JP2019055897A - Production method of silicon carbide member - Google Patents

Production method of silicon carbide member Download PDF

Info

Publication number
JP2019055897A
JP2019055897A JP2017181480A JP2017181480A JP2019055897A JP 2019055897 A JP2019055897 A JP 2019055897A JP 2017181480 A JP2017181480 A JP 2017181480A JP 2017181480 A JP2017181480 A JP 2017181480A JP 2019055897 A JP2019055897 A JP 2019055897A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide member
bonding
polishing
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017181480A
Other languages
Japanese (ja)
Other versions
JP6975598B2 (en
Inventor
敬輔 佐藤
Keisuke Sato
敬輔 佐藤
良太 佐藤
Ryota Sato
良太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017181480A priority Critical patent/JP6975598B2/en
Publication of JP2019055897A publication Critical patent/JP2019055897A/en
Application granted granted Critical
Publication of JP6975598B2 publication Critical patent/JP6975598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

To provide a production method of silicon carbide member capable of jointing a silicon carbide sintered body and a silicon carbide body formed by a CVD method without interposing a joint material.SOLUTION: The method includes: a first polish step S1 of polishing a joint area 11 of a first silicon carbide member 10 composed of a silicon carbide sintered body; a second polish step S2 of polishing a second joint area 21 of a second silicon carbide member 20 formed by a chemical vapor growth method; and a junction step S3 of jointing the first silicon carbide member 10 and the second silicon carbide member 20 with heating, while pressurizing contacted jointing areas 11, 21 by pressing the first silicon carbide member 10 and the second silicon carbide member 20 toward each joint area 11, 21 with the joint areas 11, 21 directly contacted to each other under inert atmosphere.SELECTED DRAWING: Figure 1

Description

本発明は、炭化珪素部材の製造方法に関する。   The present invention relates to a method for manufacturing a silicon carbide member.

炭化珪素(SiC)焼結体は、その高強度、高剛性、高耐摩耗性という特性に鑑みて、半導体製造装置、液晶製造装置等における固定部材などに広く用いられている。しかし、炭化珪素焼結体は、炭化珪素粉末を焼結して得られるため、組織の表面又は内部に気孔(ボイド)が不可避的に存在し、局所的に粒子間の結合力が劣り、その周辺からパーティクルによる発塵が生じるおそれがあった。   Silicon carbide (SiC) sintered bodies are widely used for fixing members and the like in semiconductor manufacturing apparatuses, liquid crystal manufacturing apparatuses, etc. in view of their properties of high strength, high rigidity, and high wear resistance. However, since the silicon carbide sintered body is obtained by sintering silicon carbide powder, voids are unavoidably present on the surface or inside of the structure, and the bonding strength between the particles is locally inferior, There was a risk of dust generation from particles from the periphery.

そこで、炭化珪素焼結体よりも高強度、高剛性である、化学的気相成長(CVD)法により形成した炭化珪素体を利用することが検討されている。しかし、この炭化珪素体は、炭化珪素焼結体を製造する場合と比較して、生産性に劣り、高コストであった。そのため、炭化珪素焼結体にCVD法により形成した炭化珪素体を接合した部材を用いることにより、低生産性及び高コストを抑制することが提案されている。   Therefore, it has been studied to use a silicon carbide body formed by a chemical vapor deposition (CVD) method, which has higher strength and higher rigidity than a silicon carbide sintered body. However, this silicon carbide body is inferior in productivity and expensive as compared with the case of producing a silicon carbide sintered body. Therefore, it has been proposed to suppress low productivity and high cost by using a member obtained by bonding a silicon carbide sintered body formed by a CVD method to a silicon carbide sintered body.

例えば、特許文献1には、炭化珪素焼結体からなる基材部とCVD法により形成した炭化珪素体からなる成形面部とを接合材を介して接合することが開示されている。   For example, Patent Document 1 discloses that a base material portion made of a silicon carbide sintered body and a molding surface portion made of a silicon carbide body formed by a CVD method are bonded via a bonding material.

特許第4917844号公報Japanese Patent No. 4917844

しかしながら、半導体製造装置等で使用される構造部材は、プラズマエッチングプロセスなどの腐食環境下、又は成膜プロセスなどの高温環境下にさらされることが多く、上記特許文献1のように接合材を介して接合した場合、接合材が炭化珪素焼結体などと比較してプラズマ耐食性及び耐熱性が劣るため、構造部材は全体としてプラズマ耐食性及び耐熱性が劣るという課題があった。   However, a structural member used in a semiconductor manufacturing apparatus or the like is often exposed to a corrosive environment such as a plasma etching process or a high temperature environment such as a film forming process, and a bonding material is used as in Patent Document 1 described above. In the case of joining together, the joining material is inferior in plasma corrosion resistance and heat resistance as compared with a silicon carbide sintered body or the like, so that the structural member has a problem of inferior in plasma corrosion resistance and heat resistance as a whole.

本発明は、上記従来の問題に鑑みなされたものであり、接合材を介することなく、炭化珪素焼結体とCVD法により形成した炭化珪素体とを接合することが可能な炭化珪素部材の製造方法を提供することを目的とする。   This invention is made in view of the said conventional problem, and manufacture of the silicon carbide member which can join the silicon carbide sintered compact and the silicon carbide body formed by CVD method, without passing through a joining material. It aims to provide a method.

本発明の炭化珪素部材の製造方法は、炭化珪素焼結体からなる第1の炭化珪素部材の接合面を研磨する第1の研磨工程と、化学的気相成長法により形成した第2の炭化珪素部材の接合面を研磨する第2の研磨工程と、不活性雰囲気下で、研磨された前記第1の炭化珪素部材の接合面と研磨された前記第2の炭化珪素部材の接合面とを直接的に当接させ、前記第1の炭化珪素部材と前記第2の炭化珪素部材とをそれぞれの前記接合面に向けて押圧することにより、当接した前記接合面に圧力をかけながら、加熱することにより、前記第1の炭化珪素部材と前記第2の炭化珪素部材とを接合する接合工程とを有し、前記押圧した方向における前記第1の炭化珪素部材及び第2の炭化珪素部材の寸法減少率が0.125〜1%であることを特徴とする。   The method for producing a silicon carbide member of the present invention includes a first polishing step for polishing a bonding surface of a first silicon carbide member made of a silicon carbide sintered body, and a second carbonization formed by a chemical vapor deposition method. A second polishing step for polishing the bonding surface of the silicon member; and a bonding surface of the polished first silicon carbide member and a polished bonding surface of the second silicon carbide member in an inert atmosphere. Directly abutting and heating the first silicon carbide member and the second silicon carbide member while pressing the abutting joint surfaces by pressing the first silicon carbide member and the second silicon carbide member against the respective joint surfaces. A bonding step of bonding the first silicon carbide member and the second silicon carbide member, and the first silicon carbide member and the second silicon carbide member in the pressed direction. Dimensional reduction rate is 0.125 to 1% .

本発明の炭化珪素部材の製造方法によれば、後述する実施例から分かるように、接合材を介することなく、炭化珪素焼結体からなる第1の炭化珪素部材と化学的気相成長法により形成した第2の炭化珪素部材とを直接的に接合することが可能となる。第1及び第2の炭化珪素部材の寸法減少率が0.125%未満であれば、第1の炭化珪素部材と第2の炭化珪素部材とが十分に接合しない。一方、第1及び第2の炭化珪素部材の寸法減少率が1%を超えると、第1及び第2の炭化珪素部材の変形が大きくなり過ぎ、所望の形状が保持できず、多くの追加工が必要となる。第1及び第2の炭化珪素部材の寸法減少率が小さいほど接合後の炭化珪素部材の形状の設計が容易になる。   According to the method for manufacturing a silicon carbide member of the present invention, as can be seen from the examples described later, the first silicon carbide member made of a silicon carbide sintered body and the chemical vapor deposition method are used without using a bonding material. It becomes possible to directly join the formed second silicon carbide member. If the dimensional reduction rate of the first and second silicon carbide members is less than 0.125%, the first silicon carbide member and the second silicon carbide member are not sufficiently joined. On the other hand, when the dimensional reduction rate of the first and second silicon carbide members exceeds 1%, the deformation of the first and second silicon carbide members becomes excessively large and the desired shape cannot be maintained, and many additional processes are required. Is required. The smaller the dimensional reduction rate of the first and second silicon carbide members, the easier the design of the shape of the silicon carbide member after joining.

本発明の炭化珪素部材の製造方法において、前記接合工程では、2000〜2200℃の温度で加熱することが好ましい。   In the manufacturing method of the silicon carbide member of this invention, it is preferable to heat at the temperature of 2000-2200 degreeC at the said joining process.

これは、接合温度が2000℃未満であれば、第1の炭化珪素部材と第2の炭化珪素部材とが十分に接合せず、接合温度が2200℃を超えると、第1及び第2の炭化珪素部材の変形が大きくなり過ぎ、所望の形状が保持できず、追加工が多く必要となるため生産性の低下及び高コスト化を招くからである。   If the bonding temperature is less than 2000 ° C., the first silicon carbide member and the second silicon carbide member are not sufficiently bonded, and if the bonding temperature exceeds 2200 ° C., the first and second carbonization members. This is because the deformation of the silicon member becomes excessively large, the desired shape cannot be maintained, and many additional processes are required, leading to a reduction in productivity and an increase in cost.

また、本発明の炭化珪素部材の製造方法において、前記接合工程では、当接した前記接合面に0.1〜10MPaの圧力をかけることが好ましい。   Moreover, in the manufacturing method of the silicon carbide member of this invention, it is preferable to apply the pressure of 0.1-10 Mpa to the said joined surface which contact | abutted at the said joining process.

これは、接合圧力が0.1MPa未満であれば、第1の炭化珪素部材と第2の炭化珪素部材とが十分に接合せず、接合圧力が10MPaを超えると、第1及び第2の炭化珪素部材の変形が大きくなり過ぎ、所望の形状が保持できず、追加工が必要となるからである。   This is because if the bonding pressure is less than 0.1 MPa, the first silicon carbide member and the second silicon carbide member are not sufficiently bonded, and if the bonding pressure exceeds 10 MPa, the first and second carbonization members. This is because the deformation of the silicon member becomes excessively large, the desired shape cannot be maintained, and additional work is required.

また、本発明の炭化珪素部材の製造方法において、前記第1の研磨工程では、前記第1の炭化珪素部材の接合面を表面粗さRa0.005〜0.4μmとなるまで研磨し、前記第2の研磨工程では、前記第2の炭化珪素部材の接合面を表面粗さ0.001〜0.4μmとなるまで研磨することが好ましい。   In the method for manufacturing a silicon carbide member of the present invention, in the first polishing step, the bonding surface of the first silicon carbide member is polished to a surface roughness Ra of 0.005 to 0.4 μm, In the polishing step 2, it is preferable to polish the bonding surface of the second silicon carbide member until the surface roughness becomes 0.001 to 0.4 μm.

これは、接合面の表面粗さRaが0.4μmを超えると、接合工程において接合面同士の接触不足が生じ、接合が不十分となり、剥離が発生するおそれがあるからである。一方、接合面の表面粗さは、第1及び第2の炭化珪素部材に含まれる気孔の影響を受けるため、第1の炭化珪素部材の接合面の表面粗さRaを0.005μm未満、又は第2の炭化珪素部材の接合面の表面粗さRaを0.001μm未満とすることは困難である。   This is because if the surface roughness Ra of the bonding surface exceeds 0.4 μm, contact between the bonding surfaces is insufficient in the bonding step, bonding becomes insufficient, and peeling may occur. On the other hand, since the surface roughness of the bonding surface is affected by pores contained in the first and second silicon carbide members, the surface roughness Ra of the bonding surface of the first silicon carbide member is less than 0.005 μm, or It is difficult to make the surface roughness Ra of the joint surface of the second silicon carbide member less than 0.001 μm.

本発明の実施形態に係る炭化珪素部材の製造方法の概略断面図を示し、図1Aは第1及び第2の研磨工程、図1Bは接合工程、図1Cは接合工程後の状態をそれぞれ示す。The schematic sectional drawing of the manufacturing method of the silicon carbide member which concerns on embodiment of this invention is shown, FIG. 1A shows the 1st and 2nd grinding | polishing process, FIG. 1B shows a joining process, FIG. 1C shows the state after a joining process, respectively. 本発明の実施形態に係る炭化珪素部材の製造方法のフローチャート。The flowchart of the manufacturing method of the silicon carbide member which concerns on embodiment of this invention. 第1の炭化珪素部材の寸法減少率を示すグラフ。The graph which shows the dimension reduction rate of a 1st silicon carbide member. マイクロスコープ顕微鏡で炭化珪素部材の接合界面を観察した写真を示し、図4Aは実施例1を図4Bは実施例2をそれぞれ示す。The photograph which observed the joining interface of the silicon carbide member with the microscope microscope is shown, and Drawing 4A shows Example 1 and Drawing 4B shows Example 2, respectively.

本発明の実施形態に係る炭化珪素(SiC)部材の製造方法について図1及び図2を参照して説明する。本製造方法は、第1及び第2の研磨工程S1,S2及び接合工程S3を備える。   A method for manufacturing a silicon carbide (SiC) member according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The manufacturing method includes first and second polishing steps S1, S2 and a joining step S3.

まず、図1Aに示すように、炭化珪素焼結体からなる第1の炭化珪素部材10の接合面11を研磨する第1の研磨工程S1を行う。炭化珪素焼結体は、炭化珪素粉末にバインダー、分散剤などを添加した原料から造粒した顆粒を用いて、常圧成形、プレス成形、CIP成形等の成形方法、及び常圧焼結、加圧焼結、反応焼結等の焼結方法により作製すればよい。原料粉末に、炭化硼素、グラファイトなどを焼結助剤として添加してもよい。   First, as shown to FIG. 1A, 1st grinding | polishing process S1 which grind | polishes the joint surface 11 of the 1st silicon carbide member 10 which consists of a silicon carbide sintered compact is performed. The silicon carbide sintered body uses granules granulated from a raw material obtained by adding a binder, a dispersant and the like to silicon carbide powder, a molding method such as atmospheric pressure molding, press molding, CIP molding, and atmospheric pressure sintering, What is necessary is just to produce by sintering methods, such as pressure sintering and reaction sintering. Boron carbide, graphite or the like may be added to the raw material powder as a sintering aid.

第1の研磨工程S1では、第1の炭化珪素部材10の接合面11を表面粗さRa0.005〜0.4μmとなるまで研磨することが好ましい。   In the first polishing step S1, it is preferable to polish the bonding surface 11 of the first silicon carbide member 10 until the surface roughness Ra becomes 0.005 to 0.4 μm.

また、化学的気相成長(Chemical Vapor Deposition:CVD)法により形成した第2の炭化珪素部材20の接合面21を研磨する第2の研磨工程S2を行う。第2の炭化珪素部材20は、熱CVD法、プラズマCVD法、スーパーグロース法、アルコールCVD法等の従来公知のCVD法により形成すればよい。   Moreover, the 2nd grinding | polishing process S2 which grind | polishes the joining surface 21 of the 2nd silicon carbide member 20 formed by the chemical vapor deposition (Chemical Vapor Deposition: CVD) method is performed. The second silicon carbide member 20 may be formed by a conventionally known CVD method such as a thermal CVD method, a plasma CVD method, a super growth method, or an alcohol CVD method.

第2の研磨工程S2では、第2の炭化珪素部材20の接合面21を表面粗さ0.001〜0.4μmとなるまで研磨することが好ましい。   In the second polishing step S2, it is preferable to polish the bonding surface 21 of the second silicon carbide member 20 until the surface roughness becomes 0.001 to 0.4 μm.

第1及び第2の研磨工程S1,S2における研磨は、平面研削機、マシニングセンタ等により研削したうえで、砥石を用いて研磨することが好ましい。また、砥石を用いて研磨した後、更にラッピング加工機、ポリッシュ加工機等により研磨することも好ましい。接合面11,21の表面粗さRaが0.4μmを超えると、接合工程S3において、接合面11、21同士の接触不足が生じ、接合が不十分となり、剥離が発生するおそれがあるからである。   The polishing in the first and second polishing steps S1 and S2 is preferably performed using a grindstone after being ground by a surface grinder, a machining center, or the like. Further, after polishing with a grindstone, it is also preferable to polish with a lapping machine, a polish machine or the like. If the surface roughness Ra of the bonding surfaces 11 and 21 exceeds 0.4 μm, in the bonding step S3, contact between the bonding surfaces 11 and 21 may be insufficient, bonding may be insufficient, and peeling may occur. is there.

また、接合面11,12の平面度は10μm以下であることが好ましく、5μm以下であることがより好ましい。接合面11,12の平面度が10μmを超えると、後述する接合工程S3で第1の炭化珪素部材10と第2の炭化珪素部材20とをそれぞれ接合面11,21に向けて押圧したとしても、接合面11,21同士の接触不足が生じ、接合が不十分となり、剥離が発生するおそれがあるからである。   The flatness of the joining surfaces 11 and 12 is preferably 10 μm or less, and more preferably 5 μm or less. If the flatness of the bonding surfaces 11 and 12 exceeds 10 μm, even if the first silicon carbide member 10 and the second silicon carbide member 20 are pressed toward the bonding surfaces 11 and 21 respectively in a bonding step S3 described later. This is because insufficient contact between the bonding surfaces 11 and 21 occurs, bonding becomes insufficient, and peeling may occur.

そして、図1Bに示すように、N、Ar、真空雰囲気などの不活性雰囲気下で、研磨された第1の炭化珪素部材10の接合面11と研磨された第2の炭化珪素部材20の接合面21とを直接的に当接させ、第1の炭化珪素部材10と第2の炭化珪素部材20とをそれぞれの接合面11,21に向けて押圧することにより、当接した接合面11,21に圧力をかけながら、加熱することにより、第1の炭化珪素部材10と第2の炭化珪素部材20とを接合して、炭化珪素部材30を得る接合工程S3を行う。これにより、接合材を介して接合されていない炭化珪素部材30を得ることができる。 Then, as shown in FIG. 1B, the bonding surface 11 of the polished first silicon carbide member 10 and the polished second silicon carbide member 20 in an inert atmosphere such as N 2 , Ar, or a vacuum atmosphere. The joining surface 11 is brought into contact by directly contacting the joining surface 21 and pressing the first silicon carbide member 10 and the second silicon carbide member 20 toward the joining surfaces 11 and 21. The first silicon carbide member 10 and the second silicon carbide member 20 are joined by heating while applying pressure to the first and second silicon carbide members 30, and a joining step S3 for obtaining the silicon carbide member 30 is performed. Thereby, silicon carbide member 30 that is not bonded via the bonding material can be obtained.

接合工程S3では、2000〜2200℃の温度で加熱することが好ましい。接合温度が2000℃未満であれば、第1の炭化珪素部材10と第2の炭化珪素部材20とが十分に接合しない。一方、接合温度が2200℃を超えると、第1及び第2の炭化珪素部材10,20の変形が大きくなり過ぎ、所望の形状が保持できず、追加工が必要となる。   In joining process S3, it is preferable to heat at the temperature of 2000-2200 degreeC. If joining temperature is less than 2000 degreeC, the 1st silicon carbide member 10 and the 2nd silicon carbide member 20 will not fully join. On the other hand, if the bonding temperature exceeds 2200 ° C., the deformation of the first and second silicon carbide members 10 and 20 becomes excessively large and the desired shape cannot be maintained, and additional work is required.

接合工程S3では、当接した接合面11,21に0.1〜10MPaの圧力をかけることが好ましい。接合圧力が0.1MPa未満であれば、第1の炭化珪素部材10と第2の炭化珪素部材20とが十分に接合しない。一方、接合圧力が10MPaを超えると、第1及び第2の炭化珪素部材10,20の変形が大きくなり過ぎ、所望の形状が保持できず、追加工が必要となる。   In the joining step S3, it is preferable to apply a pressure of 0.1 to 10 MPa to the abutting joining surfaces 11 and 21. If the bonding pressure is less than 0.1 MPa, first silicon carbide member 10 and second silicon carbide member 20 are not sufficiently bonded. On the other hand, if the bonding pressure exceeds 10 MPa, the deformation of the first and second silicon carbide members 10 and 20 becomes excessively large, the desired shape cannot be maintained, and additional work is required.

接合工程S3では、押圧した方向における第1の炭化珪素部材10及び第2の炭化珪素部材20の寸法減少率Tが0.125〜1%となるように押圧することが好ましい。ここで、第1の炭化珪素部材10及び第2の炭化珪素部材20の寸法減少率Tは、L1を「接合工程S3前の押圧方向(厚み方向に押圧する場合には厚み方向)における第1の炭化珪素部材10の長さと第2の炭化珪素部材20の長さとの和」とし、L2を「接合工程S3後の押圧方向(厚み方向に押圧する場合には厚み方向)の炭化珪素部材30の長さ」としたときにおいて、式(L1−L2)/L1×100で表される。   In joining process S3, it is preferable to press so that the dimensional reduction rate T of the 1st silicon carbide member 10 and the 2nd silicon carbide member 20 in the pressed direction may be 0.125 to 1%. Here, the dimensional reduction rate T of the first silicon carbide member 10 and the second silicon carbide member 20 is the first in the pressing direction (in the thickness direction when pressing in the thickness direction) L1. The sum of the length of the silicon carbide member 10 and the length of the second silicon carbide member 20, and L2 is “the pressing direction after the bonding step S3 (in the thickness direction when pressing in the thickness direction) 30”. Is expressed by the formula (L1-L2) / L1 × 100.

第1の炭化珪素部材10及び第2の炭化珪素部材20の寸法減少率Tが0.125%未満であれば、第1の炭化珪素部材10と第2の炭化珪素部材20とが十分に接合しない。一方、第1の炭化珪素部材10及び第2の炭化珪素部材20の寸法減少率Tが1%を超えると、第1及び第2の炭化珪素部材10,20の変形が大きくなり過ぎ、所望の形状が保持できず、追加工が多く必要となる。   If dimensional reduction rate T of first silicon carbide member 10 and second silicon carbide member 20 is less than 0.125%, first silicon carbide member 10 and second silicon carbide member 20 are sufficiently bonded. do not do. On the other hand, when the dimensional reduction rate T of the first silicon carbide member 10 and the second silicon carbide member 20 exceeds 1%, the deformation of the first and second silicon carbide members 10 and 20 becomes excessively large, and the desired The shape cannot be maintained, and a lot of additional work is required.

なお、第1の炭化珪素部材10及び第2の炭化珪素部材20の寸法減少率Tは、接合温度、接合圧力及び接合時間などに依存する。第1の炭化珪素部材10及び第2の炭化珪素部材20の寸法減少率Tは、接合温度が高いほど、接合圧力が高いほど、接合時間が長いほど、大きくなる。   Note that the dimensional reduction rate T of the first silicon carbide member 10 and the second silicon carbide member 20 depends on the bonding temperature, the bonding pressure, the bonding time, and the like. The dimensional reduction rate T of the first silicon carbide member 10 and the second silicon carbide member 20 increases as the bonding temperature increases, the bonding pressure increases, and the bonding time increases.

図3は、接合温度及び接合圧力を変え、それ以外の接合条件を一定した場合における第1の炭化珪素部材10及び第2の炭化珪素部材20の寸法減少率Tを示すグラフである。このグラフから分かるように、炭化珪素焼結体同士を接合した場合と比較して、炭化珪素焼結体からなる第1の炭化珪素部材10とCVD法により形成した第2の炭化珪素部材20とを接合した場合、第1の炭化珪素部材10及び第2の炭化珪素部材20の寸法減少率Tは小さくなることが分かる。   FIG. 3 is a graph showing the dimensional reduction rate T of the first silicon carbide member 10 and the second silicon carbide member 20 when the bonding temperature and the bonding pressure are changed and the other bonding conditions are constant. As can be seen from this graph, the first silicon carbide member 10 made of the silicon carbide sintered body and the second silicon carbide member 20 formed by the CVD method are compared with the case where the silicon carbide sintered bodies are joined together. It can be seen that the dimensional reduction rate T of the first silicon carbide member 10 and the second silicon carbide member 20 is reduced when bonding is performed.

なお、本発明は上述した実施形態に限定されるものではない。例えば、第1のセラミックス部材10の接合面11を複数、例えば表裏面をそれぞれ接合面11として、それぞれの接合面11に第2のセラミックス部材20を接合してもよい。   In addition, this invention is not limited to embodiment mentioned above. For example, a plurality of bonding surfaces 11 of the first ceramic member 10, for example, the front and back surfaces may be the bonding surfaces 11, and the second ceramic member 20 may be bonded to each bonding surface 11.

以下、本発明の実施例を具体的に挙げ、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with specific examples of the present invention.

(実施例)
まず、第1の炭化珪素部材10を、炭化珪素焼結体を形成する周知のプロセスで作製した。具体的には、平均粒径が1μm以下の炭化珪素粉末に、焼結助剤としてBCを0.1〜0.5質量%、C(カーボンブラック)を2〜4質量%、成形助剤としてPVAなどのバインダー等を添加したものを原料粉末とした。炭化珪素粉末として、α型(六方晶)のものを用いた。
(Example)
First, first silicon carbide member 10 was produced by a known process for forming a silicon carbide sintered body. Specifically, silicon carbide powder having an average particle size of 1 μm or less, B 4 C as a sintering aid is 0.1 to 0.5 mass%, C (carbon black) is 2 to 4 mass%, and molding aid is used. A material powder added with a binder such as PVA was used as a raw material powder. As the silicon carbide powder, α-type (hexagonal) type was used.

次に、この原料粉末をスプレードライヤーなどで顆粒化した後に常圧成形した。そして、アルゴン雰囲気中で2000℃〜2200℃で焼成することによって炭化珪素焼結体から第1の炭化珪素部材10を得た。得られた第1の炭化珪素部材10はα型(六方晶)であった。   Next, this raw material powder was granulated with a spray dryer or the like and then subjected to normal pressure molding. And the 1st silicon carbide member 10 was obtained from the silicon carbide sintered compact by baking at 2000 degreeC-2200 degreeC in argon atmosphere. The obtained first silicon carbide member 10 was α-type (hexagonal).

第1の炭化珪素部材10は、研削加工によって、直径100mm、厚さ3.5mmの円板状に形成した。そして、第1の研磨工程S1において、その一面(図1Aの下面)を、#800の砥石を用いて表面粗さRaを0.4μmになるまで研磨した。その後、更に、粒径1μmのダイヤモンドの遊離砥粒を用いて表面粗さRaを0.01μmになるまで研磨した。第1の炭化珪素部材10の中心には、図1Aの上面と下面との間を貫通する直径5mmの貫通孔を形成した。この貫通孔は後述の気密性評価に用いられる試験用ポートである。   First silicon carbide member 10 was formed into a disk shape having a diameter of 100 mm and a thickness of 3.5 mm by grinding. Then, in the first polishing step S1, one surface (the lower surface in FIG. 1A) was polished using a # 800 grindstone until the surface roughness Ra became 0.4 μm. Then, it further grind | polished until the surface roughness Ra became 0.01 micrometer using the loose abrasive grain of a diamond with a particle diameter of 1 micrometer. In the center of the first silicon carbide member 10, a through hole having a diameter of 5 mm penetrating between the upper surface and the lower surface of FIG. 1A was formed. This through hole is a test port used for airtightness evaluation described later.

また、第2の炭化珪素部材20を、CVD法により炭化珪素体を形成する周知のプロセスで作製した。具体的には、高純度等方性黒鉛材上に加熱成膜によって炭化珪素体を形成する熱CVD法によって第2の炭化珪素部材20を形成した。原料ガスとして、トリクロロメチルシラン(CHSiCl:MTS)と水素ガスとの混合ガスを用いた。成膜後に黒鉛材を除去することにより第2の炭化珪素部材20を得た。得られた第2の炭化珪素部材20はβ型(立方晶)であった。 Second silicon carbide member 20 was manufactured by a known process for forming a silicon carbide body by a CVD method. Specifically, second silicon carbide member 20 was formed by a thermal CVD method in which a silicon carbide body was formed on a high purity isotropic graphite material by heating film formation. As a source gas, a mixed gas of trichloromethylsilane (CH 3 SiCl 3 : MTS) and hydrogen gas was used. The second silicon carbide member 20 was obtained by removing the graphite material after film formation. The obtained second silicon carbide member 20 was β-type (cubic).

第2の炭化珪素部材20は、研削加工によって、直径100mm、厚さ4.5mmの円板状に形成した。そして、第2の研磨工程S2において、その一面(図1Aの上面)を、#800の砥石を用いて表面粗さRaを0.4μmになるまで研磨した。その後、更に、粒径1μmのダイヤモンドの遊離砥粒を用いて表面粗さRaを0.005μmになるまで研磨した。   Second silicon carbide member 20 was formed into a disk shape having a diameter of 100 mm and a thickness of 4.5 mm by grinding. Then, in the second polishing step S2, one surface (the upper surface in FIG. 1A) was polished using a # 800 grindstone until the surface roughness Ra became 0.4 μm. Then, it further grind | polished until the surface roughness Ra became 0.005 micrometer using the loose abrasive grain of a diamond with a particle diameter of 1 micrometer.

次に、接合工程S3において、第1及び第2の炭化珪素部材10,20の接合面11,21同士と当接させた状態で、焼成炉内に入れて、Ar雰囲気で最高温度に到達してから6時間焼成し、炭化珪素部材30を得た。   Next, in the joining step S3, in a state where the joining surfaces 11 and 21 of the first and second silicon carbide members 10 and 20 are in contact with each other, they are put in a firing furnace and reach the maximum temperature in an Ar atmosphere. Then, the silicon carbide member 30 was obtained by firing for 6 hours.

接合工程S3における焼成温度及び焼成圧力、並びに第1の炭化珪素部材10及び第2の炭化珪素部材20の厚み変化量(押圧方向変化量)L1−L2及び厚み変化率(寸法減少率)Tを表1に示す。   The firing temperature and firing pressure in the joining step S3, and the thickness change amount (pressing direction change amount) L1-L2 and the thickness change rate (dimension reduction rate) T of the first silicon carbide member 10 and the second silicon carbide member 20 are as follows. Table 1 shows.

炭化珪素部材30を切断し、元来第1の炭化珪素部材10と第2の炭化珪素部材20との界面をマイクロスコープ顕微鏡で観察したところ、α型の元来第1の炭化珪素部材10とβ型の元来第2の炭化珪素部材20との接合界面に押圧不足に起因する局所的な隙間は形成されておらず、良好に接合されていることが観察された。   When silicon carbide member 30 was cut and the interface between first silicon carbide member 10 and second silicon carbide member 20 was originally observed with a microscope, α-type first silicon carbide member 10 and It was observed that a local gap due to insufficient pressing was not formed at the bonding interface with the β-type second silicon carbide member 20 originally, and the bonding was satisfactorily performed.

図4Aに実施例1の界面を、図4Bに実施例2の界面をそれぞれマイクロスコープ顕微鏡で観察した写真を示す。   FIG. 4A shows a photograph of the interface of Example 1 and FIG. 4B shows a photograph of the interface of Example 2 observed with a microscope.

また、Heリークディテクタを用いて、第1及び第2の炭化珪素部材10,20の接合界面の気密性評価を行った結果をリーク量として表1に示す。気密性評価の方法としては、炭化珪素部材30の試験用ポートにHeリークディテクタの配管を配置し、炭化珪素部材30の側面にヘリウムを吹き付けたときのリーク量を測定した。
厚み変化率が0.125%以上である実施例1〜6では、リーク量が10−9Pa・m/s以下に抑えられていたことから、十分な気密性が得られ、良好に接合されていることが確認できた。2000℃以上で接合を行った実施例1〜4、6においては、リーク量が10-10Pa・m/s以下であり、より優れた気密性が得られることが確認された。
In addition, Table 1 shows the leakage amount as a result of evaluating the airtightness of the bonding interface between the first and second silicon carbide members 10 and 20 using the He leak detector. As a method for evaluating the airtightness, a He leak detector pipe was arranged at the test port of the silicon carbide member 30 and the amount of leak when helium was sprayed on the side surface of the silicon carbide member 30 was measured.
In Examples 1 to 6 in which the rate of change in thickness was 0.125% or more, the leak amount was suppressed to 10 −9 Pa · m 3 / s or less, so that sufficient airtightness was obtained and good bonding was achieved. It has been confirmed that. In Examples 1 to 4 and 6 in which bonding was performed at 2000 ° C. or higher, the leak amount was 10 −10 Pa · m 3 / s or less, and it was confirmed that better airtightness was obtained.

(比較例)
比較例1の炭化珪素部材30は、接合温度を変えたほかは実施例1と同様の方法により作製された。比較例1では、厚み変化率が小さすぎたため、リーク量が大きくなり、第1の炭化珪素部材10と第2の炭化珪素部材20を良好に接合することができなかった。
(Comparative example)
Silicon carbide member 30 of comparative example 1 was produced by the same method as in example 1 except that the bonding temperature was changed. In Comparative Example 1, since the rate of change in thickness was too small, the amount of leak was large, and the first silicon carbide member 10 and the second silicon carbide member 20 could not be joined well.

10…第1の炭化珪素部材、 11…接合面、 20…第2の炭化珪素部材、 21…接合面、 30…炭化珪素部材、 S1…第1の研磨工程、 S2…第2の研磨工程、 S3…接合工程。   DESCRIPTION OF SYMBOLS 10 ... 1st silicon carbide member, 11 ... Joining surface, 20 ... 2nd silicon carbide member, 21 ... Joining surface, 30 ... Silicon carbide member, S1 ... 1st grinding | polishing process, S2 ... 2nd grinding | polishing process, S3: Joining step.

Claims (4)

炭化珪素焼結体からなる第1の炭化珪素部材の接合面を研磨する第1の研磨工程と、
化学的気相成長法により形成した第2の炭化珪素部材の接合面を研磨する第2の研磨工程と、
不活性雰囲気下で、研磨された前記第1の炭化珪素部材の接合面と研磨された前記第2の炭化珪素部材の接合面とを直接的に当接させ、前記第1の炭化珪素部材と前記第2の炭化珪素部材とをそれぞれの前記接合面に向けて押圧することにより、当接した前記接合面に圧力をかけながら、加熱することにより、前記第1の炭化珪素部材と前記第2の炭化珪素部材とを接合する接合工程とを有し、
前記押圧した方向における前記第1の炭化珪素部材及び前記第2の炭化珪素部材の寸法減少率が0.125〜1%であることを特徴とする炭化珪素部材の製造方法。
A first polishing step of polishing a bonding surface of a first silicon carbide member made of a silicon carbide sintered body;
A second polishing step of polishing the bonding surface of the second silicon carbide member formed by chemical vapor deposition;
In an inert atmosphere, the polished bonding surface of the first silicon carbide member and the polished bonding surface of the second silicon carbide member are brought into direct contact with each other, and the first silicon carbide member and The first silicon carbide member and the second silicon carbide member are heated by pressing the second silicon carbide member against each of the joint surfaces while applying pressure to the contact surfaces that are in contact with each other. A bonding step of bonding the silicon carbide member of
The method of manufacturing a silicon carbide member, wherein a dimensional reduction rate of the first silicon carbide member and the second silicon carbide member in the pressed direction is 0.125 to 1%.
前記接合工程では、2000〜2200℃の温度で加熱することを特徴とする請求項1に記載の炭化珪素部材の製造方法。   In the said joining process, it heats at the temperature of 2000-2200 degreeC, The manufacturing method of the silicon carbide member of Claim 1 characterized by the above-mentioned. 前記接合工程では、当接した前記接合面に0.1〜10MPaの圧力をかけることを特徴とする請求項1又は2に記載の炭化珪素部材の製造方法。   3. The method for manufacturing a silicon carbide member according to claim 1, wherein in the joining step, a pressure of 0.1 to 10 MPa is applied to the abutting joining surfaces. 前記第1の研磨工程では、前記第1の炭化珪素部材の接合面を表面粗さRa0.005〜0.4μmとなるまで研磨し、
前記第2の研磨工程では、前記第2の炭化珪素部材の接合面を表面粗さRa0.001〜0.4μmとなるまで研磨することを特徴とする請求項1から3の何れか1項に記載の炭化珪素部材の製造方法。
In the first polishing step, the bonding surface of the first silicon carbide member is polished until the surface roughness Ra becomes 0.005 to 0.4 μm,
4. The method according to claim 1, wherein, in the second polishing step, the bonding surface of the second silicon carbide member is polished until the surface roughness Ra becomes 0.001 to 0.4 μm. 5. The manufacturing method of the silicon carbide member of description.
JP2017181480A 2017-09-21 2017-09-21 Manufacturing method of silicon carbide member Active JP6975598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017181480A JP6975598B2 (en) 2017-09-21 2017-09-21 Manufacturing method of silicon carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181480A JP6975598B2 (en) 2017-09-21 2017-09-21 Manufacturing method of silicon carbide member

Publications (2)

Publication Number Publication Date
JP2019055897A true JP2019055897A (en) 2019-04-11
JP6975598B2 JP6975598B2 (en) 2021-12-01

Family

ID=66107023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181480A Active JP6975598B2 (en) 2017-09-21 2017-09-21 Manufacturing method of silicon carbide member

Country Status (1)

Country Link
JP (1) JP6975598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210470A1 (en) * 2021-03-29 2022-10-06 京セラ株式会社 Method for producing assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107580A (en) * 1988-09-27 1990-04-19 Norton Co Method for bonding silicon carbide part and composite silicon carbide structure
JPH10245276A (en) * 1997-03-06 1998-09-14 Toray Ind Inc Laminated ceramic member and its production
JP2006083057A (en) * 2004-09-16 2006-03-30 Esk Ceramics Gmbh & Co Kg Method for low-deformation diffusion-welding of ceramic component
JP2014009114A (en) * 2012-06-28 2014-01-20 Taiheiyo Cement Corp JOINING METHOD OF SiC SINTERED BODY, AND SiC JOINT BODY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107580A (en) * 1988-09-27 1990-04-19 Norton Co Method for bonding silicon carbide part and composite silicon carbide structure
JPH10245276A (en) * 1997-03-06 1998-09-14 Toray Ind Inc Laminated ceramic member and its production
JP2006083057A (en) * 2004-09-16 2006-03-30 Esk Ceramics Gmbh & Co Kg Method for low-deformation diffusion-welding of ceramic component
JP2014009114A (en) * 2012-06-28 2014-01-20 Taiheiyo Cement Corp JOINING METHOD OF SiC SINTERED BODY, AND SiC JOINT BODY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210470A1 (en) * 2021-03-29 2022-10-06 京セラ株式会社 Method for producing assembly

Also Published As

Publication number Publication date
JP6975598B2 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
KR101268287B1 (en) Abrasive tool with flat and consistent surface topography for conditioning a cmp pad and method for making
JP7191153B2 (en) Ceramic substrate with reaction-bonded silicon carbide containing diamond particles
JP2008132562A (en) Vacuum chuck and vacuum suction device using it
JP6975598B2 (en) Manufacturing method of silicon carbide member
TW201434584A (en) Chemical mechanical polishing conditioner and manufacturing method thereof
JP5928672B2 (en) Manufacturing method of alumina ceramic joined body
JP5805556B2 (en) Alumina ceramic joined body and method for producing the same
JP4545536B2 (en) Vacuum suction jig
JP4913468B2 (en) Silicon carbide polishing plate and method for polishing semiconductor wafer
TW522451B (en) Monitoring wafer for measuring film thickness
JP6236314B2 (en) Silicon carbide bonded body and method for manufacturing the same
JP4373560B2 (en) Boron carbide joined body and method for producing the same
JP2010205789A (en) Vacuum suction device and method of manufacturing same
US9428423B2 (en) Self-bonding of chemically vapor deposited SiC articles
JP2005123556A (en) Wafer polishing suction plate
CN217394695U (en) Grinding wheel for processing ingot
JP7103182B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method
US9616550B2 (en) Grinding tool and method of manufacturing the same
JP4255019B2 (en) Material for heat treatment
CN117164390A (en) Silicon carbide coating on graphite substrate and preparation method thereof
JP4421015B2 (en) Wafer polisher table
JP4875810B2 (en) Fluorine resin bond grinding wheel and manufacturing method
JP2021038101A (en) METHOD OF PRODUCING SINTERED MEMBER OF Al2O3
JP2001062708A (en) Table for wafer polishing device
KR20110010230A (en) Silicon carbide assembly and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6975598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350