JP5931542B2 - Firing member made of zirconia sintered body - Google Patents

Firing member made of zirconia sintered body Download PDF

Info

Publication number
JP5931542B2
JP5931542B2 JP2012080578A JP2012080578A JP5931542B2 JP 5931542 B2 JP5931542 B2 JP 5931542B2 JP 2012080578 A JP2012080578 A JP 2012080578A JP 2012080578 A JP2012080578 A JP 2012080578A JP 5931542 B2 JP5931542 B2 JP 5931542B2
Authority
JP
Japan
Prior art keywords
zirconia
sintered body
corrosion resistance
durability
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012080578A
Other languages
Japanese (ja)
Other versions
JP2013209244A (en
Inventor
中 博律
博律 中
大西 宏司
宏司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2012080578A priority Critical patent/JP5931542B2/en
Publication of JP2013209244A publication Critical patent/JP2013209244A/en
Application granted granted Critical
Publication of JP5931542B2 publication Critical patent/JP5931542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は耐食性及び耐久性に優れたジルコニア質焼結体からなる焼成用部材に関する。   The present invention relates to a firing member made of a zirconia sintered body having excellent corrosion resistance and durability.

電子部品材料である圧電体、誘電体及び磁性体などの焼成は、これら被焼成体の蒸発成分を極力少なくして組成変動を抑制するため、焼成工程に対して様々な方法の改善や開発が進められている。特に、近年、その発展が目覚ましい情報機器(パソコン、携帯電話、携帯情報端末など)に搭載される高機能電子部品材料は精密な組成制御が必要不可欠なため、焼成に使用する焼成用部材として従来よりも耐食性及び耐久性に優れたセラミックス焼結体が要求されている。中でも、PbOを含有する圧電体や誘電体などの電子部品材料の焼成工程には、アルミナ質やマグネシア質よりもPbOに対する耐食性が高いジルコニア質が採用されており、従来様々な形態のものが提案されてきた。   In the firing of piezoelectric materials, dielectrics, and magnetic materials, which are electronic component materials, various methods have been improved and developed for the firing process in order to suppress the composition variation by minimizing the evaporation components of these materials to be fired. It is being advanced. In particular, high-performance electronic component materials mounted on information devices (PCs, mobile phones, personal digital assistants, etc.) that have made remarkable progress in recent years require precise composition control. There is a demand for a ceramic sintered body that is more excellent in corrosion resistance and durability. Above all, zirconia that has higher corrosion resistance to PbO than alumina and magnesia is used in the firing process of electronic parts materials such as piezoelectrics and dielectrics containing PbO. It has been.

例えば安価で汎用性のある耐火物もその一つであるが、耐火物は気孔を多く含むため、この気孔に被焼成体成分が容易に浸透して反応するなど耐食性に劣る問題があった。またアルミナ質、ムライト質、コージェライト質などからなる基材の表面にジルコニア質層をコーティングした2層構造の焼成用部材は、ジルコニア層の剥離を防止するため、種々の改良を施したものが提案されてきた。しかしながら、長期間に亘って繰り返し使用するとジルコニア層と基材の熱膨張差によって生じる剥離の問題は避けられず、剥離した部分に被焼成体成分が浸透して耐食性が劣化するという問題があった。このように例え耐食性の高いジルコニア質であっても、気孔を含む多孔質体や基材表面にジルコニア質層を形成した2層構造体は、耐食性の面で高機能な電子部品材料の焼成工程で使用できるものではなかったため、より耐食性に優れた緻密質ジルコニア質焼結体が採用される傾向にあった。   For example, an inexpensive and versatile refractory is one of them. However, since the refractory contains many pores, there is a problem in that corrosion resistance is inferior, for example, a fired body component easily permeates and reacts with the pores. In addition, the two-layered firing member in which the surface of the substrate made of alumina, mullite, cordierite, etc. is coated with a zirconia layer has various improvements to prevent the zirconia layer from peeling off. Has been proposed. However, when repeatedly used over a long period of time, the problem of peeling caused by the difference in thermal expansion between the zirconia layer and the substrate is unavoidable, and there is a problem that the fired body component penetrates into the peeled portion and the corrosion resistance deteriorates. . Thus, even if it is zirconia having high corrosion resistance, a porous body containing pores or a two-layer structure in which a zirconia layer is formed on the surface of a substrate is a process for firing a highly functional electronic component material in terms of corrosion resistance. Therefore, a dense zirconia sintered body excellent in corrosion resistance tended to be employed.

この緻密質ジルコニア質焼結体は安定化剤としてY、CaO、MgO、CeO等を使用したものが、これまでに数多く提案されており、例えば、特許文献1〜2には、Y及びCaOよりなる群から選ばれた少なくとも1種を安定化剤として使用し、主として立方晶系ジルコニアからなる耐食性並びに耐久性に優れたジルコニア質焼結体が開示されている。これらは従来の電子部品材料の用途で使用できる程度の耐食性並びに耐久性を有するものであったが、精密な組成制御が必要不可欠な高機能な電子部品材料に対しては耐食性や耐久性が十分ではなかった。特にPbOを含有する被焼成体の場合、PbOが部材側へ浸透して被焼成体の精密な組成制御が不可能となり耐食性に劣るという問題があった。しかも、繰り返し使用するとPbOの浸透が進んで部材表面側にPbOが高濃度で偏析した層が形成され、この層と部材内部との間に生じる熱膨張差で部材に変形やクラックなどが発生して耐久性が低下するという問題があった。 Many dense zirconia sintered bodies using Y 2 O 3 , CaO, MgO, CeO 2 and the like as stabilizers have been proposed so far. For example, in Patent Documents 1 and 2, A zirconia sintered body having excellent corrosion resistance and durability mainly composed of cubic zirconia is disclosed using at least one selected from the group consisting of Y 2 O 3 and CaO as a stabilizer. These have corrosion resistance and durability that can be used in conventional electronic component material applications, but they have sufficient corrosion resistance and durability for highly functional electronic component materials that require precise composition control. It wasn't. In particular, in the case of a body to be fired containing PbO, there is a problem that PbO penetrates into the member side and precise composition control of the body to be fired becomes impossible, resulting in poor corrosion resistance. Moreover, when repeatedly used, PbO permeation progresses and a layer in which PbO is segregated at a high concentration is formed on the surface side of the member. Due to the difference in thermal expansion between this layer and the inside of the member, deformation or cracks occur in the member. As a result, there is a problem that durability is lowered.

また、特許文献3には、ニオブ及びニオブ系物質の一種又は複数種をジルコニアの安定化剤として使用したイオン伝導性、機械的性質、耐熱性に優れた立方晶系ジルコニア質焼結体が開示されている。しかしながら、ニオブ系物質の一つである五酸化ニオブ(Nb)は安定化剤としての効果は低いため、加熱・冷却を数回繰り返すだけで単斜晶へ容易に相転移し、この相転移に伴う体積膨張によって、短期間で変形やクラックが発生して耐久性が低下するという問題があった。特許文献3には立方晶構造が低温域から高温域の全ての温度範囲で安定であると記載されているが、実際には高機能な電子部品材料の焼成用として使用できる程度の熱安定性を有するものでは無く耐久性に劣るものであった。また、ニオブ又はニオブ系物質がジルコニア結晶粒界に存在することにより焼結助剤として働き、機械的性質を向上させることができると記載されているが、ジルコニア結晶粒界に存在しているニオブ又はニオブ系物質、或いはニオブ又はニオブ系物質と他の成分が反応して形成される第2相が被焼成体に侵入したり、被焼成体成分と反応したりするため、被焼成体の精密な組成制御が不可能となり、耐食性や耐久性に劣るものであった。 Patent Document 3 discloses a cubic zirconia sintered body excellent in ion conductivity, mechanical properties, and heat resistance using one or more of niobium and a niobium-based substance as a zirconia stabilizer. Has been. However, niobium pentoxide (Nb 2 O 5 ), which is one of the niobium-based materials, has a low effect as a stabilizer, so that it easily undergoes phase transition to monoclinic crystals by repeating heating and cooling several times. Due to the volume expansion accompanying the phase transition, there was a problem that deformation and cracks occurred in a short period of time and durability was lowered. Patent Document 3 describes that the cubic structure is stable in the entire temperature range from a low temperature range to a high temperature range, but in fact, thermal stability that can be used for firing highly functional electronic component materials. It was not inferior in durability. Further, it is described that niobium or a niobium-based substance can act as a sintering aid due to the presence of zirconia grain boundaries and improve mechanical properties, but niobium present in zirconia grain boundaries. Alternatively, the niobium-based material, or the second phase formed by the reaction of niobium or the niobium-based material with other components penetrates into the body to be fired or reacts with the material to be fired. Therefore, it was impossible to control the composition, and the corrosion resistance and durability were inferior.

以上のように、これまでに様々な立方晶系ジルコニアからなる緻密質のジルコニア質焼結体が提案されてきたが、被焼成体の精密な組成制御が可能な耐食性と、長期間に亘って繰り返し使用できる耐久性を有するものは無く、高機能な電子部品材料の焼成に使用する焼成用部材として十分に満足できるものでは無かった。   As described above, dense zirconia sintered bodies made of various cubic zirconia have been proposed so far, but corrosion resistance capable of precise composition control of the body to be fired, and over a long period of time. None of them have durability that can be used repeatedly, and they were not fully satisfactory as firing members used for firing highly functional electronic component materials.

特開2004−315293号公報JP 2004-315293 A 特開2005−82429号公報JP 2005-82429 A 特開平1−108162号公報Japanese Patent Laid-Open No. 1-108162

本発明は、従来の緻密質のジルコニア質焼結体よりも優れた耐食性と耐久性を有するジルコニア質焼結体よりなる焼成用部材の提供を目的とする。
なお、本発明でいう優れた耐食性とは、被焼成体と接触しているジルコニア質焼結体側に被焼成体成分中のPbOが浸透する深さが極めて浅いこと、そして、ジルコニア質焼結体中の成分が被焼成体へ浸透したり、被焼成体成分と反応したりしないことである。優れた耐久性とは長期間に亘って繰り返し使用した際に、ジルコニア質焼結体に変形、クラック及び割れなどが生じないことである。
また、本発明でいうジルコニア質焼結体からなる焼成用部材とは、電子部品材料の焼成に使用するセッター、容器、敷き粉及び治具類、電子部品材料の原料粉末の仮焼合成などに用いる焼成容器などを意味する。
An object of the present invention is to provide a member for firing comprising a zirconia sintered body having corrosion resistance and durability superior to those of a conventional dense zirconia sintered body.
The excellent corrosion resistance in the present invention means that the depth of penetration of PbO in the fired body component into the zirconia sintered body in contact with the fired body is extremely shallow, and the zirconia sintered body The components inside do not penetrate into the body to be fired or react with the components of the body to be fired. The excellent durability means that the zirconia sintered body is not deformed, cracked or cracked when repeatedly used over a long period of time.
In addition, the firing member made of a zirconia sintered body as referred to in the present invention is a setter, container, covering powder and jigs used for firing electronic component materials, calcining synthesis of raw material powder for electronic component materials, and the like. It means a firing container to be used.

上記課題は、次の発明によって解決される。
「(a)ジルコニアの安定化剤であるYをジルコニアに対して6〜12モル%含有し、(b)NbとYのモル比が0.03〜0.30の範囲にあるジルコニア質焼結体において、(c)結晶相として第2相が存在しないジルコニア単相からなり、(d)ジルコニア結晶相は立方晶系ジルコニアが95容積%以上、(e)不可避的不純物の合計量が0.3重量%以下、かつ、SiO含有量が0.03重量%以下、(f)気孔率が0.5%以下、(g)平均結晶粒径が3〜30μm、(h)最小結晶粒径と平均結晶粒径の比が0.05以上、であることを特徴とするジルコニア質焼結体からなる焼成用部材。」
The above problem is solved by the following invention.
“(A) Y 2 O 3 which is a zirconia stabilizer is contained in an amount of 6 to 12 mol% based on zirconia, and (b) the molar ratio of Nb 2 O 5 and Y 2 O 3 is 0.03 to 0.3. In the zirconia sintered body in the range of 30, (c) is composed of a zirconia single phase having no second phase as a crystal phase, (d) the zirconia crystal phase is 95% by volume or more of cubic zirconia, (e) The total amount of inevitable impurities is 0.3% by weight or less, the SiO 2 content is 0.03% by weight or less, (f) the porosity is 0.5% or less, and (g) the average crystal grain size is 3 to 3%. 30 μm, (h) A firing member comprising a zirconia sintered body, wherein the ratio of the minimum crystal grain size to the average crystal grain size is 0.05 or more. ”

本発明によれば、従来の緻密質のジルコニア質焼結体よりも優れた耐食性と耐久性を有するジルコニア質焼結体よりなる焼成用部材を提供できる。特にPbOを含有する被焼成体に対しては、ジルコニア質焼結体側に被焼結体中のPbOが浸透する深さが極めて浅く、ジルコニア質焼結体中の成分が被焼成体に浸透したり、被焼成体成分と反応することのない優れた耐食性を有する。しかも長期間に亘って繰り返し使用した際に、ジルコニア質焼結体に変形、クラック及び割れなどが生じない優れた耐久性を有する。従って、PbOを含有しない高機能な電子部品材料の焼成用容器やセッター等に好適であることは勿論、セラミック粉末の仮焼合成や成形体の焼成に用いる焼成容器、金属溶解用ルツボ、ガラス溶解用容器、スラグ溶解用容器、単結晶育成用ルツボなどの耐食性や耐久性が必要とされる用途でも有効に利用できる。   ADVANTAGE OF THE INVENTION According to this invention, the member for baking consisting of the zirconia sintered compact which has the corrosion resistance and durability superior to the conventional dense zirconia sintered compact can be provided. In particular, for a sintered body containing PbO, the depth at which PbO in the sintered body penetrates into the zirconia sintered body is extremely shallow, and the components in the zirconia sintered body penetrate into the fired body. Or has excellent corrosion resistance that does not react with the component to be fired. In addition, when used repeatedly over a long period of time, the zirconia sintered body has excellent durability that does not cause deformation, cracks, cracks and the like. Therefore, it is suitable for firing containers and setters for high-functional electronic component materials that do not contain PbO, as well as firing containers used for calcining synthesis of ceramic powders and firing of molded bodies, metal melting crucibles, glass melting It can also be effectively used in applications that require corrosion resistance and durability, such as containers for slag, containers for melting slag, and crucibles for growing single crystals.

以下、上記本発明について詳しく説明する。
本発明者らは前述のような現状に鑑みて鋭意研究を重ねた結果、焼成用部材としてのジルコニア質焼結体が優れた耐食性と耐久性を実現するためには、単に立方晶系ジルコニアであって、焼結密度、結晶粒径及び不純物量などを制御するだけでは不十分であり、これらの要件と合わせて安定化剤に対して特定量のNbを含有させることが重要であることを見出した。
つまり、ジルコニアに安定化剤を添加すると、安定化剤の陽イオンがジルコニウムイオンと置換して陽イオン格子位置に入り、電気的中性を保つために酸素欠損が形成されることは一般的に知られているが、本発明者らの研究より、酸素欠損が多いジルコニア質焼結体ほど被焼成体中のPbOが部材側へ浸透して耐食性や耐久性が低下することが分かってきたのである。
Hereinafter, the present invention will be described in detail.
As a result of intensive studies in view of the above-mentioned present situation, the present inventors have found that the zirconia sintered body as a firing member is simply cubic zirconia in order to realize excellent corrosion resistance and durability. Therefore, it is not sufficient to control the sintering density, the crystal grain size, the amount of impurities, etc., and it is important to include a specific amount of Nb 2 O 5 in the stabilizer in combination with these requirements. I found out.
In other words, when a stabilizer is added to zirconia, the cation of the stabilizer substitutes for the zirconium ion and enters the cation lattice position, so that oxygen deficiency is generally formed to maintain electrical neutrality. Although it is known, it has been found from the research of the present inventors that PbO in the fired body permeates into the member side as the zirconia sintered body having more oxygen vacancies and the corrosion resistance and durability are lowered. is there.

その一例として、Nbを安定化剤として使用した特許文献3には、イオン伝導性を高めるためにジルコニアよりも低原子価の金属酸化物(Y、MgO、CaO)を固溶させることで、酸素が欠損して多数の酸素イオン空孔(酸素欠損)を導入できることが開示されているが、酸素欠損が多いため耐食性や耐久性が著しく低く、高機能な電子部品材料の焼成用部材として使用できるものでは無かった。
そこで、本発明者らは、優れた耐食性と耐久性を有するジルコニア質焼結体を得るには酸素欠損を低減することが重要であると判断し、鋭意研究を重ねた結果、ジルコニウムイオンよりも価数の高い陽イオンからなる酸化物のNbを安定化剤に対して極微量の範囲で含有させ、ジルコニア結晶中にその全量を完全に固溶した状態とすれば、安定化剤によって形成された酸素欠損を低減できることを見出した。そして同時に、結晶相として第2相が存在しないジルコニア単相からなり、このジルコニア結晶相を立方晶系ジルコニア主体のものとし、不純物量、気孔率及び平均結晶粒径を制御することにより、従来の立方晶系ジルコニア質焼結体よりも耐食性並びに耐久性を飛躍的に向上させ、高機能な電子部品材料の焼成用として十分使用できるジルコニア質焼結体からなる焼成用部材を完成させた。
As an example, in Patent Document 3 using Nb 2 O 5 as a stabilizer, a metal oxide (Y 2 O 3 , MgO, CaO) having a lower valence than that of zirconia is solidified in order to increase ion conductivity. Although it is disclosed that oxygen can be deficient and a large number of oxygen ion vacancies (oxygen vacancies) can be introduced by dissolving, the corrosion resistance and durability are remarkably low due to the large number of oxygen vacancies. It could not be used as a firing member.
Therefore, the present inventors have determined that it is important to reduce oxygen vacancies in order to obtain a zirconia sintered body having excellent corrosion resistance and durability, and as a result of intensive research, as a result of intensive research, If Nb 2 O 5 of an oxide composed of a cation having a high valence is contained in a very small amount with respect to the stabilizer, and the total amount thereof is completely dissolved in the zirconia crystal, the stabilizer It was found that the oxygen deficiency formed by can be reduced. At the same time, it consists of a zirconia single phase in which the second phase does not exist as a crystal phase, and this zirconia crystal phase is mainly composed of cubic zirconia, and by controlling the amount of impurities, porosity and average crystal grain size, Corrosion resistance and durability were drastically improved compared to the cubic zirconia sintered body, and a firing member made of a zirconia sintered body that can be sufficiently used for firing highly functional electronic component materials was completed.

次に、本発明の各構成要件について説明する。
(a)ジルコニアの安定化剤であるYをジルコニアに対して6〜12モル%含有する点
本発明では、ジルコニアの安定化剤であるYをジルコニアに対して6〜12モル%、好ましくは7〜11モル%含有していることが必要である。なお、ZrO原料中には通常、少量のHfOが含まれているが、このHfO量を含めたZrOとHfOの合計量をZrO量とする。
ジルコニアの安定化剤には従来Y、MgO、CaO、CeO等が使用されてきたが、Y以外のMgO、CaO、CeO等を使用したものは、ジルコニア結晶相の熱安定性が満足できるものでは無いため、本発明が目的とする優れた耐食性や耐久性を達成できない。したがって本発明では安定化剤としてYを使用する必要がある。
の含有量が6モル%未満では、ジルコニア結晶相として単斜晶系ジルコニアが増加して立方晶系ジルコニアが減少し、耐食性や耐久性の低下を来たす。また、Yの含有量が12モル%を越えると、ジルコニアに固溶できなかった余剰のYがNbと反応し、この反応化合物(例えば、YNbO、YNbO)がジルコニア質焼結体中に第2相として存在することになり、これが被焼成体と反応して耐食性や耐久性を低下させる。
Next, each component of the present invention will be described.
(A) in the present invention that it contains 6 to 12 mol% with respect to the a Y 2 O 3 is a stabilizer of zirconia zirconia, 6-12 and Y 2 O 3 is a stabilizer of zirconia relative to the zirconia It is necessary to contain it in mol%, preferably 7-11 mol%. Normally the ZrO 2 in the raw materials, but contains a small amount of HfO 2, the total amount of ZrO 2 and HfO 2, including the HfO 2 amount and ZrO 2 amount.
Conventionally, Y 2 O 3 , MgO, CaO, CeO 2 and the like have been used as stabilizers for zirconia, but those using MgO, CaO, CeO 2 and the like other than Y 2 O 3 are in the zirconia crystal phase. Since the thermal stability is not satisfactory, the excellent corrosion resistance and durability aimed by the present invention cannot be achieved. Therefore, in the present invention, it is necessary to use Y 2 O 3 as a stabilizer.
When the content of Y 2 O 3 is less than 6 mol%, monoclinic zirconia increases as the zirconia crystal phase, and cubic zirconia decreases, resulting in deterioration of corrosion resistance and durability. When the content of Y 2 O 3 exceeds 12 mol%, surplus Y 2 O 3 that could not be dissolved in zirconia reacts with Nb 2 O 5, and this reaction compound (for example, Y 3 NbO 7 , YNbO 4 ) is present as the second phase in the zirconia sintered body, and this reacts with the body to be fired to lower the corrosion resistance and durability.

(b)NbとYのモル比(Nb/Y)が0.03〜0.30の範囲にある点
本発明では、安定化剤Yによって形成されたジルコニア質焼結体中の酸素欠損を低減するため、Yに対して特定量のNbを含有させる必要がある。そのため、NbとYのモル比は0.03〜0.30、好ましくは0.05〜0.25の範囲に制御する。
前記モル比が0.03未満では、Yに対するNb量が少ないため、ジルコニア質焼結体の酸素欠損を低減できず、耐食性や耐久性が低下する。また、前記モル比が0.30を越えると、ジルコニア結晶中に固溶できなかった余剰のNbがZrOやYと反応し、この反応化合物(例えば、ZrNb17、YNbO、YNbO)が第2相として存在することになり、これが被焼成体と反応して耐食性や耐久性を低下させる。しかも、Nbの添加量が所定量を越えるとジルコニア結晶相を不安定にするため、単斜晶系や正方晶系ジルコニアが増加して立方晶系ジルコニアが減少し、耐食性や耐久性が低下する。
また、Yに対して前記特定量のNbを含有させると、ジルコニア結晶中にNb全量が完全に固溶した状態にすることができる。ジルコニア結晶中にNbの全量が固溶していない場合、余剰のNbによって第2相が生成するので、第2相の存在を確認することにより、Nbの固溶状態を確認することができる。
(B) Mb ratio of Nb 2 O 5 and Y 2 O 3 (Nb 2 O 5 / Y 2 O 3 ) is in the range of 0.03 to 0.30 In the present invention, the stabilizer Y 2 O 3 In order to reduce oxygen vacancies in the zirconia sintered body formed by the above, it is necessary to contain a specific amount of Nb 2 O 5 with respect to Y 2 O 3 . Therefore, the molar ratio of Nb 2 O 5 and Y 2 O 3 is controlled in the range of 0.03 to 0.30, preferably 0.05 to 0.25.
When the molar ratio is less than 0.03, since the amount of Nb 2 O 5 with respect to Y 2 O 3 is small, oxygen deficiency of the zirconia sintered body cannot be reduced, and corrosion resistance and durability are lowered. When the molar ratio exceeds 0.30, excess Nb 2 O 5 that could not be dissolved in the zirconia crystal reacts with ZrO 2 or Y 2 O 3, and this reaction compound (for example, Zr 6 Nb 2 O 17 , Y 3 NbO 7 , YNbO 4 ) are present as the second phase, and this reacts with the body to be fired, thereby reducing corrosion resistance and durability. Moreover, when the amount of Nb 2 O 5 added exceeds a predetermined amount, the zirconia crystal phase becomes unstable, so that monoclinic and tetragonal zirconia increases and cubic zirconia decreases, and corrosion resistance and durability Decreases.
Further, when the specific amount of Nb 2 O 5 is contained in Y 2 O 3 , the entire amount of Nb 2 O 5 can be completely dissolved in the zirconia crystal. When the entire amount of Nb 2 O 5 is not dissolved in the zirconia crystal, the second phase is generated by the excess Nb 2 O 5 , and therefore, by confirming the presence of the second phase, the solid phase of Nb 2 O 5 is confirmed. The dissolved state can be confirmed.

(c)結晶相として第2相が存在しないジルコニア単相からなる点
本発明では、結晶相として第2相が存在しないジルコニア単相からなる必要がある。
ジルコニア以外の第2相が存在すると、耐食性や耐久性が低下する。
なお、本発明でいう第2相が存在しないとは、X線回折において、X線源:CuKα、出力:40kV/40mA、発散スリット:1°、散乱スリット:1°、受光スリット:0.15mm、スキャンスピード:3.0°/min、走査軸:2θ/θ、走査範囲:10〜70°、モノクロ受光スリット:0.8mm、カウンタ:シンチレーションカウンタ、モノクロメーター:自動モノクロメーターという条件で測定した際に、ジルコニア以外の回折ピークが検出されないレベルのことを言う。なお、X線回折測定には焼結体を鏡面加工仕上げした試料を用いる。
(C) The point which consists of a zirconia single phase in which a 2nd phase does not exist as a crystal phase In this invention, it needs to consist of a zirconia single phase in which a 2nd phase does not exist as a crystal phase.
When the second phase other than zirconia is present, corrosion resistance and durability are lowered.
In the present invention, the absence of the second phase means that, in X-ray diffraction, X-ray source: CuKα, output: 40 kV / 40 mA, divergence slit: 1 °, scattering slit: 1 °, light receiving slit: 0.15 mm , Scan speed: 3.0 ° / min, scan axis: 2θ / θ, scan range: 10 to 70 °, monochrome light receiving slit: 0.8 mm, counter: scintillation counter, monochromator: automatic monochromator In this case, it means a level where no diffraction peak other than zirconia is detected. For the X-ray diffraction measurement, a sample obtained by mirror finishing the sintered body is used.

(d)ジルコニア結晶相は立方晶系ジルコニアが95容積%以上である点
本発明において、ジルコニア結晶相は立方晶系ジルコニアが95容積%以上である必要がある。
立方晶系ジルコニアが95容積%未満では、ジルコニア質焼結体中に単斜晶系や正方晶系ジルコニアが多く含まれているため、加熱・冷却した時に、ジルコニア結晶相の相転移に伴う体積膨張によって変形やクラックが発生し、耐久性が低下する。しかも、発生したクラックに被焼成体成分が浸透して、耐食性も低下する。
本発明における立方晶系、正方晶系及び単斜晶系ジルコニアの含有量は、焼結体表面を鏡面にした試料を用いて、X線回折により、回折角27〜33°と72〜75.5°の走査範囲で測定し、下記の式より求めることができる。
(D) The point that the zirconia crystal phase is 95% by volume or more of cubic zirconia In the present invention, the zirconia crystal phase needs to be 95% by volume or more of cubic zirconia.
If cubic zirconia is less than 95% by volume, the monolithic and tetragonal zirconia is contained in the zirconia-based sintered body, so the volume associated with the phase transition of the zirconia crystal phase when heated and cooled. Due to the expansion, deformation and cracks occur, and the durability decreases. And the to-be-fired body component osmose | permeates the crack which generate | occur | produced, and corrosion resistance also falls.
The content of cubic, tetragonal and monoclinic zirconia in the present invention is determined by X-ray diffraction using a sample having a sintered body surface as a mirror surface and diffraction angles of 27 to 33 ° and 72 to 75. It can be measured from a scanning range of 5 ° and obtained from the following equation.

Figure 0005931542
Figure 0005931542

なお、X線回折条件は、X線源:CuKα、出力:40kV/40mA、発散スリット:1/2°(回折角27〜33°)、1°(回折角:72〜75.5°)、散乱スリット:1/2°(回折角27〜33°)、1°(回折角:72〜75.5°)、受光スリット:0.15mm、スキャンスピード:0.5°/min、走査軸:2θ/θ、モノクロ受光スリット:0.8mm、カウンタ:シンチレーションカウンタ、モノクロメーター:自動モノクロメーター、である。
本発明における正方晶系ジルコニアの許容できる含有量は3容積%以下、単斜晶系ジルコニアの許容できる含有量は2容積%以下である。
X-ray diffraction conditions are as follows: X-ray source: CuKα, output: 40 kV / 40 mA, divergence slit: 1/2 ° (diffraction angle 27-33 °), 1 ° (diffraction angle: 72-75.5 °), Scattering slit: 1/2 ° (diffraction angle 27-33 °), 1 ° (diffraction angle: 72-75.5 °), light-receiving slit: 0.15 mm, scan speed: 0.5 ° / min, scan axis: 2θ / θ, monochrome light receiving slit: 0.8 mm, counter: scintillation counter, monochromator: automatic monochromator.
In the present invention, the acceptable content of tetragonal zirconia is 3% by volume or less, and the acceptable content of monoclinic zirconia is 2% by volume or less.

(e)不可避的不純物の合計量が0.3重量%以下、かつSiO含有量が0.03重量%以下である点
本発明における不可避的不純物とは、使用する原料や製造工程から混入する不純物のことであり、Al、SiO、NaO、KO、TiOなどを指す。これらの不可避的不純物の合計量は0.3重量%以下、好ましくは0.2重量%以下とする。
前記合計量が0.3重量%を越えると、ジルコニア結晶粒界にガラス相や第2相が多く形成され、このガラス相や第2相が被焼成体と反応して、耐食性や耐久性が低下する。
前記合計量の下限は現状の原料及び製造工程において0.1重量%程度である。
不可避的不純物の中でも特にSiOは、被焼成体と容易に反応して耐食性や耐久性を低下させたり、ジルコニア結晶粒界にガラス相や第2相を多く形成して耐食性や耐久性を著しく低下させる要因となる。そのためSiOの含有量は0.03重量%以下とする。下限は現状の原料及び製造工程において0.01重量%程度である。
(E) The point that the total amount of inevitable impurities is 0.3% by weight or less and the SiO 2 content is 0.03% by weight or less The inevitable impurities in the present invention are mixed from the raw materials used and the manufacturing process. It is an impurity and refers to Al 2 O 3 , SiO 2 , Na 2 O, K 2 O, TiO 2 and the like. The total amount of these inevitable impurities is 0.3% by weight or less, preferably 0.2% by weight or less.
When the total amount exceeds 0.3% by weight, many glass phases and second phases are formed in the zirconia grain boundaries, and the glass phases and second phases react with the object to be fired, resulting in corrosion resistance and durability. descend.
The lower limit of the total amount is about 0.1% by weight in the current raw materials and manufacturing process.
Among the inevitable impurities, SiO 2 reacts easily with the object to be fired to lower the corrosion resistance and durability, or forms a lot of glass phase and second phase at the zirconia grain boundary to significantly increase the corrosion resistance and durability. It becomes a factor to reduce. Therefore, the content of SiO 2 is set to 0.03% by weight or less. The lower limit is about 0.01% by weight in the current raw materials and manufacturing process.

(f)気孔率が0.5%以下である点
本発明では、気孔率は0.5%以下、好ましくは0.3%以下とする必要がある。
気孔率が0.5%を越えると、焼結体の気孔が増加し、この気孔に被焼成体成分が浸透して、耐食性や耐久性が低下する。気孔率の下限は0.01%程度である。なお、本発明における気孔率とは開気孔率を意味し、測定はJIS R 1634に準拠して行う。
(F) Point that porosity is 0.5% or less In the present invention, the porosity needs to be 0.5% or less, preferably 0.3% or less.
When the porosity exceeds 0.5%, the pores of the sintered body increase, and the fired body component penetrates into the pores, resulting in a decrease in corrosion resistance and durability. The lower limit of the porosity is about 0.01%. In addition, the porosity in this invention means an open porosity, and a measurement is performed based on JISR1634.

(g)平均結晶粒径が3〜30μmである点
本発明において、ジルコニア質焼結体の平均結晶粒径は3〜30μm、好ましくは5〜25μmであることが必要である。
平均結晶粒径が3μm未満では、ジルコニア結晶粒界面積が増加するため、この増加した粒界に被焼成体成分が浸透して耐食性や耐久性が低下する。また、平均結晶粒径が30μmを越えると、耐食性の低下は来たさないが、耐熱衝撃抵抗性が低下するので好ましくない
本発明における平均結晶粒径は、以下の方法によって測定した値を用いる。
焼結体表面をダイヤモンド砥石及び砥粒を用いて鏡面仕上げし、得られた鏡面に熱エッチングを施し、走査型電子顕微鏡を用いて、視野に100個以上のジルコニア結晶が観察できる倍率で観察し、写真撮影する。得られた写真から結晶粒子の長径と短径を測定し、粒子径=(長径+短径)/2として結晶粒子1個の粒子径を求める。このようにして無作為に100個の結晶粒子の粒子径を求め、その平均値を平均結晶粒径とする。
(G) The point that an average crystal grain diameter is 3-30 micrometers In this invention, the average crystal grain diameter of a zirconia sintered compact needs to be 3-30 micrometers, Preferably it is 5-25 micrometers.
When the average crystal grain size is less than 3 μm, the interfacial area of zirconia crystal grains increases, so that the fired body component penetrates into the increased grain boundaries and the corrosion resistance and durability are lowered. In addition, if the average crystal grain size exceeds 30 μm, the corrosion resistance does not decrease, but the thermal shock resistance decreases, which is not preferable. The average crystal grain size in the present invention is a value measured by the following method. .
The surface of the sintered body is mirror-finished using a diamond grindstone and abrasive grains, the obtained mirror surface is subjected to thermal etching, and observed with a scanning electron microscope at a magnification capable of observing 100 or more zirconia crystals in the field of view. , Take a photo. The major axis and minor axis of the crystal particles are measured from the obtained photograph, and the particle diameter of one crystal particle is determined as particle diameter = (major axis + minor axis) / 2. Thus, the particle diameter of 100 crystal particles is calculated | required randomly, and let the average value be an average crystal grain diameter.

(h)最小結晶粒径と平均結晶粒径の比(最小結晶粒径/平均結晶粒径)が0.05以上である点
本発明では、最小結晶粒径と平均結晶粒径の比は、0.05以上、好ましくは0.08以上であることが必要である。この数値が大きいほど最小結晶粒径と平均結晶粒径の差が小さいことになる。
前記比が0.05未満では、最小結晶粒径と平均結晶粒径の差が大きく広がるため、焼結体中に細かいジルコニア結晶が多く存在することになり、耐食性が低下する。しかも、繰り返し使用時に短期間で変形が発生して耐久性も低下する。なお、前記比の上限は0.40程度である。
(H) The ratio between the minimum crystal grain size and the average crystal grain size (minimum crystal grain size / average crystal grain size) is 0.05 or more In the present invention, the ratio between the minimum crystal grain size and the average crystal grain size is: It needs to be 0.05 or more, preferably 0.08 or more. The larger this value, the smaller the difference between the minimum crystal grain size and the average crystal grain size.
If the ratio is less than 0.05, the difference between the minimum crystal grain size and the average crystal grain size is greatly widened, so that many fine zirconia crystals are present in the sintered body, and the corrosion resistance is lowered. In addition, deformation occurs in a short period of time during repeated use, and durability is also reduced. The upper limit of the ratio is about 0.40.

本発明における最小結晶粒径は、以下の方法によって測定した値を用いる。
焼結体表面をダイヤモンド砥石及び砥粒を用いて鏡面仕上げし、得られた鏡面に熱エッチングを施し、走査型電子顕微鏡を用いて、視野に100個以上のジルコニア結晶が観察できる倍率で観察し、写真撮影する。得られた写真から結晶粒子の長径と短径を測定し、粒子径=(長径+短径)/2として結晶粒子1個の粒子径を求める。このようにして無作為で100個の結晶粒子の粒子径を求め、測定した100個の粒子径の中で最小値を示す粒子径を最小結晶粒径とする。
このようにして測定した最小結晶粒径と、前述した(g)で測定した平均結晶粒径から最小結晶粒径/平均結晶粒径を求める。
The value measured by the following method is used for the minimum crystal grain size in the present invention.
The surface of the sintered body is mirror-finished using a diamond grindstone and abrasive grains, the obtained mirror surface is subjected to thermal etching, and observed with a scanning electron microscope at a magnification capable of observing 100 or more zirconia crystals in the field of view. , Take a photo. The major axis and minor axis of the crystal particles are measured from the obtained photograph, and the particle diameter of one crystal particle is determined as particle diameter = (major axis + minor axis) / 2. Thus, the particle diameter of 100 crystal particles is obtained at random, and the particle diameter showing the minimum value among the measured 100 particle diameters is set as the minimum crystal particle diameter.
The minimum crystal grain size / average crystal grain size is determined from the minimum crystal grain size thus measured and the average crystal grain size measured in (g) described above.

本発明におけるジルコニア質焼結体及びそれよりなる焼成用部材は種々の方法で作製できるが、その一例について説明する。
ジルコニア原料粉末には、純度が99.7重量%以上、平均粒子径が10μm以下のものを用いる。純度が99.7重量%未満の場合、原料粉末中に含まれる不純物量が多いため、焼結体中の不純物量も多くなり、耐食性や耐久性が低下するため好ましくない。また平均粒子径が10μmを越える場合、粉砕・混合・分散の処理時間が長くなり、粉砕機からの摩耗による不純物が多く混入して、耐食性や耐久性が低下するため好ましくない。平均粒子径の下限は3μm程度である。
The zirconia sintered body and the firing member comprising the same in the present invention can be produced by various methods, and examples thereof will be described.
A zirconia raw material powder having a purity of 99.7% by weight or more and an average particle size of 10 μm or less is used. When the purity is less than 99.7% by weight, since the amount of impurities contained in the raw material powder is large, the amount of impurities in the sintered body is also increased, which is not preferable because corrosion resistance and durability are lowered. On the other hand, when the average particle diameter exceeds 10 μm, the processing time for pulverization, mixing and dispersion becomes long, and a large amount of impurities due to wear from the pulverizer is mixed, so that the corrosion resistance and durability are deteriorated. The lower limit of the average particle diameter is about 3 μm.

原料粉末には、純度が99.7重量%以上、平均粒子径が5μm以下のものを用いる。純度が99.7重量%未満の場合、原料粉末中に含まれる不純物量が多いため、焼結体中の不純物量も多くなり、耐食性や耐久性が低下するため好ましくない。また平均粒子径が5μmを越える場合、Y原料粉末が粗いために他の原料粉末との混合・分散が不十分となり、焼結体中に単斜晶系ジルコニアが多くなるため好ましくない。平均粒子径の下限は0.5μm程度である。 A Y 2 O 3 raw material powder having a purity of 99.7% by weight or more and an average particle size of 5 μm or less is used. When the purity is less than 99.7% by weight, since the amount of impurities contained in the raw material powder is large, the amount of impurities in the sintered body is also increased, which is not preferable because corrosion resistance and durability are lowered. On the other hand, when the average particle diameter exceeds 5 μm, the Y 2 O 3 raw material powder is coarse, so mixing and dispersion with other raw material powders become insufficient, and monoclinic zirconia increases in the sintered body, which is not preferable. . The lower limit of the average particle diameter is about 0.5 μm.

安定化剤として用いるYは水酸化物等の化合物の形態で添加しても良いが、その場合は、予め所定量のY量となるようにジルコニアとY原料を乾式混合又は湿式混合し、乾燥した後、1000〜1400℃で合成する。なお、酸化物の形態であるYを用いる場合には合成を行っても省略しても良い。
また、ジルコニアとYの含有量が所定のモル比となるように、ジルコニア化合物(例えばオキシ塩化ジルコニウム)の水溶液とイットリウム化合物(例えば塩化イットリウム)の水溶液を均一に混合し、加水分解して水和物を得、脱水、乾燥した後、400〜1200℃で仮焼して、不純物の少ない粉体を得る方法も採用することができる。
Y 2 O 3 used as a stabilizer may be added in the form of a compound such as a hydroxide. In that case, zirconia and Y 2 O 3 raw materials are used in advance so that a predetermined amount of Y 2 O 3 is obtained. Is mixed by dry mixing or wet mixing, dried, and then synthesized at 1000 to 1400 ° C. Incidentally, it may be omitted even if the synthesis is the case of using Y 2 O 3 is in the form of oxides.
Further, an aqueous solution of a zirconia compound (for example, zirconium oxychloride) and an aqueous solution of an yttrium compound (for example, yttrium chloride) are uniformly mixed and hydrolyzed so that the content of zirconia and Y 2 O 3 becomes a predetermined molar ratio. Thus, after obtaining hydrate, dehydration and drying, calcining at 400 to 1200 ° C. to obtain a powder with few impurities can be employed.

Nb原料粉末には、純度が99.7重量%以上、平均粒子径が5μm以下のものを用いる。純度が99.7重量%未満の場合、原料粉末中に含まれる不純物量が多いため、焼結体中の不純物量も多くなり、耐食性や耐久性が低下するため好ましくない。また、平均粒子径が5μmを越える場合、Nb原料粉末が粗いために他の原料粉末との混合・分散が進まず、焼結体中に第2相が存在することになるため好ましくない。平均粒子径の下限は0.5μm程度である。
また、ジルコニア、Y及びNb原料粉末中のSiO含有量は0.03重量%以下である。これらの原料粉末中のSiO含有量が0.03重量%を越えると、ジルコニア質焼結体中のSiO含有量が多くなり、耐食性や耐久性の低下を来たすことになる。
As the Nb 2 O 5 raw material powder, one having a purity of 99.7% by weight or more and an average particle diameter of 5 μm or less is used. When the purity is less than 99.7% by weight, since the amount of impurities contained in the raw material powder is large, the amount of impurities in the sintered body is also increased, which is not preferable because corrosion resistance and durability are lowered. Further, when the average particle diameter exceeds 5 μm, the Nb 2 O 5 raw material powder is coarse, so that mixing / dispersing with other raw material powders does not proceed and the second phase is present in the sintered body. Absent. The lower limit of the average particle diameter is about 0.5 μm.
Moreover, zirconia, Y 2 O 3 and Nb 2 O 5 SiO 2 content of the feed powder is 0.03 wt% or less. If the SiO 2 content in these raw material powders exceeds 0.03% by weight, the SiO 2 content in the zirconia sintered body increases, resulting in a decrease in corrosion resistance and durability.

以上の原料粉末を用いて所定の組成になるように配合し、湿式で公知のボールミル及び媒体撹拌ミル等の粉砕機により、水又は有機溶媒を用いて、粉砕・混合・分散の処理を行う。なお、粉砕機の内張材及びアームなどの部材や、粉砕機に充填するボールからの摩耗粉の混入を防止するため、これら部材及びボールの材質は耐摩耗性に優れたセラミックス材料などを使用する。特にジルコニア製部材及びボールが好ましい。
粉砕・混合・分散処理により処理粉体の平均粒子径を、0.3〜2.0μm、好ましくは0.3〜1.8μmにする。処理粉体の平均粒子径が0.3μm未満では、処理粉体が非常に細かくなるため、結晶粒径分布が広くなりやすく、その結果、最小結晶粒径と平均結晶粒径の差が大きく広がるため好ましくない。また処理粉体の平均粒子径が2.0μmを越えると、処理粉体中に粒子径の大きい粗い粉体が多く含まれるため、気孔率が高くなって、耐食性や耐久性の低下を来たし好ましくない。
粉砕・混合・分散処理後の処理粉体の平均粒子径の制御は、粉砕・混合・分散時の「粉体濃度」「使用するボール径や充填量」「処理時間」などを適宜調整して行う。これらの調整は当業者が適宜実施しうる程度の事項である。なお、本発明における原料粉末及び処理粉体の平均粒子径とは、一次粒子が凝集した二次粒子の粒子径の平均値のことであり、レーザー回折式粒度分布測定装置で測定することができる。
The above raw material powders are blended so as to have a predetermined composition, and are pulverized, mixed, and dispersed using water or an organic solvent by a wet pulverizer such as a known ball mill and medium stirring mill. In addition, in order to prevent wear powder from entering the grinding machine lining materials and arms, and balls filled in the grinding machine, these members and balls are made of ceramic materials with excellent wear resistance. To do. Zirconia members and balls are particularly preferable.
The average particle size of the treated powder is adjusted to 0.3 to 2.0 μm, preferably 0.3 to 1.8 μm by pulverization, mixing, and dispersion treatment. If the average particle size of the treated powder is less than 0.3 μm, the treated powder becomes very fine, and therefore the crystal particle size distribution tends to be widened. As a result, the difference between the minimum crystal particle size and the average crystal particle size widens greatly. Therefore, it is not preferable. Further, if the average particle size of the treated powder exceeds 2.0 μm, the treated powder contains a lot of coarse powder having a large particle size, so that the porosity is increased and the corrosion resistance and durability are lowered. Absent.
Control of the average particle size of the treated powder after grinding / mixing / dispersing is done by appropriately adjusting the “powder concentration”, “ball diameter and filling amount”, and “processing time” during grinding / mixing / dispersing. Do. These adjustments are matters that can be appropriately performed by those skilled in the art. In addition, the average particle diameter of the raw material powder and the treated powder in the present invention is an average value of the particle diameter of the secondary particles in which the primary particles are aggregated, and can be measured with a laser diffraction particle size distribution measuring device. .

前記処理粉体を用いて成形体を作製する。成形方法としてプレス成形、ラバープレス成形等の方法を採用する場合、粉砕・混合・分散スラリーに、必要に応じて公知の成形助剤(例えばアクリル系樹脂、PVA等)を添加し、スプレードライヤー等の公知の方法で乾燥させて成形用粉体を作製し、この成形用粉体を金型やゴム型などに充填して成形する。また、鋳込み成形法を採用する場合には、粉砕・混合・分散スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル系樹脂等)を添加し、石膏型又は樹脂型を用いて排泥鋳込法、充填鋳込法、加圧鋳込法により成形する。さらに押出成形法を採用する場合は、得られた粉砕・混合・分散スラリーを乾燥し整粒して、押出成形用バインダー(カルボキシルメチルセルロース、ワックスエマルジョン等の公知のバインダーが使用できる)と水又は有機溶媒を添加して混合し、土練して成形用坏土とする。この成形用坏土を用いて、公知の押出成形機により、所定の形状になるように押出成形する。   A compact is produced using the treated powder. When adopting a method such as press molding or rubber press molding as a molding method, a known molding aid (for example, acrylic resin, PVA, etc.) is added to the pulverized / mixed / dispersed slurry as necessary, and a spray dryer, etc. The powder for molding is prepared by drying by a known method, and the powder for molding is filled in a mold or a rubber mold and molded. In addition, when adopting the casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / mixed / dispersed slurry as required, and the waste mud is cast using a gypsum mold or a resin mold. Molding is performed by the method of filling, casting and pressure casting. Furthermore, when an extrusion molding method is employed, the obtained pulverized / mixed / dispersed slurry is dried and sized, and a binder for extrusion molding (a known binder such as carboxyl methyl cellulose or wax emulsion can be used) and water or organic Add a solvent, mix, and knead to make a forming clay. Using this molding clay, it is extruded to a predetermined shape by a known extruder.

以上のようにして得た成形体を、大気中、焼成温度1550〜1750℃で焼成する。焼成温度が1550℃未満では、平均結晶粒径が3μm未満となり、耐食性や耐久性が低下するため好ましくない。また、焼成温度が1750℃を越えると、焼結体の平均結晶粒径が30μmを越えて耐久性が低下するため好ましくない。   The molded body obtained as described above is fired at a firing temperature of 1550 to 1750 ° C. in the air. When the firing temperature is less than 1550 ° C., the average crystal grain size is less than 3 μm, which is not preferable because corrosion resistance and durability are lowered. On the other hand, if the firing temperature exceeds 1750 ° C., the average crystal grain size of the sintered body exceeds 30 μm, and the durability is lowered.

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these Examples.

実施例1〜8、比較例1〜13
原料粉末として、ジルコニア含有量が99.8重量%、SiO含有量が0.02重量%、平均粒子径4μmであるジルコニア原料粉末と、Y含有量が99.9重量%、SiO含有量が0.01重量%、平均粒子径4μmのY原料粉末と、Nb含有量が99.9重量%、SiO含有量が0.01重量%、平均粒子径1.5μmのNb原料粉末を用いた。
なお、比較例7はジルコニア含有量が98.2重量%、SiO含有量が0.02重量%、平均粒子径8μmのジルコニア純度の低いジルコニア原料粉末を使用した。
比較例8はY含有量が99.9重量%、SiO含有量が0.01重量%、平均粒子径9μmの粒子径が大きいY原料粉末を使用した。
比較例9はNb含有量が99.9重量%、SiO含有量が0.01重量%、平均粒子径8μmの粒子径が大きいNb原料粉末を使用した。
比較例13はジルコニア含有量が99.5重量%、SiO含有量が0.07重量%、平均粒子径5μmのSiO含有量が多いジルコニア原料粉末を使用した。
Examples 1-8, Comparative Examples 1-13
As a raw material powder, a zirconia raw material powder having a zirconia content of 99.8% by weight, a SiO 2 content of 0.02% by weight and an average particle diameter of 4 μm, a Y 2 O 3 content of 99.9% by weight, SiO 2 2 content 0.01% by weight, Y 2 O 3 raw material powder having an average particle diameter of 4 μm, Nb 2 O 5 content 99.9% by weight, SiO 2 content 0.01% by weight, average particle diameter A 1.5 μm Nb 2 O 5 raw material powder was used.
In Comparative Example 7, a zirconia raw material powder having a low zirconia purity having a zirconia content of 98.2% by weight, a SiO 2 content of 0.02% by weight, and an average particle diameter of 8 μm was used.
In Comparative Example 8, a Y 2 O 3 raw material powder having a Y 2 O 3 content of 99.9% by weight, a SiO 2 content of 0.01% by weight, and an average particle size of 9 μm and a large particle size was used.
Comparative Example 9 used Nb 2 O 5 raw material powder having a Nb 2 O 5 content of 99.9% by weight, a SiO 2 content of 0.01% by weight, and an average particle size of 8 μm and a large particle size.
In Comparative Example 13, a zirconia raw material powder having a high zirconia content of 99.5% by weight, a SiO 2 content of 0.07% by weight, and an average particle diameter of 5 μm and a high SiO 2 content was used.

原料粉末とNb原料粉末を、表1に示すY含有量(モル%)及びNb/Yモル比となるように配合し、溶媒に水を使用し、ジルコニア製のボールミルとボールを使用して粉砕・混合・分散処理を行った。得られた処理粉体について、レーザー回折式粒度分布測定装置(マイクロトラックMT3300EX、日機装社製)を用いて平均粒子径を測定した。その結果を表1に示す。なお、平均粒子径の制御は粉砕・混合・分散の処理時間により行った。
処理後のスラリーにPVA系バインダーを1重量%添加し、スプレードライヤーで乾燥して成形用粉体を得た。得られた成形用粉体を、金型を用いて1tonf/cmの圧力でプレス成形し、大気中、1520〜1780℃の範囲で焼成して、板状焼結体を作製した。得られた焼結体特性を表1に示す。
実施例1〜8は本発明の範囲内の焼結体であり、比較例1〜13は本発明の要件を少なくとも一つ満たさない焼結体である。
The Y 2 O 3 raw material powder and the Nb 2 O 5 raw material powder are blended so that the Y 2 O 3 content (mol%) and the Nb 2 O 5 / Y 2 O 3 molar ratio shown in Table 1 are obtained. Using water, a zirconia ball mill and balls were used for pulverization, mixing, and dispersion treatment. About the obtained processed powder, the average particle diameter was measured using the laser diffraction type particle size distribution measuring apparatus (Microtrac MT3300EX, Nikkiso Co., Ltd. product). The results are shown in Table 1. The average particle size was controlled by the processing time of pulverization / mixing / dispersion.
1% by weight of PVA binder was added to the treated slurry and dried with a spray dryer to obtain a molding powder. The obtained molding powder was press-molded using a mold at a pressure of 1 tonf / cm 2 and fired in the range of 1520 to 1780 ° C. in the atmosphere to produce a plate-like sintered body. The obtained sintered body characteristics are shown in Table 1.
Examples 1 to 8 are sintered bodies within the scope of the present invention, and Comparative Examples 1 to 13 are sintered bodies that do not satisfy at least one of the requirements of the present invention.

各焼結体について、以下のようにして、耐食性及び耐久性を評価した。
なお、耐食性及び耐久性の評価において、セラミックス製重しを載せて応力をかけたのは、被焼成体(PbO及びPZT)との反応を促進させるためである。
<耐食性の評価>
耐食性の評価に用いる被焼成体はPbO(酸化鉛)を採用した。市販のPbO粉末(純度:99%以上)を用いて金型プレス成形で直径10mm、厚さ1mmに成形した成形体を、前記各板状焼結体(15mm×15mm×3mm)の上に載せ、更にPbO成形体にセラミックス製の重しを載せて1kPaの応力をかけ、870℃で20時間保持した。テスト後の焼結体の断面を鏡面仕上げし、光学顕微鏡により断面部の変色層厚みを測定した。その結果を表1に示す。
Each sintered body was evaluated for corrosion resistance and durability as follows.
In the evaluation of corrosion resistance and durability, the reason why stress was applied with a ceramic weight is to promote the reaction with the object to be fired (PbO and PZT).
<Evaluation of corrosion resistance>
PbO (lead oxide) was adopted as the material to be fired for evaluation of corrosion resistance. A molded body formed by commercially available PbO powder (purity: 99% or more) by die press molding to have a diameter of 10 mm and a thickness of 1 mm is placed on each plate-shaped sintered body (15 mm × 15 mm × 3 mm). Further, a ceramic weight was placed on the PbO molded body, a stress of 1 kPa was applied, and the resultant was held at 870 ° C. for 20 hours. The cross section of the sintered body after the test was mirror finished, and the discolored layer thickness of the cross section was measured with an optical microscope. The results are shown in Table 1.

<耐久性の評価>
耐久性の評価には、電子部品材料の成分の一つであるPZT(チタン酸ジルコン酸鉛)を採用した。市販のPZT粉末(純度:99%以上)を直径10mm、厚さ1mmに成形した成形体を、前記各板状焼結体(15mm×15mm×3mm)の上に載せ、更にPZT成形体にセラミックス製の重しを載せて1kPaの応力をかけ、1300℃で5時間保持する操作を20サイクルまで行い、サイクルごとに各板状焼結体の変形、クラック及び割れの発生の有無を確認した。その結果を表1に示す。
なお、表中の数値は、変形、クラック及び割れが発生した時のサイクル数であり、実施例における「20<」は、20サイクルでも変形、クラック及び割れが発生しなかったことを意味する。
<Durability evaluation>
For the evaluation of durability, PZT (lead zirconate titanate), which is one of the components of the electronic component material, was employed. A molded body in which a commercially available PZT powder (purity: 99% or more) is molded to a diameter of 10 mm and a thickness of 1 mm is placed on each of the plate-like sintered bodies (15 mm × 15 mm × 3 mm), and further ceramics are placed on the PZT molded body. An operation of applying a stress of 1 kPa with a weight made of the product and holding it at 1300 ° C. for 5 hours was performed up to 20 cycles, and whether or not each plate-like sintered body was deformed, cracked or cracked was confirmed for each cycle. The results are shown in Table 1.
In addition, the numerical value in a table | surface is the number of cycles when a deformation | transformation, a crack, and a crack generate | occur | produced, and "20 <" in an Example means that a deformation | transformation, a crack, and a crack did not generate | occur | produce in 20 cycles.

Figure 0005931542
Figure 0005931542

比較例1は、Nbを含有しない従来技術に属するジルコニア質焼結体(例えば、特許文献1〜2)の例である。
比較例2は、Y含有量が6モル%未満のため、立方晶系ジルコニアが95容積%未満となった例である。
比較例3は、Y含有量が12モル%を越えたため第2相が存在する例である。
比較例4は、Nb/Yモル比が0.03未満のため、Nbの効果が十分に得られない例である。
比較例5は、Nb/Yモル比が0.30を越えたため、第2相が存在し、立方晶系ジルコニア量も少ない例である。
比較例6は、粉砕・混合・分散後の処理粉体の平均粒子径が2.0μmを越えたため、気孔率が高くなった例である。
比較例7は、純度の低いジルコニア原料粉末を使用したため、ジルコニア質焼結体中の不可避的不純物の合計量が多くなった例である。
比較例8は、平均粒子径5μmを越えるY原料粉末を使用したため、焼結体中に単斜晶系ジルコニアが多くなり立方晶系ジルコニアが少なくなった例である。
比較例9は、平均粒子径5μmを越えるNb原料粉末を使用したため、焼結体中に第2相が存在する例である。
比較例10は、焼成温度が1550℃未満のため、平均結晶粒径が小さくなった例である。
比較例11は、焼成温度が1750℃を越えているため、平均結晶粒径が大きくなった例である。
比較例12は、粉砕・混合・分散後の処理粉体の平均粒子径が0.3μm未満であるため、最小結晶粒径と平均結晶粒径の比が小さくなった例である。
比較例13は、SiO含有量の多いジルコニア原料粉末を使用したため、ジルコニア質焼結体中のSiO含有量が0.03重量%を越えた例である。
Comparative Example 1 is an example of a zirconia sintered body (for example, Patent Documents 1 and 2) belonging to the prior art that does not contain Nb 2 O 5 .
Comparative Example 2 is an example in which the amount of cubic zirconia was less than 95% by volume because the Y 2 O 3 content was less than 6% by mole.
Comparative Example 3 is an example in which the second phase exists because the Y 2 O 3 content exceeds 12 mol%.
In Comparative Example 4, the Nb 2 O 5 / Y 2 O 3 molar ratio is less than 0.03, and thus the effect of Nb 2 O 5 cannot be sufficiently obtained.
Comparative Example 5 is an example in which the Nb 2 O 5 / Y 2 O 3 molar ratio exceeded 0.30, the second phase was present, and the amount of cubic zirconia was small.
Comparative Example 6 is an example in which the porosity increased because the average particle diameter of the treated powder after pulverization, mixing, and dispersion exceeded 2.0 μm.
Comparative Example 7 is an example in which the total amount of inevitable impurities in the zirconia-based sintered body is increased because low-purity zirconia raw material powder is used.
Comparative Example 8 is an example in which the monoclinic zirconia increased and the cubic zirconia decreased in the sintered body because the Y 2 O 3 raw material powder exceeding the average particle diameter of 5 μm was used.
Comparative Example 9 is an example in which the second phase is present in the sintered body because the Nb 2 O 5 raw material powder having an average particle diameter of more than 5 μm was used.
Comparative Example 10 is an example in which the average crystal grain size is small because the firing temperature is less than 1550 ° C.
Comparative Example 11 is an example in which the average crystal grain size is increased because the firing temperature exceeds 1750 ° C.
Comparative Example 12 is an example in which the ratio of the minimum crystal grain size to the average crystal grain size is small because the average particle size of the treated powder after pulverization, mixing, and dispersion is less than 0.3 μm.
Comparative Example 13 is an example in which the zirconia raw material powder having a large SiO 2 content was used, so that the SiO 2 content in the zirconia sintered body exceeded 0.03% by weight.

表1中の耐食性の評価結果から分かるように、実施例のジルコニア質焼結体は、断面の変色層厚み(PbOの浸食深さ)が600μm以下という優れた耐食性を示し、高機能な電子部品材料の焼成用部材として使用可能なものであった。
これに対し、比較例のジルコニア質焼結体は、比較例11を除いて変色層厚みが600μmを越え、耐食性に劣るため、高機能な電子部品材料の焼成用として使用できるものでは無かった。
また、表1中の耐久性の評価結果から分かるように、実施例のジルコニア質焼結体は、20サイクルの繰り返し試験でも、板状焼結体に変形、クラック及び割れが生じることは無く、優れた耐久性を示し、高機能な電子部品材料の焼成用として使用可能なものであった。
これに対し、比較例のジルコニア質焼結体は、20サイクルに到達する前に変形、クラック及び割れが発生し、耐久性に劣るため、高機能な電子部品材料の焼成用として使用できるものでは無かった。
As can be seen from the evaluation results of the corrosion resistance in Table 1, the zirconia sintered bodies of the examples show excellent corrosion resistance with a discoloration layer thickness (PbO erosion depth) of 600 μm or less in the cross section, and a highly functional electronic component. It could be used as a material firing member.
On the other hand, the zirconia sintered body of the comparative example has a discoloration layer thickness exceeding 600 μm except for the comparative example 11 and is inferior in corrosion resistance, and therefore cannot be used for firing highly functional electronic component materials.
In addition, as can be seen from the durability evaluation results in Table 1, the zirconia sintered body of the example is not deformed, cracked or cracked in the plate-like sintered body even in a 20-cycle repeated test, It exhibited excellent durability and could be used for firing highly functional electronic component materials.
On the other hand, the zirconia sintered body of the comparative example is deformed, cracked and cracked before reaching 20 cycles, and is inferior in durability, so it cannot be used for firing highly functional electronic component materials. There was no.

Claims (1)

(a)ジルコニアの安定化剤であるYをジルコニアに対して6〜12モル%含有し、(b)NbとYのモル比が0.03〜0.30の範囲にあるジルコニア質焼結体において、(c)結晶相として第2相が存在しないジルコニア単相からなり、(d)ジルコニア結晶相は立方晶系ジルコニアが95容積%以上、(e)不可避的不純物の合計量が0.3重量%以下、かつ、SiO含有量が0.03重量%以下、(f)気孔率が0.5%以下、(g)平均結晶粒径が3〜30μm、(h)最小結晶粒径と平均結晶粒径の比が0.05以上、であることを特徴とするジルコニア質焼結体からなる焼成用部材。 (A) Y 2 O 3 which is a zirconia stabilizer is contained in an amount of 6 to 12 mol% based on zirconia, and (b) the molar ratio of Nb 2 O 5 and Y 2 O 3 is 0.03 to 0.30. (C) a zirconia single phase in which the second phase does not exist as a crystal phase, (d) the zirconia crystal phase is 95% by volume or more of cubic zirconia, and (e) unavoidable The total amount of mechanical impurities is 0.3% by weight or less, the SiO 2 content is 0.03% by weight or less, (f) the porosity is 0.5% or less, and (g) the average crystal grain size is 3 to 30 μm. (H) A firing member comprising a zirconia sintered body, wherein the ratio between the minimum crystal grain size and the average crystal grain size is 0.05 or more.
JP2012080578A 2012-03-30 2012-03-30 Firing member made of zirconia sintered body Active JP5931542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080578A JP5931542B2 (en) 2012-03-30 2012-03-30 Firing member made of zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080578A JP5931542B2 (en) 2012-03-30 2012-03-30 Firing member made of zirconia sintered body

Publications (2)

Publication Number Publication Date
JP2013209244A JP2013209244A (en) 2013-10-10
JP5931542B2 true JP5931542B2 (en) 2016-06-08

Family

ID=49527487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080578A Active JP5931542B2 (en) 2012-03-30 2012-03-30 Firing member made of zirconia sintered body

Country Status (1)

Country Link
JP (1) JP5931542B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860654A (en) * 2015-05-04 2015-08-26 安徽省亚欧陶瓷有限责任公司 Acid and alkali resistance ceramic tile and production method thereof
TW201831410A (en) * 2017-01-03 2018-09-01 美商康寧公司 Apparatus and methods for producing glass comprising crystal zirconia
SG11202003738VA (en) * 2017-11-10 2020-05-28 Ferrotec Material Tech Corporation Ceramic, probe guiding member, probe card, and socket for package inspection
JP2021020821A (en) * 2019-07-25 2021-02-18 日本特殊陶業株式会社 Ceramic sintered body
JP6999716B2 (en) * 2020-02-12 2022-02-04 クラレノリタケデンタル株式会社 Zirconia sintered body and dental products
WO2023171542A1 (en) * 2022-03-11 2023-09-14 第一稀元素化学工業株式会社 Zirconia sintered body, zirconia powder, and method for producing zirconia sintered body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108162A (en) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd Zirconia ceramics
JP2977867B2 (en) * 1990-06-21 1999-11-15 住友特殊金属株式会社 Material for magnetic head slider
JP2004315293A (en) * 2003-04-16 2004-11-11 Nitsukatoo:Kk Zirconia member for heat treatment and method for manufacturing the same
JP4043425B2 (en) * 2003-09-08 2008-02-06 株式会社ニッカトー Zirconia heat treatment material
JP4622887B2 (en) * 2006-02-28 2011-02-02 Tdk株式会社 Method for producing ceramic fired body

Also Published As

Publication number Publication date
JP2013209244A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5931542B2 (en) Firing member made of zirconia sintered body
JP6713113B2 (en) ZrO2-Al2O3-based ceramics sintered body and method for producing the same
JP5762623B2 (en) Refractory containing β-alumina and method for producing and using the same
JP6052735B2 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
JP2008213466A (en) Manufacturing method for optical element, and optical element
US20140011661A1 (en) Method of making high toughness high strength zirconia bodies
JP2005082459A (en) Composite ceramic and method of manufacturing the same
JP4043425B2 (en) Zirconia heat treatment material
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP6594575B1 (en) Heat treatment member made of sintered zirconia
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP2002137962A (en) Component for heat treatment consisting of mullite-based sintered compact
JP5116246B2 (en) Ceramic blade and method for manufacturing the same
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2006248858A (en) Yttria-stabilized zirconia sintered compact and its manufacturing method
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP5312523B2 (en) Ceramic blade and method of manufacturing the same
JP4048017B2 (en) Crushing / dispersing media made of zirconia sintered body with excellent durability and wear resistance
JP5172076B2 (en) Highly conductive zirconia sintered body
WO2020179917A1 (en) Ceramic sintered compact having embossed surface, method for manufacturing same, and heat treatment member comprising said ceramic sintered compact
JP2008013395A (en) Method for manufacturing crystal-oriented ceramic
JP2004315293A (en) Zirconia member for heat treatment and method for manufacturing the same
JP6524012B2 (en) Method of producing a degreased molded body of ceramics
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JP6366976B2 (en) Heat treatment member made of porous ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160427

R150 Certificate of patent or registration of utility model

Ref document number: 5931542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250