER Pneumatic Blaster Model: SG-7BAR-406-R200
Abrasive: Fuji Seisakusho corundum WA-220
Nozzle: 5 Conveying speed: 100 rpm (2.5 min./time)
Sample to be polished: 50 mm diameter x 1 mm thickness
(3) A group 3-5 compound semiconductor represented by In x Ga y NAl z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) is obtained by metal organic vapor phase epitaxy. In the manufacturing apparatus, the hot press firing is performed using a raw material having SiC of 62% by mass to 82% by mass, BN of 15% by mass to 35% by mass, and Y 2 O 3 of 1% by mass to 3% by mass. (1) The manufacturing method of the SiC-BN compound sintered compact as described in (2).

InGaNAl(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表される3−5族化合物半導体を有機金属気相成長法により製造する装置において、SiCが62質量%以上82質量%以下、BNが15質量%以上35質量%以下、Y23が1質量%以上3質量%以下の原料を用いてホットプレス焼成するSiC−BN複合焼結体の製造方法である。 An apparatus for producing a Group 3-5 compound semiconductor represented by In x Ga y NAl z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) by metal organic chemical vapor deposition. SiC-BN composite which is hot-press fired using raw materials having SiC of 62% by mass to 82% by mass, BN of 15% by mass to 35% by mass, and Y 2 O 3 of 1% by mass to 3% by mass. It is a manufacturing method of a sintered compact.

本発明によれば、十分な耐熱性を有し、揮発分が少なく、機械部品としての寸法精度を確保出来、かつ研磨材を吹き付けてデポ物を除去する際に、AlNより摩耗量が十分少ないことより、3−5族化合物半導体の製造装置用に好適な耐熱耐摩耗部材を得ることが出来る。   According to the present invention, it has sufficient heat resistance, has a small amount of volatile matter, can ensure dimensional accuracy as a machine part, and has a much smaller wear amount than AlN when removing deposits by spraying abrasives. Thus, it is possible to obtain a heat and wear resistant member suitable for a 3-5 group compound semiconductor manufacturing apparatus.

本発明の3−5族化合物半導体の製造装置用耐熱耐摩耗部材は、SiC−BN系複合体である。従来の技術と異なるのは、実使用温度、即ち1400℃、窒素ガス中で6時間加熱した際の減量が0.1質量%以下である点である。そのためには、不可避的な混入を除いて、焼結助剤を含む酸化物系の添加物を厳密に制御することが重要である。BNやSiCは代表的な難焼結性材料であるため、通常、HP(熱間加圧焼成)やHIP(熱間等方圧加圧焼成)など特殊な方法を用い、更には焼結助剤を添加して焼成する。例えば、複合焼結体において、当該業者が、SiC−BN系焼結体と言えば、通常はSiCとBNと助剤成分からなる材料を指す。   The heat-resistant and wear-resistant member for a 3-5 group compound semiconductor manufacturing apparatus of the present invention is a SiC-BN composite. The difference from the prior art is that the weight loss when heated in nitrogen gas for 6 hours at an actual use temperature, that is, 1400 ° C., is 0.1% by mass or less. For this purpose, it is important to strictly control oxide-based additives including sintering aids, except for inevitable mixing. Since BN and SiC are typical hard-to-sinter materials, a special method such as HP (hot pressurization firing) or HIP (hot isostatic press firing) is usually used. Add the agent and fire. For example, in a composite sintered body, if the trader refers to a SiC-BN-based sintered body, it usually refers to a material composed of SiC, BN, and an auxiliary component.

助剤としては、通常、酸化物が用いられる。BNの助剤としては、酸化ホウ素や酸化カルシウム、アルミナ、シリカなど用いられ、SiCの助剤としては、イットリアをはじめとした希土類酸化物やアルミナ、シリカ、ベリリアなどが用いられる。しかしながら、これらの酸化物は、高温で徐々に揮発するものが多い。本発明に於いては、1400℃、窒素ガス中で6時間加熱した際の減量が0.1質量%以下でなければならないため、これらの酸化物の内、イットリア(Y)1〜3質量%に制限される。但し、SiCとBNを原料として用いた場合に不可避的に混入する不純物はこの限りではない。SiCやBNのような非酸化物粉末は、不可避的に酸素を含有し、更にその酸素量は混合等のハンドリング操作によって増加してしまうが、Yを除いて2質量%以下であれば、十分に高温で焼成することによって、1400℃、窒素ガス中で6時間加熱した際の減量が0.1質量%以下となる。 As the auxiliary agent, an oxide is usually used. Boron oxide, calcium oxide, alumina, silica, or the like is used as an auxiliary for BN, and rare earth oxides such as yttria, alumina, silica, beryllia, or the like is used as an auxiliary for SiC. However, many of these oxides gradually volatilize at high temperatures. In the present invention, since the weight loss when heated in nitrogen gas at 1400 ° C. for 6 hours must be 0.1% by mass or less, among these oxides, yttria (Y 2 O 3 ) 1 to It is limited to 3% by mass. However, the impurities inevitably mixed when SiC and BN are used as raw materials are not limited to this. Non-oxide powders such as SiC and BN inevitably contain oxygen, and the amount of oxygen increases due to handling operations such as mixing, but it is 2% by mass or less excluding Y 2 O 3. For example, by firing at a sufficiently high temperature, the weight loss when heated in nitrogen gas at 1400 ° C. for 6 hours is 0.1% by mass or less.

本発明において、SiC−BN系複合焼結体に限るのは、他の材料では十分な特性が得られないからである。酸化物は助剤と同様に揮発分となる。他の利用可能な非酸化物に於いても、SiCより熱的に安定なものを得ることは難しい。Siは一般的には1600℃程度の耐熱性を持つとされているが、窒素ガス中で6時間加熱した際の減量が0.1質量%以下にはならない。SiとNの分解蒸気圧が比較的大きいためであると考えられる。また、BCのような炭化物は、窒素ガス中で徐々に窒化反応を生じる。BCの場合、BNを生じるため、質量減少ではなく質量増加となるが、同様に不適当である。TiBのようなホウ化物も窒化反応が生じるため好ましくない。TiBにおいては、表面からTiNが形成される。MOVPE法においては、アンモニアがプロセスガスとして使用されるため、窒素ガス中や窒素ガス−水素ガス中で質量や特性が変化する材料は使用出来ない。 In the present invention, the reason is limited to the SiC-BN composite sintered body because sufficient characteristics cannot be obtained with other materials. The oxide becomes a volatile matter like the auxiliary agent. Even with other available non-oxides, it is difficult to obtain one that is more thermally stable than SiC. Si 3 N 4 is generally considered to have a heat resistance of about 1600 ° C., but the weight loss when heated in nitrogen gas for 6 hours does not fall below 0.1 mass%. This is probably because the decomposition vapor pressure of Si and N is relatively large. Further, a carbide such as B 4 C gradually causes a nitriding reaction in nitrogen gas. In the case of B 4 C, since BN is generated, the mass is not decreased but the mass is increased, but it is similarly inappropriate. A boride such as TiB 2 is also not preferable because a nitriding reaction occurs. In TiB 2, TiN from the surface is formed. In the MOVPE method, since ammonia is used as a process gas, a material whose mass and characteristics change in nitrogen gas or nitrogen gas-hydrogen gas cannot be used.

本発明のSiC−BN複合焼結体におけるSiCの比率は、SiC62質量%以上82質量%以下に限定される。62質量%未満では、BNが多過ぎるため、強度、硬度が低く、使用時にダストを発生しやすい等の問題を生じることがあり、82質量%超では、BNが少な過ぎて加工性が低下してしまう。また、本発明に於いては、1400℃、窒素ガス中で6時間加熱した際の減量が0.1質量%以下でなければならない。前述のように本願発明の耐熱耐摩耗部材が使用される3−5族化合物半導体の合成温度は、最高1300℃程度であり、ヒーターやその周辺部材では、更に高温となる。従って、ヒーターやその周辺部材は1400℃で、かなり厳密な耐熱性を持つ必要がある。揮発分があると合成された半導体の特性が劣化し、甚だしい場合には、合成そのものが出来なくなる。本願発明者らは、これを簡便に見分ける方法として1400℃、窒素ガス中で6時間加熱した際の質量変化を測定することを見出した。勿論少ない方が好ましいが、0.1質量%以下であれば実用に耐える。好ましくは0.05質量%以下である。   The ratio of SiC in the SiC-BN composite sintered body of the present invention is limited to 62 mass% or more and 82 mass% or less of SiC. If it is less than 62% by mass, there is too much BN, which may cause problems such as low strength and hardness and easy generation of dust during use. If it exceeds 82% by mass, there is too little BN and workability will decrease. End up. In the present invention, the weight loss when heated in nitrogen gas at 1400 ° C. for 6 hours must be 0.1% by mass or less. As described above, the synthesis temperature of the Group 3-5 compound semiconductor in which the heat-resistant and wear-resistant member of the present invention is used is about 1300 ° C. at the maximum, and the heater and its peripheral members have higher temperatures. Therefore, the heater and its peripheral members need to have fairly strict heat resistance at 1400 ° C. If there is a volatile component, the characteristics of the synthesized semiconductor deteriorate, and if it is severe, synthesis itself cannot be performed. The inventors of the present application have found that, as a method for easily distinguishing this, the mass change when heated in nitrogen gas at 1400 ° C. for 6 hours is measured. Of course, a smaller amount is preferable, but it is practical if it is 0.1% by mass or less. Preferably it is 0.05 mass% or less.

次に本願発明の部材は、耐摩耗性、すなわち、デポ物をブラスト処理して取り除いて繰り返し使用するための耐ブラスト性を有していなければならない。具体的には、以下の条件で耐ブラスト性試験を行って、0.05質量%/回以下である。
装置:不二製作所 PNEUMA BLASTER ニューマブラスター
型式:SG−7BAR−406−R200
研磨剤:不二製作所 コランダム WA−220
ノズル:5本
搬送速度:100rpm(2.5min./回)
被研磨試料:直径50mm×厚さ1mm
上記の条件は、試料形状を除けばブラストを行うに当たって一般的に使用される条件であって、研磨量を定量化するために特定化したに過ぎない。試料形状を定めたのも研磨量を定量化するためであり、耐ブラスト性試験では、上記条件で5回繰り返してブラストし、ブラスト前後の質量減少から1回当たりの研磨量を求める。0.05質量%回以下であれば、数十回以上のブラストに耐えて繰り返し使えると考えて良い。研磨量は少ない方が耐ブラスト性に優れるが、同時に硬い材料であることを示し、加工性も低下する。加工性については、前述のようにBNの配合量で調整する。
Next, the member of the present invention must have wear resistance, that is, blast resistance for repeated use after removing the deposit by blasting. Specifically, the blast resistance test is conducted under the following conditions, and the result is 0.05% by mass or less.
Equipment: Fuji Seisakusho PNEUMA BLASTER Pneumatic Blaster Model: SG-7BAR-406-R200
Abrasive: Fuji Seisakusho corundum WA-220
Nozzle: 5 Conveying speed: 100 rpm (2.5 min./time)
Sample to be polished: 50 mm diameter x 1 mm thickness
The above conditions are conditions generally used for blasting except for the sample shape, and are only specified for quantifying the polishing amount. The sample shape was determined in order to quantify the polishing amount. In the blast resistance test, blasting was repeated 5 times under the above conditions, and the polishing amount per time was determined from the mass reduction before and after blasting. If it is 0.05 mass% or less, it can be considered that it can be used repeatedly by enduring blasting several times or more. The smaller the amount of polishing, the better the blast resistance, but at the same time, it indicates that the material is hard and the workability also decreases. About workability, it adjusts with the compounding quantity of BN as mentioned above.

本願発明は、既述の部材を造るためのSiC−BN系素材を提供するものである。即ち、SiC−BN複合焼結体の
(1)相対密度97%以上、
(2)SiCの最大粒子径が4.0μm以下
である。
(1)については、素材の相対密度97%未満では、耐食性や耐摩耗性に劣り、熱伝導率が低下する。また、インゴットが緻密化不足で連通細孔が残留すると加工時にガスや異物が残る原因となり易い。従って、97%以上の高密度材であることが必要で、好ましくは98%以上である。BNもSiCも難焼結性の物質であるので、大きな粒子同士の焼結体では粒子間に空隙が生じて緻密な焼結体は得られない。前述のようにSiCの最大粒子径4.0μm以下の微細な構造を取るためには、BN粒子も、粒界や一部は粒内に取り込まれた微細な構造を取らなくてはならない。
(2)は精密加工性と強度を維持するために必要である。非酸化物セラミックスの加工では、粒子の脱落が発生し易いため、加工精度は粒径と密接な関係があり、加工精度は少なくとも最大粒子径の2.5倍、好ましくは5倍程度の値を取る。従って本願発発明の部材の如く精密な機械部品に求められる10μmレベルの加工精度を得るためには、最大粒子径は4.0μm以下でなければならない。好ましくは、2.0μm以下、更に好ましくは1.0μm以下である。本願発明の部材では、SiCが母相を形成するため、SiCの最大粒子径を定める。同様に粗大粒子が増加すると強度も低下するため、加工時やハンドリング時に破損し易くなり、薄型の部品には対応できなくなるが、最大粒子径が4.0μm以下であれば、実用的には問題ない。最大粒子径は、破断面を拡大観察して測定される。破断面は、最大粒子が存在する可能性が高いので、4.0μm以下が十分鮮明に観察できるように拡大、具体的に例示すれば、SEM(走査型電子顕微鏡)で、5000倍に拡大して(1cmが2μmに相当)、無作為に1000個の粒子を観察してそのなかの最大の粒子を求める方法により決定される。通常は5〜10視野程度から求められる。粒子径の測定方法には各種の方法が提案されているが、本願発明では、インタセプト法を取る。直径法とも言い、SEM写真上で各粒子の同一方向における最大長さを測る方法である。比較的簡便で、本願発明のように異方性が殆ど出ない粒子の場合は、分布を正確に測定することが出来る。
The present invention provides an SiC-BN-based material for producing the above-described member. That is, (1) relative density of 97% or more of the SiC-BN composite sintered body,
(2) The maximum particle size of SiC is 4.0 μm or less.
Regarding (1), if the relative density of the material is less than 97%, the corrosion resistance and the wear resistance are inferior, and the thermal conductivity is lowered. In addition, if the ingot is insufficiently densified and the communication pores remain, gas and foreign matters are likely to remain during processing. Therefore, it is necessary to be a high-density material of 97% or more, and preferably 98% or more. Since both BN and SiC are hardly sinterable substances, voids are generated between the large particles, and a dense sintered body cannot be obtained. As described above, in order to obtain a fine structure of SiC having a maximum particle diameter of 4.0 μm or less, BN particles must also have a fine structure in which grain boundaries and a part thereof are incorporated in the grains.
(2) is necessary to maintain precision workability and strength. In the processing of non-oxide ceramics, particles fall off easily, so the processing accuracy is closely related to the particle size, and the processing accuracy is at least 2.5 times the maximum particle size, preferably about 5 times. take. Therefore, in order to obtain a processing accuracy of the 10 μm level required for a precision machine part such as the member of the present invention, the maximum particle size must be 4.0 μm or less. Preferably, it is 2.0 μm or less, more preferably 1.0 μm or less. In the member of the present invention, since SiC forms a parent phase, the maximum particle diameter of SiC is determined. Similarly, when the coarse particles increase, the strength also decreases, so that it is easy to break during processing and handling and cannot be applied to thin parts. However, if the maximum particle size is 4.0 μm or less, there is a practical problem. Absent. The maximum particle size is measured by magnifying the fracture surface. Since there is a high possibility that the largest particles are present, the fracture surface is enlarged so that 4.0 μm or less can be observed sufficiently clearly. For example, it is enlarged by 5000 times with a scanning electron microscope (SEM). (1 cm corresponds to 2 μm), and is determined by a method in which 1000 particles are randomly observed to obtain the largest particle among them. Usually, it is obtained from about 5 to 10 visual fields. Various methods have been proposed for measuring the particle diameter. In the present invention, the intercept method is used. It is also called the diameter method, and is a method of measuring the maximum length of each particle in the same direction on the SEM photograph. In the case of particles that are relatively simple and have little anisotropy as in the present invention, the distribution can be accurately measured.

しかし、BN−SiC系で、高密度の焼結体を得るためには、高温、長時間、高圧力などの厳しい焼成条件が必要となる。HIPは設備的な制約が大きくコストアップの原因となるので、HPが好ましい。更に、前述の微構造を有する素材を安定製造するには以下に述べる方法が好ましい。 However, in order to obtain a BN-SiC-based high-density sintered body, severe firing conditions such as high temperature, long time, and high pressure are required. HP is preferable because HIP has large equipment restrictions and causes an increase in cost. Further, the method described below is preferable for stably producing the material having the above-mentioned microstructure.

ナノコンポジットと呼ばれる複合材においては、前述の(1)〜(2)の条件を満たすSiC−BN複合焼結体が比較的容易に得られる。これは、既に公知の技術であって、以下に文献の例を挙げることが出来る。

文献1 Takafumi KUSUNOSE,Journal of Ceramic Societyof Japan 114[2]167-173(2006)
文献2 楠瀬尚史、坂柳伸彰、関野徹、セラミックス基礎科学討論会講演要旨集vol.45、pp502-503(2007)

作製方法の一例を挙げると、SiCの表面にホウ酸と尿素を析出させ、これを加熱反応させてBNの超微粉をSiC粒子の表面に分散させた原料粉末を得、焼成してナノコンポジットを得るというものである。また、シリカのマイクロビーズとホウ酸ガラスとカーボン粉末を混合後、窒素ガス中で加熱してホウケイ酸ガラスを生成し、更に加熱してナノ複合粉を得、これをホットプレス法で焼結してナノコンポジット焼結体を得る方法もある。これらは、精密加工が容易で半導体製造装置用耐熱耐摩耗部材には好適である。
In a composite material called a nanocomposite, a SiC-BN composite sintered body that satisfies the conditions (1) to (2) described above can be obtained relatively easily. This is a known technique, and examples of the literature can be given below.

Reference 1 Takafumi KUSUNOSE, Journal of Ceramic Society of Japan 114 [2] 167-173 (2006)
Reference 2 Naofumi Hirose, Nobuaki Sakayanagi, Toru Sekino, Abstracts of Ceramics Science Conference Vol.45, pp502-503 (2007)

As an example of the production method, boric acid and urea are precipitated on the surface of SiC, and this is heated and reacted to obtain a raw material powder in which BN ultrafine powder is dispersed on the surface of the SiC particles. Is to get. Also, after mixing silica microbeads, borate glass and carbon powder, heated in nitrogen gas to produce borosilicate glass, further heated to obtain nanocomposite powder, which was sintered by hot pressing method There is also a method for obtaining a nanocomposite sintered body. These are easy to precision processing and suitable for heat-resistant and wear-resistant members for semiconductor manufacturing equipment.

本願発明の耐熱耐摩耗性部材とは、MOVPE法により3−5族化合物半導体を製造する装置において、特に高温となり、アンモニアや有機金属ガスに一部または全部が晒されることのある部材であって、研磨剤で除去するデポ物が発生することがあるものを指す。詳細形状等は装置によって異なるが、精密機械部品であるので寸法公差は厳しく、温度分布が制限されるため材料の均質性が求められる。一部を例示すれば、ヒーターサセプタやそのカバー、ガス流の制御板やスリット板、ハニカム、あるいは、それらを固定、位置決めするピンやネジ、ギヤやスペーサーなど、更には、サセプタの上にディスクを設置し、その上に基板を置いて結晶成長させる場合等は、ディスクも含まれる。   The heat-resistant and wear-resistant member of the present invention is a member that can be exposed to a part of or all of ammonia or an organic metal gas, particularly in an apparatus for producing a Group 3-5 compound semiconductor by the MOVPE method. In this case, a deposit that is removed with an abrasive may be generated. Although the detailed shape and the like vary depending on the device, since it is a precision machine part, the dimensional tolerance is severe, and the temperature distribution is limited, so that the homogeneity of the material is required. For example, heater susceptor and its cover, gas flow control plate and slit plate, honeycomb, pins and screws for fixing and positioning them, gears and spacers, and a disk on susceptor. When a crystal is grown by placing a substrate on the substrate, a disk is also included.

更に、本発明の部材となる素材は、高純度であることが必要である。半導体製造装置に用いることからも、金属不純物は少ない方が好ましく、例示すれば、鉄、ニッケル、コバルト、マンガン、銅、タングステン等の重金属やナトリウム等のアルカリ金属不純物の合計が、0.02質量%以下、好ましくは、0.01質量%以下である。   Furthermore, the material used as the member of the present invention needs to have high purity. It is preferable that the amount of metal impurities is small because it is used in a semiconductor manufacturing apparatus. For example, the total of heavy metals such as iron, nickel, cobalt, manganese, copper, and tungsten and alkali metal impurities such as sodium is 0.02 mass. % Or less, preferably 0.01% by mass or less.

以下実施例により、本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。先ず原料粉末は以下の方法で調整した。市販の六方晶窒化ホウ素粉末(比表面積35m/g、平均粒径4.0μm)及び市販のSiC粉末(純度99質量%以上、平均粒径1.0μm)を、表1に示す所定の割合に混合した。混合は特級エタノール試薬を溶媒としてアルミナ製のボールを混合媒体とするボールミルで42時間行って、濾過、真空乾燥した。また、一部は、ホウ酸(試薬)と市販のシリカビーズ(純度99質量%以上、平均粒径0.3μm)及び市販のカーボン粉末(比表面積70m/g、平均粒径0.03μm)をBNとSiCで表1の割合となるよう所定の比率で配合し、水を溶媒としてボールミルで24hrs混合した。その際に、カーボンは、SiCの還元反応に対して1.2倍の過剰量とした。乾燥後、窒素ガス雰囲気下で1400℃まで加熱、冷却してSiC−BNの原料粉末とした。比較例の原料も同様に作製したが、組成や混合条件は表1に示す。尚、現行材の比較例として、市販のSiCコーティング黒鉛(コーティング厚さ50nm)及び耐摩耗性の比較材として市販のAlN白板(厚さ1.0mm、熱伝導率180W/mK)を用いた。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. First, the raw material powder was prepared by the following method. Commercially available hexagonal boron nitride powder (specific surface area 35 m 2 / g, average particle size 4.0 μm) and commercially available SiC powder (purity 99% by mass or more, average particle size 1.0 μm) are shown in Table 1 Mixed. The mixing was performed for 42 hours in a ball mill using a special grade ethanol reagent as a solvent and balls made of alumina as a mixing medium, followed by filtration and vacuum drying. In addition, some are boric acid (reagent) and commercially available silica beads (purity 99% by mass or more, average particle size 0.3 μm) and commercially available carbon powder (specific surface area 70 m 2 / g, average particle size 0.03 μm). BN and SiC were blended at a predetermined ratio so as to have the ratio shown in Table 1, and mixed for 24 hours with a ball mill using water as a solvent. At that time, the amount of carbon was 1.2 times that of the SiC reduction reaction. After drying, it was heated and cooled to 1400 ° C. under a nitrogen gas atmosphere to obtain a raw material powder of SiC—BN. The raw materials of the comparative examples were also produced in the same manner, but the composition and mixing conditions are shown in Table 1. In addition, as a comparative example of the current material, commercially available SiC coated graphite (coating thickness 50 nm) and a commercially available AlN white plate (thickness 1.0 mm, thermal conductivity 180 W / mK) were used as a wear resistant comparative material.

次に各原料を内径60mmの黒鉛製のダイスにセットしてHP焼結した。焼結条件も表1に示す。焼結体を取り出した後、外形を1mm程度研削し、乾燥質量及び水中質量を測定してアルメデス法で密度を算出し、10mmW×40mmL×1mmTのサンプルに加工して、窒素ガス中、1400℃、6hrsの加熱を行い、前後の質量変化から耐熱性を求めた。また、同じ試料破断面を走査型電子顕微鏡(SEM)で5000倍に拡大し、1000個のSiC粒子を測定して最大粒子径を決定した。次に、50mmφ×1.0mmTのサンプルを切り出して、段落0016に記載の耐ブラスト性試験を行い、前後の質量変化から耐摩耗性を算出した。最後に、加工性を確認するため、マシニングセンターで直径80μmのマイクロエンドミルの穴加工を乾式で行った。穴センターで150μmピッチの穴を連続30穴開けて、裏面のセンター位置の最大のズレを、CNC光学測定器(測定精度5μm)を用いて測定した。加工条件は、回転数10000rpm.、加工速度5mm/min.である。結果を表2に示す。 Next, each raw material was set in a graphite die having an inner diameter of 60 mm and subjected to HP sintering. The sintering conditions are also shown in Table 1. After taking out the sintered body, the outer shape is ground by about 1 mm, the dry mass and the mass in water are measured, the density is calculated by the Armedes method, processed into a sample of 10 mmW × 40 mmL × 1 mmT, and in nitrogen gas, 1400 ° C. , Heating was performed for 6 hours, and the heat resistance was determined from the mass change before and after. Moreover, the same sample fracture surface was expanded 5000 times with a scanning electron microscope (SEM), 1000 SiC particles were measured, and the maximum particle diameter was determined. Next, a 50 mmφ × 1.0 mmT sample was cut out and subjected to the blast resistance test described in paragraph 0016, and the wear resistance was calculated from the mass change before and after. Finally, in order to confirm the workability, a hole of a micro end mill having a diameter of 80 μm was dry-processed at a machining center. Thirty consecutive holes having a pitch of 150 μm were made at the hole center, and the maximum deviation of the center position on the back surface was measured using a CNC optical measuring instrument (measurement accuracy 5 μm). The processing conditions were a rotational speed of 10,000 rpm. , Processing speed 5 mm / min. It is. The results are shown in Table 2.

Figure 0005132541
Figure 0005132541

Figure 0005132541
Figure 0005132541

表2から明らかなように、本発明の実施例では、いずれも緻密化しているが粒成長は抑制されているため、窒素ガス中、1400℃、6hrsの高温での減量が小さく、加工性も良好で、サセプタのような精密加工部品に好適であり、耐摩耗性もあり、比較例の9のAlNより摩耗量が小さいので、ブラストによる再生処理にも耐えられる。これに対して比較例ではいずれにも先ず高温減量に劣るため、耐熱部材としては不適当である。緻密化が不十分な比較例1、3、4、7では、AlNより耐摩耗性に劣り、繰り返しのブラスト処理にはあまり耐えられない。原料BNの添加量が少ない比較例6やSiCコーティング黒鉛の比較例8、AlN白板の比較例9では、エンドミルが折れ、加工性に劣ることが判った。また、助剤としてAlを添加した比較例2やYの添加量が多すぎる比較例5では、粒径が大きくなって、加工性が低下したため、精密部品には不適当である。 As is clear from Table 2, in the examples of the present invention, all of them were densified but grain growth was suppressed. Therefore, the weight loss at 1400 ° C. and 6 hrs in nitrogen gas was small, and the workability was also low. It is good, suitable for precision processed parts such as susceptors, has wear resistance, and has a smaller wear amount than the AlN of Comparative Example 9, so that it can withstand reclaiming treatment by blasting. On the other hand, all of the comparative examples are not suitable as heat-resistant members because they are inferior in weight loss at high temperatures. In Comparative Examples 1, 3, 4, and 7 where the densification is insufficient, the wear resistance is inferior to that of AlN, and it is not very resistant to repeated blasting. In Comparative Example 6 in which the amount of the raw material BN was small, Comparative Example 8 in which the SiC coating graphite was used, and Comparative Example 9 in which the AlN white plate was used, it was found that the end mill was broken and the workability was poor. Further, in Comparative Example 2 in which Al 2 O 3 is added as an auxiliary agent and in Comparative Example 5 in which the amount of Y 2 O 3 added is too large, the particle size becomes large and the workability deteriorates, so that it is not suitable for precision parts. It is.

本発明によって製造された3−5族化合物半導体の製造装置用耐熱耐摩耗部材は、コーティング等によらず安定的に使用することができるため、熱履歴を気にせずに昇降温速度が決定でき、バッチ毎のピンホールやマイクロクラックのチェックも不要である。更には、1400℃程度までの加熱処理で除去できないデポ物を取り除くために、研磨剤を吹き付ける処理を行っても繰り返し使用することが出来、非常に効率的に設備運用が可能となる。
Since the heat-resistant and wear-resistant member for a 3-5 group compound semiconductor manufacturing apparatus manufactured according to the present invention can be used stably regardless of coating or the like, the temperature raising / lowering speed can be determined without worrying about the thermal history. Also, there is no need to check pinholes and microcracks for each batch. Furthermore, in order to remove deposits that cannot be removed by heat treatment up to about 1400 ° C., it can be used repeatedly even if a process of spraying an abrasive is performed, and the equipment can be operated very efficiently.

Claims (2)

InxGayNAlz(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表される3−5族化合物半導体を有機金属気相成長法により製造する装置の耐熱耐摩耗部材において、SiCが62質量%以上82質量%以下、BNが15質量%以上35質量%以下、Yが1質量%以上3質量%以下の原料を用いてホットプレス焼成する、相対密度97%以上かつ下記の測定方法によるSiCの最大粒子径が4.0μm以下である3−5族化合物半導体の製造装置用耐熱耐摩耗部材のSiC−BN複合焼結体の製造方法。
[最大粒子の測定方法]
破断面をSEM(走査型電子顕微鏡)で5000倍に拡大し、無作為に1000個のSiC粒子の同一方向における最大長さを測り、その中の最大値を求める。
Heat-resistant and wear-resistant member of an apparatus for producing a Group 3-5 compound semiconductor represented by InxGayNAlz (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) by metal organic chemical vapor deposition In this case, hot pressing is performed using a raw material having SiC of 62% by mass to 82% by mass, BN of 15% by mass to 35% by mass, and Y 2 O 3 of 1% by mass to 3% by mass, relative density 97 % And a SiC-BN composite sintered body of a heat-resistant and wear-resistant member for a Group 3-5 compound semiconductor manufacturing apparatus having a maximum SiC particle size of 4.0 μm or less by the following measurement method.
[Maximum particle measurement method]
The fracture surface is magnified 5000 times with a SEM (scanning electron microscope), the maximum length of 1000 SiC particles in the same direction is randomly measured, and the maximum value is obtained.
SiC−BN複合焼結体が、1400℃の窒素ガス中で6時間加熱した後の減量が0.1質量%以下、かつ下記の条件を用いた耐ブラスト性試験が0.05質量%/回以下である請求項1に記載の3−5族化合物半導体の製造装置用耐熱耐摩耗部材のSiC−BN複合焼結体の製造方法。
[耐ブラスト性試験条件]
装置:不二製作所 PNEUMA BLASTER ニューマブラスター
型式:SG−7BAR−406−R200
研磨剤:不二製作所 コランダム WA−220
ノズル:5本
搬送速度:100rpm(2.5min./回)
被研磨試料:直径50mm×厚さ1mm
Weight loss after heating SiC-BN composite sintered body in nitrogen gas at 1400 ° C. for 6 hours is 0.1 mass% or less, and blast resistance test using the following conditions is 0.05 mass% / time. The manufacturing method of the SiC-BN compound sintered compact of the heat-resistant abrasion-resistant member for manufacturing apparatuses of the group 3-5 compound semiconductor of Claim 1 which is the following.
[Blast resistance test conditions]
Equipment: Fuji Seisakusho PNEUMA BLASTER Pneumatic Blaster Model: SG-7BAR-406-R200
Abrasive: Fuji Seisakusho corundum WA-220
Nozzle: 5 Conveying speed: 100 rpm (2.5 min./time)
Sample to be polished: 50 mm diameter x 1 mm thickness
JP2008332248A 2008-12-26 2008-12-26 Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor Active JP5132541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332248A JP5132541B2 (en) 2008-12-26 2008-12-26 Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332248A JP5132541B2 (en) 2008-12-26 2008-12-26 Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor

Publications (2)

Publication Number Publication Date
JP2010153699A JP2010153699A (en) 2010-07-08
JP5132541B2 true JP5132541B2 (en) 2013-01-30

Family

ID=42572456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332248A Active JP5132541B2 (en) 2008-12-26 2008-12-26 Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor

Country Status (1)

Country Link
JP (1) JP5132541B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200519A (en) * 1984-03-26 1985-10-11 Hitachi Ltd Heating element
JPS6184850A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Heatconductive cooling module
JPS6296367A (en) * 1985-10-23 1987-05-02 株式会社日立製作所 Silicon carbide base friction mechanism member
JP2938098B2 (en) * 1989-09-27 1999-08-23 東芝セラミックス株式会社 BN-SiC composite sintered body
JP4312293B2 (en) * 1999-03-16 2009-08-12 独立行政法人科学技術振興機構 Silicon carbide ceramic composite material and manufacturing method thereof
JP2003277152A (en) * 2002-03-20 2003-10-02 Sumitomo Metal Ind Ltd Silicon carbide sintered compact, production method therefor and its use
JP4806261B2 (en) * 2006-01-05 2011-11-02 パナソニック株式会社 Manufacturing method of wafer for nitride compound semiconductor device
JP2008171933A (en) * 2007-01-10 2008-07-24 Sumitomo Electric Ind Ltd Semiconductor manufacturing apparatus
JP5090025B2 (en) * 2007-03-13 2012-12-05 電気化学工業株式会社 Composite powder and composite material and method for producing the same,
JP4678386B2 (en) * 2007-06-15 2011-04-27 住友電気工業株式会社 Vapor growth apparatus and vapor growth method

Also Published As

Publication number Publication date
JP2010153699A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
TW202009229A (en) Boroncarbide sintered body and etch apparatus comprising the same
US8003042B2 (en) Toughened silicon carbide and method for making the same
JP2008133160A (en) Boron carbide sintered compact and method of manufacturing the same
JP4688307B2 (en) Plasma-resistant member for semiconductor manufacturing equipment
JP2023543687A (en) Large size sintered ceramic body and method for making the same
JP7481509B2 (en) Sintered ceramic bodies containing magnesium aluminate spinel
US9227877B2 (en) Ceramic nanocomposite material and method of manufacturing thereof
JP4245125B2 (en) Aluminum nitride ceramics, semiconductor manufacturing members, corrosion resistant members, and conductive members
JP4312293B2 (en) Silicon carbide ceramic composite material and manufacturing method thereof
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
KR100500495B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members
JP4570195B2 (en) BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
JP5113469B2 (en) Manufacturing method of oxide powder coated with carbide powder
JP5132541B2 (en) Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor
JP5161060B2 (en) Heat resistant black member and method for producing the same
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP5199599B2 (en) Yttria sintered body and member for plasma process equipment
JP2010076995A (en) Susceptor member for apparatus for manufacturing group iii-v compound semiconductor
KR102234171B1 (en) Manufacturing method of low-resistance silicon carbide composite
WO2023100821A1 (en) Height adjustment member, heat treatment apparatus and electrostatic chuck device
JP2024515855A (en) Dense sintered silicon carbide material with very low electrical resistivity
JP4411403B2 (en) Method for producing aluminum nitride sintered body
JP2003146755A (en) Plasma-resistant member, method of producing the same and semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5132541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250