JP2004217488A - Magnesia spinel refractory and its producing method - Google Patents

Magnesia spinel refractory and its producing method Download PDF

Info

Publication number
JP2004217488A
JP2004217488A JP2003009779A JP2003009779A JP2004217488A JP 2004217488 A JP2004217488 A JP 2004217488A JP 2003009779 A JP2003009779 A JP 2003009779A JP 2003009779 A JP2003009779 A JP 2003009779A JP 2004217488 A JP2004217488 A JP 2004217488A
Authority
JP
Japan
Prior art keywords
component
particles
magnesia
spinel
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003009779A
Other languages
Japanese (ja)
Inventor
Shuichi Kinoshita
秀一 木下
Hiroshi Ueda
宏 植田
Yoshimasa Miyagishi
佳正 宮岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Ceramics Co Ltd
Original Assignee
Asahi Glass Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Ceramics Co Ltd filed Critical Asahi Glass Ceramics Co Ltd
Priority to JP2003009779A priority Critical patent/JP2004217488A/en
Publication of JP2004217488A publication Critical patent/JP2004217488A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesia spinel refractory which has a coefficient of thermal expansion nearly equal to that of YSZ, a low air permeability, and excellent mechanical strength, and which is almost free from the formation of cracks and suitable for supporting members used in an SOFC using the YSZ as a solid electrolyte; and to provide a method for manufacturing the same. <P>SOLUTION: The magnesia spinel refractory contains, by mass, 35-74% MgO component, 25-60% Al<SB>2</SB>O<SB>3</SB>component, and 1-10% CaO component and is characterized in that the total content of MgO and Al<SB>2</SB>O<SB>3</SB>components is ≥85 mass %, and it does not substantially contain SiO<SB>2</SB>component. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質型燃料電池の固体電解質として使用されるイットリアで安定化したジルコニアの支持部材として好適に用いられるマグネシアスピネル質耐火物およびその製造方法に関する。
【0002】
【従来の技術】
固体電解質型燃料電池(以下、SOFCという)の固体電解質の一つとしてイットリアで安定化したジルコニア(以下、YSZという)がある。このYSZからなる固体電解質を支持する部材(以下、単に支持部材という)としては、YSZと熱膨張率ができるだけ近いことが要求される。支持部材とYSZの熱膨張率の差が大きいとSOFCの使用時(高温、例えば1000℃)にYSZまたは支持部材にクラックが発生するなどの問題がある。
【0003】
YSZと熱膨張率が近い支持部材として、スピネルAモル%とマグネシア100−Aモル%(A;14〜64)とからなる複合材であり、さらに該複合材がマグネシアとアルミナの共焼結材とすることが提案されている(特許文献1参照。)。しかし、マグネシアとアルミナの共焼結材により前記複合材を製作すると、マグネシアとアルミナとが反応してスピネルを生成する際の体積膨張によりクラックが発生しやすいという問題がある。
【0004】
また、それぞれ粒径が0.1〜50μmのマグネシア粒子とスピネル粒子を質量比が45対55になるように混合し、助剤としてCaOを0.3%添加し、これをドクターブレード法で成形し、1200〜1800℃で5時間焼成する方法が提案されている(特許文献2参照。)。しかし、微粉原料を出発材料としているため一般に焼成後の収縮率が大きく寸法精度を出すのが難しいほか、成形がドクターブレード法に限定されているので複雑な形状が作れないという問題もある。さらに支持部材としては、YSZと熱膨張率が近いだけでなく、低通気性、機械的強度に優れたものが求められている。しかし、充分なものはまだ提案されていない。
【0005】
【特許文献1】
特開平5−82146号公報(第1頁〜第5頁)
【特許文献2】
特開平5−275106号公報(第1頁〜第5頁)
【0006】
【発明が解決しようとする課題】
本発明は、熱膨張係数がYSZに近く、クラックの発生しにくい、低通気性で機械的強度にすぐれた、支持部材に好適なマグネシアスピネル質耐火物およびその製造法の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明は、MgO成分35〜74質量%と、Al成分25〜60質量%と、CaO成分1〜10質量%とを含み、MgO成分とAl成分との合量が85質量%以上で、かつSiO成分を実質的に含まないことを特徴とするマグネシアスピネル質耐火物を提供する。さらに、本発明はマグネシア粒子10〜70質量%と、スピネル粒子20〜70質量%と、アルミナセメント粒子1〜30質量%とを含み、マグネシア粒子とスピネル粒子の合量が60質量%以上で、かつシリカ粒子を含まないことを特徴とするマグネシアスピネル質不定形耐火物を提供する。
【0008】
【発明の実施の形態】
本発明のマグネシアスピネル質耐火物(以下、本耐火物という)は、化学成分としてMgO成分35〜74質量%と、Al成分25〜60質量%(以下、単に%と略す)とを含み、しかもMgO成分とAl成分との合量が85%以上である。MgO成分とAl成分との合量が88%以上であると好ましく、MgO成分とAl成分との合量が90%以上であると特に好ましい。MgO成分、Al成分が上記範囲外であると所望の熱膨張係数が得られないおそれがある。また、MgO成分とAl成分との合量が85%未満であると高温負荷時の耐火物内部での化学反応により熱膨張係数が大きく変化するおそれがある。
【0009】
本耐火物ではCaO成分1〜10%をさらに含む。しかし、本耐火物はSiO成分を実質的に含まない。本明細書において、SiO成分を実質的に含まないとは、SiO成分の含有量が1%以下であることを意味する。SiO成分が1%を超えると使用中にMgO成分と反応してフォルステライトを生成しクラックの原因となるおそれがあるほか、LaCr等のインタコネクト(単セルを電気的に直列に接続する)材料が用いられる場合には、その材料と高温で反応しインタコネクト材料の特性を劣化させるおそれがある。
【0010】
本耐火物の温度50〜1000℃における平均熱膨張係数が7〜12×10−6(1/K)であるとYSZとの熱膨張率の差が実用上問題とならない程度となり好ましい。8〜11×10−6(1/K)であるとさらに好ましい。また、通気率が10×10−9/Pa・s以下であるとSOFCのガスシール性も向上するため好ましく、8×10−9/Pa・s以下であるとさらに好ましい。通気率が5×10−9/Pa・s以下であると特に好ましい。
【0011】
また本耐火物の気孔率が30%以下であると機械的強度が高くなるため好ましい。気孔率が25%以下であるとさらに好ましく、特には20%以下である。なお、本明細書において気孔率の表記は慣例に従い%で表す。さらに、本耐火物の圧縮強度が20MPa以上であると高強度で部材を薄肉化できるため好ましい。圧縮強度が25MPa以上であるとさらに好ましく、30MPa以上であると特に好ましい。
【0012】
本発明の不定形耐火物(以下、本不定形耐火物という)は、マグネシア粒子と、スピネル粒子と、アルミナセメント粒子とを含み、シリカ粒子を含まないことを特徴とする。本不定形耐火物は、マグネシア粒子を10〜70%含む。マグネシア粒子が10%未満であると本不定形耐火物を使用した支持部材の熱膨張係数が小さくなりすぎるおそれがあり、一方、マグネシア粒子が70%を超えると熱膨張係数が大きくなりすぎるおそれがある。マグネシア粒子が30%以上であると好ましく、45%以上であるとさらに好ましい。本明細書において、マグネシア粒子とはペリクレース結晶を含み、MgO成分を95%以上含有するものをいう。MgO成分が98%以上であると好ましく、99%以上であるとさらに好ましい。
【0013】
本不定形耐火物は、スピネル粒子を20〜70%含む。本明細書において、スピネル粒子とはMgAl結晶を含み、粒子中にMgO成分を25〜30%含み、かつMgO成分とAl成分の合計量が95%以上である粒子をいう。スピネル粒子が20%未満であると本不定形耐火物を使用した支持部材の熱膨張係数が小さくなりすぎるおそれがあり、一方、スピネル粒子が70%を超えると熱膨張係数が大きくなりすぎるおそれがある。スピネル粒子が25%以上であると好ましい。スピネル粒子が50%以下であると好ましく、45%以下であるとさらに好ましい。
【0014】
本不定形耐火物においては、マグネシア粒子とスピネル粒子との合量が60%以上である。マグネシア粒子とスピネル粒子との合量が60%未満であると本不定形耐火物を使用した支持部材の熱膨張係数の制御がしにくくなる。マグネシア粒子とスピネル粒子との合量が70%以上であると好ましく、80%以上であると特に好ましい。
【0015】
なお、本不定形耐火物の成分がMgO成分35〜74%と、Al成分25〜60%と、CaO成分1〜10%とを含み、MgO成分とAl成分との合量が85%以上で、かつSiO成分を実質的に含まないものであると支持部材に使用した場合にYSZとの熱膨張差が小さくなり、気孔率も小さく、機械的強度もあるため好ましい。
【0016】
マグネシア粒子とスピネル粒子は、粒子直径(以下、単に粒径と略す)1mm以上の粗骨材、粒径0.1mm以上1mm未満の中骨材、粒径0.1mm未満の細骨材の組み合わせとすると好ましく、粒径1mm以上3mm未満の粗骨材、粒径0.075mm以上1mm未満の中骨材、粒径0.075mm未満の細骨材の組み合わせとするとさらに好ましい。本不定形耐火物中に、マグネシア粒子とスピネル粒子とを、粗骨材0〜40%と、中骨材10〜70%と、細骨材10〜50%となるように粒度配合すると施工(成形)性が良好となるため好ましい。
【0017】
本不定形耐火物は、アルミナセメント粒子を1〜30%含む。アルミナセメント粒子が1%未満であると最終的な強度が不充分で取扱い性が低下するおそれがあり、一方、30%を超えると熱膨張係数が所望の範囲から大きくずれるおそれがある。アルミナセメント粒子が3〜25%であると好ましく、5〜15%であるとさらに好ましい。アルミナセメントとしては、一般にカルシウムアルミネートを主成分とする種々のアルミナセメント(類似の水硬性アルミナ化合物を含む)が使用できる。
【0018】
アルミナセメント粒子の純度としては特に限定されないが純度95%以上が好ましく、純度98%以上であるとさらに好ましい。アルミナセメント粒子中のAl含有量としては、40%以上であると耐熱性の点で好ましい。アルミナセメント粒子の比表面積としては特に限定されないが、比表面積が3500〜8000cm/gであると好ましい。また、アルミナセメント粒子の粒度としては特に限定されないが、平均粒径が1〜15μmであると好ましい。
【0019】
本不定形耐火物は、シリカ粒子を含まない。シリカ粒子を含むと加熱時にシリカ粒子とマグネシア粒子とが反応してフォルステライトを生成しクラックの原因となるおそれがある。
【0020】
本不定形耐火物は、スピネル反応を抑制するためAl粒子を含まない方が好ましいが、施工性、耐熱衝撃性の改良等で少量のAl粒子を添加してもよい。本不定形耐火物は、マグネシア粒子、スピネル粒子、アルミナセメント粒子以外に消化防止剤を含むのが好ましい。消化防止剤としては塩基性乳酸アルミニウムなどが挙げられる。さらに、本不定形耐火物は収縮抑制剤を含んでもよい。収縮抑制剤としてはポリエチレングリコールなどが挙げられる。消化防止剤、収縮抑制剤以外にも硬化調整剤、トリポリリン酸ナトリウム、β−ナフタレンスルホン酸塩等の分散剤、などを含んでいてもよい。
【0021】
本不定形耐火物の施工(成形)法としては特に限定されない。例えば、上記不定形耐火物に所定量の水を添加し混練機で所定時間混練して坏土とし、型枠内に注入する(流し込み)。注入するに際して振動等を付与してもよい。型枠としては、特に制限がなく、ナイロン樹脂枠、ポリエチレン樹脂枠、ポリイミド樹脂枠などの樹脂枠、木枠、金枠などを単独でまたは併用して適宜使用できる。本不定形耐火物はマグネシア粒子を含むため施工および養生時の周囲温度が高いと作業可能な時間が短くなる傾向にあるため、施工、養生はなるべく低温とするのが好ましい。施工および養生時の周囲温度が0〜10℃の範囲であれば、特段の硬化調整剤を必要としないため好ましい。前記周囲温度が10℃を超えるような場合にはホウ酸などを適量添加することにより作業時間が延長できる。
【0022】
坏土が硬化後、離型し、乾燥後さらに加熱処理(焼成)する。昇温速度としては、形状に応じて適宜選択されるが10〜100℃/h、さらには10〜60℃/hとすると熱応力緩和のために好ましい。保持温度としては、焼結が開始し、圧縮強度が増す1250℃以上が好ましく、また線収縮を3%以下に抑えるために1500℃以下とするのが好ましい。保持温度を1300〜1450℃とするとさらに好ましい。保持時間としては、3〜48時間、さらには5〜10時間であると好ましい。熱処理に使用する炉としては特に制限されず、一般的な加熱炉が使用できる。本不定形耐火物を施工(成形)・加熱処理(焼成)したものを本耐火物として使用すると好ましく、さらにそれを支持部材、すなわちSOFCのYSZからなる固体電解質の支持部材に使用すると特に好ましい。
【0023】
【実施例】
以下に本発明の実施例(例1〜例5)および比較例(例6〜例9)を説明する。表1、表2に示した原料配合割合となるように各原料を秤取し、万能ミキサで混合しながら表中に示した水を添加し、混練物を得た。なお、表中、マグネシア粒子、スピネル粒子、アルミナセメント粒子、アルミナ微粉、シリカ微粉についてはその合計が100%となるように記載してある。また、乳酸複合塩、分散剤、PEG、硬化調整剤、水は、該合計100質量部に対して外掛の質量部でそれぞれ記載してある。この混練物を、内寸40mm×40mm×160mmの型にバイブレータで振動をかけながら流し込み、所定時間養生後に脱型し、110℃×24時間の乾燥後、110℃から400℃まで昇温速度50℃/hで昇温し400℃で5時間保持した。さらに、400℃から1350℃まで昇温速度50℃/hで昇温し1350℃で5時間保持して焼成し供試体(以下、JISサンプルともいう)とした。
【0024】
なお、表1、表2における各原料は以下のとおりである。また各原料中のMgO成分、Al成分、CaO成分、SiO成分の合量を質量割合(%)で示す。
・粒子M1:純度99%のマグネシア粒子中骨材。
・粒子M2:純度99%のマグネシア粒子細骨材。
・粒子SP1:純度99%、MgO成分27%、Al成分72%のスピネル粒子粗骨材。
・粒子SP2:純度99%、MgO成分27%、Al成分72%のスピネル粒子中骨材。
・粒子SP3:純度99%、MgO成分27%、Al成分72%のスピネル粒子細骨材。
・粒子AC:Al成分73%、CaO成分25%で、比表面積が4920cm/g、平均粒径10μmのアルミナセメント。
・アルミナ微粉:純度99%、平均粒径5μmのアルミナ。
・シリカ微粉:純度92%、平均粒径1μmのシリカ。
・乳酸複合塩:塩基性乳酸アルミニウム(多木化学社製、商品名;タキセラムAS−300)。
・分散剤:トリポリリン酸ナトリウム。
・PEG:ポリエチレングリコール(山陽化成社製、商品名;6000P)。
・硬化調整剤:ホウ酸。
【0025】
[評価結果]
例1〜例9で得られた供試体の特性を測定、評価し、表1、表2に併せて示す。
評価項目、測定法は以下のとおりである。
・施工温度:施工現場の室温。
・施工性:作業可能時間が1〜10時間のものを良好とし、1時間未満または10時間を超えるものを不良とした。
・熱膨張係数:測定温度50〜1000℃までの熱膨張を熱膨張計(真空理工社製、商品名;M−7000)で測定し、前記温度範囲での平均熱膨張係数(×10−6(1/K))として求めた。
・かさ比重:アルキメデス法により、かさ比重=乾燥質量/(飽水質量−水中質量)として算出した。
・線変化率:養生後のJISサンプルの長さをL、熱処理後の長さをLとして(L−L)/L×100(%)で算出した。
・気孔率:アルキメデス法により、見掛気孔率=(飽水質量−乾燥質量)/(飽水質量−水中質量)×100(%)として算出した。
・通気率:JIS R2115により算出(×10−9/Pa・s)した。
・圧縮強度:JIS R2553により算出(MPa)した。
・外観:目視でクラックの有無を判定した。
【0026】
【表1】

Figure 2004217488
【0027】
【表2】
Figure 2004217488
【0028】
【発明の効果】
本耐火物は、熱膨張係数が7〜12×10−6とYSZに近い。通気率が従来品の40×10−9/Pa・sに比べて大きく低下し、圧縮強度も従来品の20MPaから高強度になっている。しかもクラックの発生しにくいマグネシアスピネル質耐火物となり、したがって、SOFCに使用される、YSZからなる固体電解質用支持部材として特に好適なものである。また、本耐火物をYSZからなる固体電解質用支持部材として使用したSOFCは耐久性に優れるなどの長所を有する。
【0029】
また、本不定形耐火物を施工(成形)・加熱処理したものを本耐火物としたものは前記支持部材として好適であるほか、焼成による収縮も小さいので変形が少なく、複雑形状や異形品を容易に作ることができるなど、特に形状の自由度に優れる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnesia-spinel refractory suitably used as a support member for zirconia stabilized with yttria used as a solid electrolyte of a solid oxide fuel cell, and a method for producing the same.
[0002]
[Prior art]
One of solid electrolytes for a solid oxide fuel cell (hereinafter, referred to as SOFC) is zirconia (hereinafter, referred to as YSZ) stabilized with yttria. A member for supporting the solid electrolyte made of YSZ (hereinafter simply referred to as a support member) is required to have a coefficient of thermal expansion as close as possible to that of YSZ. If the difference between the coefficients of thermal expansion of the support member and YSZ is large, there is a problem that cracks occur in the YSZ or the support member when the SOFC is used (high temperature, for example, 1000 ° C.).
[0003]
A support member having a thermal expansion coefficient close to that of YSZ is a composite material comprising spinel A mol% and magnesia 100-A mol% (A; 14 to 64), and the composite material is a co-sintered material of magnesia and alumina. (See Patent Document 1). However, when the composite material is manufactured using a co-sintered material of magnesia and alumina, there is a problem that cracks are easily generated due to volume expansion when magnesia and alumina react to generate spinel.
[0004]
In addition, magnesia particles and spinel particles each having a particle size of 0.1 to 50 μm are mixed so that the mass ratio becomes 45:55, 0.3% of CaO is added as an auxiliary agent, and this is formed by a doctor blade method. A method of firing at 1200 to 1800 ° C. for 5 hours has been proposed (see Patent Document 2). However, since a fine powder raw material is used as a starting material, the shrinkage ratio after firing is generally large and it is difficult to obtain dimensional accuracy. In addition, since molding is limited to a doctor blade method, there is a problem that a complicated shape cannot be formed. Further, as the support member, not only a material having a thermal expansion coefficient close to that of YSZ but also a material having low air permeability and excellent mechanical strength is required. However, nothing has yet been proposed.
[0005]
[Patent Document 1]
JP-A-5-82146 (pages 1 to 5)
[Patent Document 2]
JP-A-5-275106 (pages 1 to 5)
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a magnesia-spinel refractory suitable for a support member having a thermal expansion coefficient close to that of YSZ, less likely to generate cracks, low air permeability and excellent mechanical strength, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The present invention comprises a 35 to 74 wt% MgO component, and Al 2 O 3 component 25-60% by weight, and a 1 to 10 wt% CaO component, the total amount of the MgO component and Al 2 O 3 component is 85 Provided is a magnesia-spinel-based refractory characterized by being not less than mass% and substantially not containing a SiO 2 component. Further, the present invention includes 10 to 70% by mass of magnesia particles, 20 to 70% by mass of spinel particles, and 1 to 30% by mass of alumina cement particles, and the total amount of magnesia particles and spinel particles is 60% by mass or more, Provided is a magnesia spinel amorphous refractory characterized by not containing silica particles.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Magnesia spinel refractory of the present invention (hereinafter, referred to as the refractory) includes a MgO ingredient 35-74 mass% as chemical components, Al 2 O 3 component 25-60% by weight (hereinafter simply% abbreviated) and And the total amount of the MgO component and the Al 2 O 3 component is 85% or more. Preferably the total amount is at least 88% of the MgO component and Al 2 O 3 component, the total amount of the MgO component and Al 2 O 3 component is particularly preferably 90% or more. If the MgO component and the Al 2 O 3 component are outside the above ranges, a desired coefficient of thermal expansion may not be obtained. If the total amount of the MgO component and the Al 2 O 3 component is less than 85%, the thermal expansion coefficient may greatly change due to a chemical reaction inside the refractory under a high temperature load.
[0009]
The refractory further contains 1 to 10% of a CaO component. However, the present refractory contains substantially no SiO 2 component. In the present specification, to contain no SiO 2 component substantially means that the content of SiO 2 component is 1% or less. If the SiO 2 component exceeds 1%, it may react with the MgO component during use to generate forsterite and cause cracks. In addition, interconnects such as LaCr 2 O 3 (single cells may be electrically connected in series) When a material is used, the material may react with the material at a high temperature and deteriorate the characteristics of the interconnect material.
[0010]
It is preferable that the average coefficient of thermal expansion at a temperature of 50 to 1000 ° C. of the refractory is 7 to 12 × 10 −6 (1 / K) because the difference in thermal expansion coefficient with YSZ does not cause a problem in practical use. More preferably, it is 8 to 11 × 10 −6 (1 / K). Further, preferably to improve the permeability is not more than 10 × 10 -9 m 2 / Pa · s also gas sealing of SOFC, more preferably it is not more than 8 × 10 -9 m 2 / Pa · s. It is particularly preferable that the air permeability is 5 × 10 −9 m 2 / Pa · s or less.
[0011]
Further, it is preferable that the porosity of the present refractory is 30% or less, because the mechanical strength increases. The porosity is more preferably 25% or less, and particularly preferably 20% or less. In this specification, the expression of the porosity is represented by% according to a common practice. Further, it is preferable that the compressive strength of the present refractory be 20 MPa or more, since the member can be thinned with high strength. The compressive strength is more preferably at least 25 MPa, particularly preferably at least 30 MPa.
[0012]
The amorphous refractory of the present invention (hereinafter, referred to as the amorphous refractory) is characterized by containing magnesia particles, spinel particles, and alumina cement particles, and not containing silica particles. This amorphous refractory contains 10 to 70% of magnesia particles. If the magnesia particles are less than 10%, the coefficient of thermal expansion of the support member using the amorphous refractory may be too small, while if the magnesia particles exceed 70%, the coefficient of thermal expansion may be too large. is there. The magnesia particle content is preferably at least 30%, more preferably at least 45%. In the present specification, magnesia particles mean particles containing periclase crystals and containing 95% or more of an MgO component. The MgO component is preferably at least 98%, more preferably at least 99%.
[0013]
The amorphous refractory contains 20 to 70% of spinel particles. In this specification, spinel particles refer to particles containing MgAl 2 O 4 crystals, containing 25 to 30% of an MgO component in the particles, and having a total amount of 95% or more of the MgO component and the Al 2 O 3 component. . If the spinel particles are less than 20%, the coefficient of thermal expansion of the support member using the present amorphous refractory may be too small, while if the spinel particles exceed 70%, the coefficient of thermal expansion may be too large. is there. The content of the spinel particles is preferably 25% or more. The content of spinel particles is preferably 50% or less, and more preferably 45% or less.
[0014]
In the present amorphous refractory, the total amount of magnesia particles and spinel particles is 60% or more. If the total amount of the magnesia particles and the spinel particles is less than 60%, it becomes difficult to control the thermal expansion coefficient of the support member using the amorphous refractory. The total amount of magnesia particles and spinel particles is preferably at least 70%, particularly preferably at least 80%.
[0015]
Incidentally, if of the thirty-five to seventy-four% MgO component ingredients of the irregular-sized refractory, and 25~60% Al 2 O 3 component, and a 1 to 10% CaO component, the MgO component and Al 2 O 3 component When the amount is 85% or more and does not substantially contain the SiO 2 component, the difference in thermal expansion from YSZ when used as a support member is small, the porosity is small, and the mechanical strength is also preferable. .
[0016]
Magnesia particles and spinel particles are a combination of coarse aggregate having a particle diameter of 1 mm or more, medium aggregate having a particle diameter of 0.1 mm to less than 1 mm, and fine aggregate having a particle diameter of less than 0.1 mm. It is more preferable to use a combination of coarse aggregate having a particle size of 1 mm or more and less than 3 mm, medium aggregate having a particle size of 0.075 mm or more and less than 1 mm, and fine aggregate having a particle size of less than 0.075 mm. When the magnesia particles and the spinel particles are blended in the irregular shaped refractory so as to have a coarse aggregate of 0 to 40%, a medium aggregate of 10 to 70%, and a fine aggregate of 10 to 50%, the construction ( Molding) is preferable because the property is improved.
[0017]
The amorphous refractory contains 1 to 30% of alumina cement particles. If the alumina cement particles are less than 1%, the final strength may be insufficient and handleability may be reduced. On the other hand, if it exceeds 30%, the coefficient of thermal expansion may deviate significantly from a desired range. The content of the alumina cement particles is preferably 3 to 25%, and more preferably 5 to 15%. As the alumina cement, various alumina cements containing calcium aluminate as a main component (including similar hydraulic alumina compounds) can be generally used.
[0018]
The purity of the alumina cement particles is not particularly limited, but is preferably 95% or more, and more preferably 98% or more. The Al 2 O 3 content in the alumina cement particles is preferably 40% or more from the viewpoint of heat resistance. The specific surface area of the alumina cement particles is not particularly limited, but it is preferable that the specific surface area be 3500 to 8000 cm 2 / g. The particle size of the alumina cement particles is not particularly limited, but the average particle size is preferably 1 to 15 μm.
[0019]
The amorphous refractory does not contain silica particles. When silica particles are contained, the silica particles and the magnesia particles react during heating to form forsterite, which may cause cracking.
[0020]
It is preferable that the amorphous refractory does not contain Al 2 O 3 particles in order to suppress the spinel reaction, but a small amount of Al 2 O 3 particles may be added for improving workability and thermal shock resistance. The amorphous refractory preferably contains an antidigestion agent in addition to magnesia particles, spinel particles, and alumina cement particles. Examples of the antidigestion agent include basic aluminum lactate. Further, the amorphous refractory may include a shrinkage inhibitor. Examples of the shrinkage inhibitor include polyethylene glycol. In addition to the antidigestion agent and the shrinkage inhibitor, a curing regulator, a dispersant such as sodium tripolyphosphate, β-naphthalene sulfonate, and the like may be included.
[0021]
The method for applying (forming) the present amorphous refractory is not particularly limited. For example, a predetermined amount of water is added to the irregular refractory, and the mixture is kneaded with a kneader for a predetermined time to form a kneaded material, which is poured into a mold (pour). Vibration or the like may be applied during the injection. The mold is not particularly limited, and a resin frame such as a nylon resin frame, a polyethylene resin frame, and a polyimide resin frame, a wooden frame, a metal frame, and the like can be used alone or in combination. Since the amorphous refractory contains magnesia particles, the workable time tends to be shorter if the ambient temperature during construction and curing is high. Therefore, the construction and curing are preferably performed at a temperature as low as possible. It is preferable that the ambient temperature at the time of construction and curing be in the range of 0 to 10 ° C., since no special curing regulator is required. When the ambient temperature exceeds 10 ° C., the working time can be extended by adding an appropriate amount of boric acid or the like.
[0022]
After the kneaded material is cured, it is released from the mold, dried, and further subjected to heat treatment (firing). The heating rate is appropriately selected according to the shape, but is preferably 10 to 100 ° C./h, and more preferably 10 to 60 ° C./h, for relaxing thermal stress. The holding temperature is preferably 1250 ° C. or higher at which sintering starts and the compressive strength increases, and is preferably 1500 ° C. or lower to suppress linear shrinkage to 3% or lower. More preferably, the holding temperature is 1300 to 1450 ° C. The holding time is preferably 3 to 48 hours, more preferably 5 to 10 hours. The furnace used for the heat treatment is not particularly limited, and a general heating furnace can be used. The refractory obtained by applying (forming) and heating (baking) the amorphous refractory is preferably used as the refractory, and it is particularly preferable to use it as a support member, that is, a support member for a solid electrolyte made of YSZ of SOFC.
[0023]
【Example】
Hereinafter, Examples (Examples 1 to 5) and Comparative Examples (Examples 6 to 9) of the present invention will be described. Each raw material was weighed so that the raw material mixing ratio shown in Tables 1 and 2 was obtained, and water shown in the table was added while mixing with a universal mixer to obtain a kneaded product. In the table, magnesia particles, spinel particles, alumina cement particles, alumina fine powder, and silica fine powder are described so that the total is 100%. In addition, the lactic acid complex salt, the dispersant, the PEG, the curing modifier, and the water are each described as an outer mass part with respect to the total 100 mass parts. The kneaded material is poured into a mold having an inner size of 40 mm × 40 mm × 160 mm while vibrating with a vibrator, decured after curing for a predetermined time, dried at 110 ° C. for 24 hours, and then heated from 110 ° C. to 400 ° C. at a heating rate of 50 ° C. The temperature was raised at a rate of 400 ° C / h and maintained at 400 ° C for 5 hours. Further, the specimen was heated from 400 ° C. to 1350 ° C. at a rate of 50 ° C./h, held at 1350 ° C. for 5 hours, and fired to obtain a test sample (hereinafter also referred to as a JIS sample).
[0024]
In addition, each raw material in Table 1 and Table 2 is as follows. In addition, the total amount of the MgO component, the Al 2 O 3 component, the CaO component, and the SiO 2 component in each raw material is indicated by mass ratio (%).
Particles M1: aggregate in magnesia particles having a purity of 99%.
Particles M2: Magnesia particle fine aggregate having a purity of 99%.
Particle SP1: coarse aggregate of spinel particles having a purity of 99%, an MgO component of 27% and an Al 2 O 3 component of 72%.
And particle SP2: purity 99%, MgO component 27%, Al 2 O 3 component 72 percent of the spinel particles aggregate.
And particle SP3: purity 99%, MgO component 27%, Al 2 O 3 component 72% of the spinel grains fine aggregate.
Particles AC: Alumina cement having an Al 2 O 3 component of 73%, a CaO component of 25%, a specific surface area of 4920 cm 2 / g, and an average particle size of 10 μm.
Alumina fine powder: alumina having a purity of 99% and an average particle diameter of 5 μm.
-Silica fine powder: silica having a purity of 92% and an average particle diameter of 1 m.
-Lactic acid complex salt: Basic aluminum lactate (Takiserum AS-300, trade name, manufactured by Taki Kagaku).
-Dispersant: sodium tripolyphosphate.
PEG: polyethylene glycol (manufactured by Sanyo Kasei Co., trade name; 6000P).
-Curing regulator: boric acid.
[0025]
[Evaluation results]
The properties of the specimens obtained in Examples 1 to 9 were measured and evaluated, and are shown in Tables 1 and 2.
Evaluation items and measurement methods are as follows.
・ Construction temperature: Room temperature at the construction site.
Workability: The workable time of 1 to 10 hours was good, and the workable time of less than 1 hour or more than 10 hours was poor.
Thermal expansion coefficient: The thermal expansion up to a measurement temperature of 50 to 1000 ° C. is measured with a thermal dilatometer (trade name: M-7000, manufactured by Vacuum Riko Co., Ltd.), and the average thermal expansion coefficient in the above temperature range (× 10 −6). (1 / K)).
-Bulk specific gravity: Calculated by the Archimedes method as bulk specific gravity = dry mass / (saturated mass-mass in water).
Linear change rate: The length of the JIS sample after curing was L 0 , and the length after heat treatment was L 1 , which was calculated as (L 1 −L 0 ) / L 0 × 100 (%).
-Porosity: Calculated by the Archimedes method as apparent porosity = (saturated mass-dry mass) / (saturated mass-mass in water) x 100 (%).
- permeability: calculated (× 10 -9 m 2 / Pa · s) by JIS R2115.
Compressive strength: Calculated (MPa) according to JIS R2553.
-Appearance: Cracks were visually determined.
[0026]
[Table 1]
Figure 2004217488
[0027]
[Table 2]
Figure 2004217488
[0028]
【The invention's effect】
This refractory has a thermal expansion coefficient of 7 to 12 × 10 −6, which is close to YSZ. The air permeability is greatly reduced as compared with the conventional product of 40 × 10 −9 m 2 / Pa · s, and the compressive strength is higher than the conventional product of 20 MPa. Moreover, it is a magnesia-spinel refractory that is less likely to crack, and is therefore particularly suitable as a solid electrolyte support member made of YSZ used for SOFC. An SOFC using the refractory as a support member for a solid electrolyte made of YSZ has advantages such as excellent durability.
[0029]
In addition, the refractory obtained by applying (forming) and heat-treating the amorphous refractory is suitable as the support member, and has a small shrinkage due to firing, so that there is little deformation, and a complicated shape or a deformed product can be obtained. It is particularly excellent in the degree of freedom in shape, for example, it can be easily made.

Claims (6)

MgO成分35〜74質量%と、Al成分25〜60質量%と、CaO成分1〜10質量%とを含み、MgO成分とAl成分との合量が85質量%以上で、かつSiO成分を実質的に含まないことを特徴とするマグネシアスピネル質耐火物。In the MgO component 35-74 wt%, and Al 2 O 3 component 25-60% by weight, and a 1 to 10 wt% CaO component, the total amount of the MgO component and Al 2 O 3 component is 85 mass% or more A magnesia-spinel refractory, characterized by being substantially free of a SiO 2 component. 温度50〜1000℃における平均熱膨張係数が7〜12×10−6(1/K)であり、かつ通気率が10×10−9/Pa・s以下である請求項1記載のマグネシアスピネル質耐火物。The magnesia according to claim 1, wherein the average thermal expansion coefficient at a temperature of 50 to 1000 ° C is 7 to 12 × 10 −6 (1 / K), and the air permeability is 10 × 10 −9 m 2 / Pa · s or less. Spinel refractories. 気孔率が20%以下である請求項1または2記載のマグネシアスピネル質耐火物。3. The magnesia-spinel refractory according to claim 1, having a porosity of 20% or less. 圧縮強度が30MPa以上である請求項1、2または3記載のマグネシアスピネル質耐火物。The magnesia spinel refractory according to claim 1, 2 or 3, having a compressive strength of 30 MPa or more. マグネシア粒子10〜70質量%と、スピネル粒子20〜70質量%と、アルミナセメント粒子1〜30質量%とを含み、マグネシア粒子とスピネル粒子の合量が60質量%以上で、かつシリカ粒子を含まないことを特徴とするマグネシアスピネル質不定形耐火物。It contains 10 to 70% by mass of magnesia particles, 20 to 70% by mass of spinel particles, and 1 to 30% by mass of alumina cement particles, and the total amount of magnesia particles and spinel particles is 60% by mass or more and contains silica particles. Magnesia spinel amorphous refractory characterized by the absence of 請求項5記載の不定形耐火物を成形後、1250〜1500℃で焼成することを特徴とするマグネシアスピネル質耐火物の製造方法。A method for producing a magnesia-spinel refractory, comprising firing the amorphous refractory of claim 5 at 1250 to 1500 ° C. after molding.
JP2003009779A 2003-01-17 2003-01-17 Magnesia spinel refractory and its producing method Withdrawn JP2004217488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009779A JP2004217488A (en) 2003-01-17 2003-01-17 Magnesia spinel refractory and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009779A JP2004217488A (en) 2003-01-17 2003-01-17 Magnesia spinel refractory and its producing method

Publications (1)

Publication Number Publication Date
JP2004217488A true JP2004217488A (en) 2004-08-05

Family

ID=32899172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009779A Withdrawn JP2004217488A (en) 2003-01-17 2003-01-17 Magnesia spinel refractory and its producing method

Country Status (1)

Country Link
JP (1) JP2004217488A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138050A (en) * 2008-12-15 2010-06-24 Ngk Insulators Ltd Method of manufacturing compound oxide
CN102060551A (en) * 2010-11-05 2011-05-18 西南科技大学 Nano complex phase thermal carrier coating material La2Zr2O7-YSZ (Yttria Stabilized Zirconia) prepared by in-situ reaction and preparation method thereof
KR101379203B1 (en) * 2012-11-16 2014-03-31 (주) 세라컴 Manufacturing method of support for solid oxide fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138050A (en) * 2008-12-15 2010-06-24 Ngk Insulators Ltd Method of manufacturing compound oxide
CN102060551A (en) * 2010-11-05 2011-05-18 西南科技大学 Nano complex phase thermal carrier coating material La2Zr2O7-YSZ (Yttria Stabilized Zirconia) prepared by in-situ reaction and preparation method thereof
KR101379203B1 (en) * 2012-11-16 2014-03-31 (주) 세라컴 Manufacturing method of support for solid oxide fuel cell

Similar Documents

Publication Publication Date Title
EP2088134A1 (en) Lightweight Ceramic Material
WO2014096846A1 (en) Sialon bonded silicon carbide material
Li et al. Optimized sintering and mechanical properties of Y-TZP ceramics for dental restorations by adding lithium disilicate glass ceramics
WO2017170840A1 (en) Refractory aggregate, method for manufacturing same, and refractory employing same
JP2010254545A (en) Silicon nitride-based composite ceramic and method for producing the same
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP5769313B2 (en) Low thermal expansion insulation castable
JP2004217488A (en) Magnesia spinel refractory and its producing method
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JP2009263145A (en) Powder composition for insulating castable having low thermal conductivity
EP3307695B1 (en) Refractories for applications in combustion chambers intended for producing energy and/or waste disposal
JP7089448B2 (en) Aggregate for refractory, its manufacturing method, and refractory using it
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2003040688A (en) Lightweight ceramic sintered compact
JP4822605B2 (en) Roller hearth roller made of heat-resistant mullite sintered body
Jeyalakshmi et al. Fire Related Temperature Resistance of Fly Ash Based Geopolymer Mortar
JPH10212158A (en) Refractory for glass fusion furnace
Aramide et al. EFFECTS OF TITANIA AND SINTERING TEMPERATURE ON THE PHASE DEVELOPMENT AND PROPERTIES OF SINTERED MULLITECARBON COMPOSITE SYNTHESIZED FROM OKPELLA KAOLIN
JP2001114555A (en) Thermal shock-resistant alumina sintered compact and member for heat treatment composed of the same
JPH10101441A (en) Composition for castable refractory and formation of furnace wall using the same composition
JP2002284577A (en) Refractory and its manufacturing method
KAOLIN ACTA TECHNICA CORVINIENSIS
JP2003342080A (en) Castable chromia refractory and precast block manufactured using the same
CN114671673A (en) Corrosion-resistant light-weight refractory material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080910