JP2010138050A - Method of manufacturing compound oxide - Google Patents

Method of manufacturing compound oxide Download PDF

Info

Publication number
JP2010138050A
JP2010138050A JP2008318366A JP2008318366A JP2010138050A JP 2010138050 A JP2010138050 A JP 2010138050A JP 2008318366 A JP2008318366 A JP 2008318366A JP 2008318366 A JP2008318366 A JP 2008318366A JP 2010138050 A JP2010138050 A JP 2010138050A
Authority
JP
Japan
Prior art keywords
temperature
raw material
compound
composite oxide
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008318366A
Other languages
Japanese (ja)
Other versions
JP5352218B2 (en
Inventor
Hiroshi Okamoto
拓 岡本
Shigenori Ito
重則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008318366A priority Critical patent/JP5352218B2/en
Publication of JP2010138050A publication Critical patent/JP2010138050A/en
Application granted granted Critical
Publication of JP5352218B2 publication Critical patent/JP5352218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process which is simplified and is decreased in the generation of inferior goods of a compound oxide. <P>SOLUTION: The process of manufacturing the compound oxide includes: a raw material preparing process in which a first compound of at least one of a compound which contains a first element and carries out hydration when coexisting with water and a compound after hydration containing the first element, and a second compound including a second element are mixed making water as a solvent to obtain a mixed raw material; a molding process which molds a mixed raw material to obtain a molded body; and a calcinating process which warms the molded body at a temperature raising rate below a range of a predetermined slowly raising rate to calcinate and to obtain a calcinated body. When the first element is magnesium and the second element is aluminum, 30°C/h or less (up to 600°C) and 100°C/h or less (600-1,500°C) are desirable. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複合酸化物の製造方法に関し、より詳しくは、水と共存すると水和する化合物を原料とした複合酸化物の製造方法にする。   The present invention relates to a method for producing a complex oxide. More specifically, the present invention provides a method for producing a complex oxide using as a raw material a compound that hydrates when coexisting with water.

従来、複合酸化物としては、平均粒径50μm以下のマグネシア粒子と平均粒径50μm以下のスピネル粒子とをアルコールを溶媒として湿式混合したのち成形、焼成して作製され、相対密度が98%以上、不純物含有量1%以下であるものが提案されている(例えば、特許文献1参照)。この特許文献1の複合酸化物は、マグネシアのモル百分率を変えることにより熱膨張係数を調整することができ、例えば燃料電池用シール材として用いることができる。また、97%以上の純度のマグネシア粒子と97%以上の純度のアルミナ粒子とを有機溶媒中で混合粉砕してサブミクロンサイズの粒子とし、有機バインダを入れて高圧プレスを行い成形し焼成して作製することにより緻密体としたマグネシウムアルミネートスピネル凝集体が提案されている(例えば、特許文献2参照)。
特開平7−126061号公報 特開2000−290067号公報
Conventionally, as a composite oxide, magnesia particles having an average particle size of 50 μm or less and spinel particles having an average particle size of 50 μm or less are wet-mixed using alcohol as a solvent, and then molded and fired, and the relative density is 98% or more. Those having an impurity content of 1% or less have been proposed (see, for example, Patent Document 1). The composite oxide of Patent Document 1 can adjust the thermal expansion coefficient by changing the molar percentage of magnesia, and can be used, for example, as a sealing material for a fuel cell. In addition, magnesia particles with a purity of 97% or more and alumina particles with a purity of 97% or more are mixed and ground in an organic solvent to form submicron-sized particles. Magnesium aluminate spinel aggregates that have been made dense by production have been proposed (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 7-126061 JP 2000-290067 A

しかしながら、この特許文献1,2に記載された複合酸化物の製造方法では、有機溶媒を用いて原料を混合するため、原料の混合後の有機溶媒の処理などが煩雑であった。   However, in the method for producing a composite oxide described in Patent Documents 1 and 2, since raw materials are mixed using an organic solvent, the treatment of the organic solvent after mixing the raw materials is complicated.

本発明は、このような課題に鑑みなされたものであり、工程をより簡素化すると共に複合酸化物の不良品の発生をより抑制することができる複合酸化物の製造方法を提供することを主目的とする。   The present invention has been made in view of such problems, and it is a main object of the present invention to provide a method for producing a composite oxide that can further simplify the process and suppress the generation of defective composite oxides. Objective.

上述した目的を達成するために鋭意研究したところ、本発明者らは、酸化マグネシウムと酸化アルミニウムとを水を溶媒として混合し、より緩やかな昇温速度で昇温して焼成すると、工程をより簡素化すると共に複合酸化物の不良品の発生をより抑制することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the present inventors have mixed magnesium oxide and aluminum oxide with water as a solvent, heated at a more moderate heating rate, and fired. The present invention has been completed by finding out that it is possible to simplify the production of defective composite oxides and to suppress the generation of defective products.

即ち、本発明の複合酸化物の製造方法は、
第1元素と第2元素とを含む複合酸化物の製造方法であって、
第1元素を含み水と共存すると水和する化合物及び該第1元素を含む水和後の化合物の少なくとも一方である第1化合物と第2元素を含む第2化合物とを水を溶媒として混合して混合原料を得る原料調製工程と、
前記混合原料を成形して成形体を得る成形工程と、
前記成形体を該成形体に基づいて定められる所定の緩昇温速度以下の範囲の昇温速度で昇温して焼成し焼成体を得る焼成工程と、
を含むものである。
That is, the method for producing the composite oxide of the present invention includes:
A method for producing a composite oxide containing a first element and a second element,
A first compound, which is at least one of a compound containing the first element and hydrated when coexisting with water and a compound after hydration containing the first element, and a second compound containing the second element are mixed using water as a solvent. Raw material preparation process to obtain mixed raw materials,
A molding step of molding the mixed raw material to obtain a molded body;
A firing step of obtaining a fired body by heating and firing the molded body at a temperature increase rate within a range of a predetermined slow temperature increase rate determined based on the molded body;
Is included.

この複合酸化物の製造方法では、工程をより簡素化すると共に複合酸化物の不良品の発生をより抑制することができる。このような効果が得られる理由は、例えば、以下のように推測される。
例えば、水和する原料を用いる場合は、有機溶媒を用いて原料を混合すれば、原料の水和を防止することができるが、原料混合後の有機溶媒の処理工程などが必要となる。一方、水を溶媒として原料を混合して焼成すると、焼成時に水蒸気が生じ、成形体に空隙が生じることがある。一般的な昇温速度で焼成を行うと、この空隙に基づく収縮が生じて焼成体に多数のクラックが生じてしまう。これを防止する方法としては、原料を水を用いて混合したあと、水和した化合物を仮焼して酸化物とし、その後、成形して本焼成する方法が考えられるが、仮焼工程が必要となり、工程が煩雑化してしまう。本発明の複合酸化物の製造方法では、溶媒を水として溶媒の処理を容易とすると共に、所定の緩昇温速度以下の範囲で昇温することにより脱水及び空隙の収縮を緩やかに行い、焼成体のクラックの発生を抑制するのである。したがって、水和する原料を水を溶媒として混合する際に、仮焼工程を省略して工程をより簡素化すると共に、脱水などによる収縮をより緩やかにして複合酸化物の不良品の発生をより抑制することができる。
In this method for producing a composite oxide, the process can be further simplified and the occurrence of defective composite oxides can be further suppressed. The reason why such an effect is obtained is estimated as follows, for example.
For example, in the case of using a raw material to be hydrated, if the raw material is mixed using an organic solvent, the raw material can be prevented from being hydrated, but a processing step of the organic solvent after mixing the raw material is required. On the other hand, when the raw materials are mixed using water as a solvent and fired, water vapor is generated during firing, and voids may be formed in the molded body. When firing is performed at a general temperature increase rate, shrinkage based on the voids occurs, and a large number of cracks are generated in the fired body. As a method for preventing this, a method of mixing the raw material with water and calcining the hydrated compound to form an oxide, and then forming and firing this can be considered, but a calcining step is necessary. Thus, the process becomes complicated. In the method for producing a composite oxide of the present invention, the solvent is easily treated using water as a solvent, and dehydration and void shrinkage are gradually performed by raising the temperature within a range of a predetermined slow temperature rise rate, followed by firing. It suppresses the occurrence of cracks in the body. Therefore, when mixing the raw material to be hydrated with water as a solvent, the calcination step is omitted to simplify the process, and the shrinkage due to dehydration and the like is further reduced, resulting in the generation of defective composite oxides. Can be suppressed.

次に、本発明を実施するための最良の形態を説明する。本発明の複合酸化物の製造方法は、(1)第1元素を含み水と共存すると水和する化合物及び該第1元素を含む水和後の化合物の少なくとも一方である第1化合物と第2元素を含む第2化合物とを水を溶媒として混合して混合原料を得る原料調製工程と、(2)混合原料を成形して成形体を得る成形工程と、(3)成形体をこの成形体に基づいて定められる所定の緩昇温速度以下の範囲の昇温速度で昇温して焼成し焼成体を得る焼成工程と、を含んでいる。ここでは説明の便宜のため、第1元素をマグネシウムとし第2元素をアルミニウムとする場合について説明する。   Next, the best mode for carrying out the present invention will be described. The method for producing a composite oxide of the present invention comprises (1) a first compound and a second compound which are at least one of a compound containing a first element and hydrating when coexisting with water and a compound after hydration containing the first element. A raw material preparation step of mixing a second compound containing an element with water as a solvent to obtain a mixed raw material; (2) a molding step of forming a mixed raw material to obtain a molded body; and (3) a molded body of the molded body. And a firing step in which a fired body is obtained by firing at a temperature rise rate in a range equal to or lower than a predetermined slow temperature rise rate determined based on the above. Here, for convenience of explanation, a case where the first element is magnesium and the second element is aluminum will be described.

(1)原料調製工程
本発明の原料調製工程では、マグネシウムを含み水と共存すると水和する化合物及びマグネシウムを含む水和後の化合物の少なくとも一方である第1化合物とアルミニウムを含む第2化合物とを水を溶媒として混合して混合原料を得る。第1化合物としては、例えば酸化マグネシウムや水酸化マグネシウムなどが挙げられる。また、第2化合物としては酸化アルミニウムや水酸化アルミニウムなどのほか、マグネシウムとアルミニウムの複合酸化物であるスピネルなどが挙げられる。このうち、酸化マグネシウムとスピネルとを用いると、酸化マグネシウムの添加量を定めやすい。また、酸化マグネシウムと酸化アルミニウムとを用いると、例えばスピネルの合成工程を省略可能であるため、工程をより簡素化することができる。この第1化合物と第2化合物との混合は、水を溶媒として行う。こうすれば、例えば有機溶媒を用いて混合するのに比してその後の溶媒の処理などが容易になるし、より安全である。原料の混合は、例えば、ポットミル、遊星ミル、アトライタなどを用いることができる。水を溶媒として混合したあと、混合後に溶媒である水を乾燥すると共に混合原料の粒度を調整する造粒処理を行うものとするのが好ましい。造粒処理では、例えばスプレードライヤーなどを用いて所定の粒径範囲に造粒するものとしてもよい。こうすれば、混合原料の乾燥と造粒とを同時に行うため、効率がよいし、粒度を揃えられるため次工程の成形を行いやすい。あるいは、水を溶媒として混合したあと、乾燥し、乳鉢などで乾式粉砕を行ったあと、篩を用いて所定の粒度に分級し混合原料の粉体としてもよい。混合原料の粉体は、成形の容易さを考慮すると成形方法に合わせた粒度に調整するのが好ましい。なお、酸化マグネシウムを用いた場合には、混合粉体は、水和した水酸化マグネシウムが含まれる状態で得られることになる。
(1) Raw material preparation step In the raw material preparation step of the present invention, a first compound that is at least one of a compound that contains magnesium and hydrates when coexisting with water and a hydrated compound that contains magnesium, and a second compound that contains aluminum Are mixed using water as a solvent to obtain a mixed raw material. Examples of the first compound include magnesium oxide and magnesium hydroxide. Examples of the second compound include aluminum oxide and aluminum hydroxide, and spinel that is a composite oxide of magnesium and aluminum. Among these, when magnesium oxide and spinel are used, the amount of magnesium oxide added can be easily determined. Further, when magnesium oxide and aluminum oxide are used, for example, the spinel synthesis step can be omitted, and thus the process can be further simplified. The mixing of the first compound and the second compound is performed using water as a solvent. In this way, for example, the subsequent solvent treatment becomes easier and safer than in the case of mixing using an organic solvent. For mixing the raw materials, for example, a pot mill, a planetary mill, an attritor or the like can be used. After mixing with water as a solvent, it is preferable to perform a granulation treatment of drying the water as the solvent after mixing and adjusting the particle size of the mixed raw material. In the granulation treatment, granulation may be performed within a predetermined particle size range using, for example, a spray dryer. In this case, since the mixed raw material is dried and granulated at the same time, the efficiency is good, and since the particle size can be made uniform, it is easy to perform the next process. Alternatively, after mixing with water as a solvent, the mixture may be dried, dry pulverized in a mortar or the like, and then classified into a predetermined particle size using a sieve to obtain a mixed raw material powder. The powder of the mixed raw material is preferably adjusted to a particle size suitable for the molding method in consideration of ease of molding. When magnesium oxide is used, the mixed powder is obtained in a state containing hydrated magnesium hydroxide.

(2)成形工程
本発明の成形工程では、混合した混合原料を成形して成形体を作製し、この作製した成形体を焼成して焼成体を得る処理を行う。この工程における成形方法は、例えば、金型プレス成形やホットプレス成形、冷間等方成形(CIP)、熱間等方成形(HIP)などにより任意の形状に行うことができる。
(2) Molding step In the molding step of the present invention, the mixed mixed raw materials are molded to form a molded body, and the manufactured molded body is fired to obtain a fired body. The molding method in this step can be performed in any shape by, for example, die press molding, hot press molding, cold isotropic molding (CIP), hot isotropic molding (HIP), or the like.

(3)焼成工程
本発明の焼成工程では、成形体をこの成形体に基づいて定められる所定の緩昇温速度以下の範囲の昇温速度で昇温して焼成し焼成体を得る。こうすれば、例えば、成形前に、混合原料に含まれる水酸化物を酸化物とする仮焼工程を省略可能であるため、工程をより簡略化することができる。この成形体に基づいて定められる所定の緩昇温速度は、成形体の組成や成形体の大きさなどと昇温速度との関係を予め実験などにより求め、例えば表面にクラックが発生しない昇温速度を所定の緩昇温速度として定めてもよい。この焼成工程では、開始から終了まで一定の緩昇温速度で昇温してもよいし、成形体に含まれる成分が反応する1以上の温度領域に対してそれぞれ所定の緩昇温速度を定めて昇温するものとしてもよい。前者では、より確実に成形体を焼成することができるし、後者では、反応に関係しない温度領域で昇温速度を高めることにより、焼成時間の短縮を図ることができる。また、この焼成工程では、緩昇温速度を設定するに際して、昇温の途中で一定温度で保持する期間を設けるものとしてもよい。こうすれば、一定温度で保持することにより急激な体積変化を抑制し、複合酸化物の不良品の発生をより抑制することができる。この一定温度で保持する温度領域は、焼成による体積変化が大きい温度領域とすることが好ましい。ここで、一定温度で保持する期間を設けた場合は、この緩昇温速度は、この一定温度の期間を含めた平均の昇温速度をいうものとする。本発明の焼成工程において、例えば、原料調製工程でアルミニウムを含む第2化合物として酸化アルミニウムを用いた際には、水酸化マグネシウムの脱水温度領域では所定の第1緩昇温速度以下の範囲の昇温速度で昇温し、マグネシウムとアルミニウムとが反応して生成するスピネルの生成温度領域では所定の第2緩昇温速度以下の範囲の昇温速度で昇温するものとしてもよい。この水酸化マグネシウムの脱水温度領域は300℃以上400℃以下としてもよいし、スピネルの生成温度領域は800℃以上1100℃以下としてもよい。また、所定の第1緩昇温速度として30℃/h以下の範囲の昇温速度で昇温し、所定の第2緩昇温速度として100℃/h以下の範囲の昇温速度で昇温するものとしてもよい。こうすれば、より効率よく複合酸化物の焼成体を得ることができる。このように、焼成工程において、水酸化マグネシウムが酸化マグネシウムとなると共に、酸化マグネシウムの少なくとも一部とアルミニウムとが反応してスピネルが生成し、マグネシウムとアルミニウムとを含む複合酸化物である、酸化マグネシウム−スピネル複合酸化物を作製することができる。
(3) Firing step In the firing step of the present invention, the molded body is heated at a temperature rise rate in a range equal to or lower than a predetermined slow temperature increase rate determined based on the molded body to obtain a fired body. In this case, for example, the calcining step using the hydroxide contained in the mixed raw material as an oxide can be omitted before molding, and therefore the process can be further simplified. The predetermined slow heating rate determined on the basis of this molded body is obtained by experimentally determining the relationship between the temperature of the molded body, the composition of the molded body, the size of the molded body, and the like. The speed may be set as a predetermined slow temperature increase rate. In this firing step, the temperature may be increased at a constant slow temperature increase rate from the start to the end, and a predetermined slow temperature increase rate is determined for each of one or more temperature regions in which the components contained in the molded body react. The temperature may be raised. In the former, the molded body can be fired more reliably, and in the latter, the firing time can be shortened by increasing the rate of temperature rise in a temperature region that is not related to the reaction. Moreover, in this baking process, when setting a moderate temperature increase rate, it is good also as providing the period hold | maintained at a fixed temperature in the middle of temperature increase. If it carries out like this, rapid volume change can be suppressed by hold | maintaining at fixed temperature, and generation | occurrence | production of the defective product of complex oxide can be suppressed more. The temperature region held at this constant temperature is preferably a temperature region in which the volume change due to firing is large. Here, when a period for holding at a constant temperature is provided, the slow temperature increase rate means an average temperature increase rate including the period of the constant temperature. In the firing step of the present invention, for example, when aluminum oxide is used as the second compound containing aluminum in the raw material preparation step, the temperature rises within a predetermined first slow temperature increase rate in the magnesium hydroxide dehydration temperature region. The temperature may be increased at a temperature rate, and the temperature may be increased at a temperature increase rate in a range equal to or lower than a predetermined second slow temperature increase rate in a spinel generation temperature region generated by reaction between magnesium and aluminum. The magnesium hydroxide dehydration temperature region may be 300 ° C. or more and 400 ° C. or less, and the spinel formation temperature region may be 800 ° C. or more and 1100 ° C. or less. Further, the temperature is increased at a temperature increase rate in the range of 30 ° C./h or less as the predetermined first slow temperature increase rate, and the temperature is increased at the temperature increase rate in the range of 100 ° C./h or less as the predetermined second slow temperature increase rate. It is good also as what to do. By doing so, a fired body of the composite oxide can be obtained more efficiently. Thus, in the firing step, magnesium hydroxide is converted to magnesium oxide, and at least a part of magnesium oxide and aluminum react to produce spinel, which is a composite oxide containing magnesium and aluminum. -A spinel composite oxide can be produced.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば上述した実施形態では、第1元素をマグネシウムとし第2元素をアルミニウムとしたが、第1元素を含み水と共存すると水和する化合物及び該第1元素を含む水和後の化合物の少なくとも一方である第1化合物と第2元素を含む第2化合物とを用いるものとすれば特にこれに限定されずに本発明を適用することができる。また、焼成工程では、第1元素を含む水和化合物の脱水温度領域では所定の第1緩昇温速度以下の範囲の昇温速度で昇温し、第1元素と第2元素との化合物である第3化合物の生成温度領域では所定の第2緩昇温速度以下の範囲の昇温速度で昇温するものとしてもよい。なお、所定の緩昇温速度以下の範囲は、第1元素及び第2元素の種類に応じて経験的に求めるものとする。   For example, in the above-described embodiment, the first element is magnesium and the second element is aluminum. However, at least one of a compound containing the first element and hydrating when coexisting with water and a compound after hydration containing the first element are included. If the first compound and the second compound containing the second element are used, the present invention can be applied without being particularly limited thereto. Further, in the firing step, in the dehydration temperature region of the hydrated compound containing the first element, the temperature is raised at a temperature rise rate in a range equal to or lower than a predetermined first slow temperature rise rate, and the compound of the first element and the second element is used. In a production temperature region of a certain third compound, the temperature may be increased at a temperature increase rate in a range equal to or lower than a predetermined second slow temperature increase rate. In addition, the range below a predetermined slow temperature increase rate shall be calculated | required empirically according to the kind of 1st element and 2nd element.

以下には、複合酸化物として酸化マグネシウム−スピネル複合酸化物を具体的に作製した例を、実施例として説明する。   Hereinafter, an example in which a magnesium oxide-spinel composite oxide is specifically prepared as the composite oxide will be described as an example.

[実施例1]
酸化マグネシウム(協和化学工業株式会社製)とアルミナ(昭和電工株式会社製)とを重量比で、5:5となるように秤量し、ポットミルに入れ溶媒としての水を加えて33重量%のスラリーとし、3時間、混合粉砕した。混合粉砕した原料を80℃で24時間乾燥したあと乳鉢で粉砕し、篩を用いて150μm以下の粒度に分級して混合原料粉体を得た。この混合原料粉体を10MPaで35mm×25mm×5mmの形状となるように金型プレス成形を行ったのち、溶媒を水とし、400MPaの条件でCIP処理を行い成形体を得た。この成形体の25℃での乾燥重量は、20gであった。この成形体においては、350℃近傍の領域で水酸化マグネシウムの脱水反応が起き、800℃〜1100℃の領域でスピネルの生成反応が起きる。このため、以下の焼成スケジュールでこの成形体を焼成した。まず20℃/hの昇温速度で室温から600℃まで昇温し、そのまま100℃/hの昇温速度で600℃から1500℃まで昇温し、1500℃で2時間保持してこの成形体を焼成し、得られた酸化マグネシウム−スピネル複合酸化物の焼成体を実施例1とした。この実施例1の酸化マグネシウムと酸化アルミニウムとの重量比、焼成スケジュール、焼成体の外観の評価を表1に示す。この表1には、後述する実施例2〜10及び比較例1〜10についても示した。
[Example 1]
Magnesium oxide (manufactured by Kyowa Chemical Industry Co., Ltd.) and alumina (manufactured by Showa Denko KK) are weighed to a weight ratio of 5: 5, put in a pot mill and added with water as a solvent to make a 33 wt% slurry. And mixed and ground for 3 hours. The mixed and pulverized raw material was dried at 80 ° C. for 24 hours, then pulverized in a mortar, and classified to a particle size of 150 μm or less using a sieve to obtain a mixed raw material powder. The mixed raw material powder was subjected to die press molding so as to have a shape of 35 mm × 25 mm × 5 mm at 10 MPa, and then subjected to CIP treatment under a condition of 400 MPa using a solvent as water to obtain a molded body. The dry weight of this molded body at 25 ° C. was 20 g. In this molded body, a dehydration reaction of magnesium hydroxide occurs in the region near 350 ° C., and a spinel formation reaction occurs in the region of 800 ° C. to 1100 ° C. For this reason, this molded object was baked with the following baking schedules. First, the temperature was raised from room temperature to 600 ° C. at a rate of temperature increase of 20 ° C./h, and the temperature was raised from 600 ° C. to 1500 ° C. at a rate of temperature increase of 100 ° C./h, and kept at 1500 ° C. for 2 hours. Was fired, and the obtained fired body of magnesium oxide-spinel composite oxide was taken as Example 1. Table 1 shows the weight ratio of magnesium oxide and aluminum oxide, firing schedule, and evaluation of the appearance of the fired body in Example 1. Table 1 also shows Examples 2 to 10 and Comparative Examples 1 to 10 described later.

Figure 2010138050
Figure 2010138050

[実施例2〜5]
原料配合において、酸化マグネシウム粉体と酸化アルミニウム粉体とを重量比で、6.5:3.5,8:2,8.5:1.5,9:1となるようにそれぞれ秤量した以外は実施例1と同様の工程を経て得られた酸化マグネシウム−スピネル複合酸化物の焼成体をそれぞれ実施例2〜5とした。なお、実施例2〜5において、この成形体の25℃での乾燥重量は、25gであった。
[Examples 2 to 5]
Except for weighing raw materials, magnesium oxide powder and aluminum oxide powder were weighed so that the weight ratio would be 6.5: 3.5, 8: 2, 8.5: 1.5, 9: 1. Were fired bodies of the magnesium oxide-spinel composite oxide obtained through the same steps as in Example 1, respectively, as Examples 2 to 5. In Examples 2 to 5, the dry weight of this molded body at 25 ° C. was 25 g.

[実施例6〜10]
焼成スケジュールを、20℃/hの昇温速度で室温から350℃まで昇温し、350℃で2時間保持し、その後100℃/hの昇温速度で350℃から1500℃まで昇温し、1500℃で2時間保持するものとして成形体を焼成した以外は実施例1と同様の工程を経て得られた酸化マグネシウム−スピネル複合酸化物の焼成体を実施例6とした。この実施例6では、350℃で2時間保持するため、室温から350℃を超えるまでの平均の昇温速度は、17.8℃/hともいうことができる。この成形体の25℃での乾燥重量は、20gであった。また、原料配合において、酸化マグネシウム粉体と酸化アルミニウム粉体とを重量比で、6.5:3.5,8:2,8.5:1.5,9:1となるようにそれぞれ秤量した以外は実施例6と同様の工程を経て得られた酸化マグネシウム−スピネル複合酸化物の焼成体をそれぞれ実施例7〜10とした。なお、実施例6〜10において、単位乾燥重量あたりの昇温速度は、実施例6と同様の値であった。
[Examples 6 to 10]
The firing schedule was raised from room temperature to 350 ° C. at a heating rate of 20 ° C./h, held at 350 ° C. for 2 hours, and then heated from 350 ° C. to 1500 ° C. at a heating rate of 100 ° C./h, A fired body of magnesium oxide-spinel composite oxide obtained through the same steps as in Example 1 except that the molded body was fired for 2 hours at 1500 ° C. was designated as Example 6. In Example 6, since the temperature is maintained at 350 ° C. for 2 hours, the average rate of temperature increase from room temperature to over 350 ° C. can also be referred to as 17.8 ° C./h. The dry weight of this molded body at 25 ° C. was 20 g. Further, in the raw material blending, the magnesium oxide powder and the aluminum oxide powder are weighed so that the weight ratio is 6.5: 3.5, 8: 2, 8.5: 1.5, 9: 1, respectively. Except for the above, the fired bodies of magnesium oxide-spinel composite oxide obtained through the same steps as in Example 6 were designated as Examples 7 to 10, respectively. In Examples 6 to 10, the rate of temperature increase per unit dry weight was the same value as in Example 6.

[比較例1〜5]
焼成スケジュールを、200℃/hの昇温速度で室温から1500℃まで昇温し、1500℃で2時間保持するものとして成形体を焼成した以外は実施例1と同様の工程を経て得られた酸化マグネシウム−スピネル複合酸化物の焼成体を比較例1とした。この成形体の25℃での乾燥重量は、20gであった。また、原料配合において、酸化マグネシウム粉体と酸化アルミニウム粉体とを重量比で、6.5:3.5,8:2,8.5:1.5,9:1となるようにそれぞれ秤量した以外は比較例1と同様の工程を経て得られた酸化マグネシウム−スピネル複合酸化物の焼成体をそれぞれ比較例2〜5とした。なお、比較例1〜5において、単位乾燥重量あたりの昇温速度は、比較例1と同様の値であった。
[Comparative Examples 1-5]
The firing schedule was obtained through the same steps as in Example 1 except that the molded body was fired at a heating rate of 200 ° C./h from room temperature to 1500 ° C. and held at 1500 ° C. for 2 hours. A fired body of magnesium oxide-spinel composite oxide was used as Comparative Example 1. The dry weight of this molded body at 25 ° C. was 20 g. Further, in the raw material blending, the magnesium oxide powder and the aluminum oxide powder are weighed so that the weight ratio is 6.5: 3.5, 8: 2, 8.5: 1.5, 9: 1, respectively. Except for the above, the fired bodies of magnesium oxide-spinel composite oxide obtained through the same steps as in Comparative Example 1 were used as Comparative Examples 2 to 5, respectively. In Comparative Examples 1 to 5, the rate of temperature increase per unit dry weight was the same value as in Comparative Example 1.

[比較例6〜10]
焼成スケジュールを、40℃/hの昇温速度で室温から600℃まで昇温し、そのまま100℃/hの昇温速度で600℃から1500℃まで昇温し、1500℃で2時間保持するものとして成形体を焼成した以外は実施例1と同様の工程を経て得られた酸化マグネシウム−スピネル複合酸化物の焼成体を比較例6とした。この成形体の25℃での乾燥重量は、20gであった。また、原料配合において、酸化マグネシウム粉体と酸化アルミニウム粉体とを重量比で、6.5:3.5,8:2,8.5:1.5,9:1となるようにそれぞれ秤量した以外は比較例6と同様の工程を経て得られた酸化マグネシウム−スピネル複合酸化物の焼成体をそれぞれ比較例7〜10とした。なお、比較例6〜10において、単位乾燥重量あたりの昇温速度は、比較例6と同様の値であった。
[Comparative Examples 6 to 10]
The firing schedule is to raise the temperature from room temperature to 600 ° C. at a temperature increase rate of 40 ° C./h, and then increase the temperature from 600 ° C. to 1500 ° C. at a temperature increase rate of 100 ° C./h and hold at 1500 ° C. for 2 hours. As a comparative example 6, a fired body of magnesium oxide-spinel composite oxide obtained through the same steps as in Example 1 except that the molded body was fired. The dry weight of this molded body at 25 ° C. was 20 g. Further, in the raw material blending, the magnesium oxide powder and the aluminum oxide powder are weighed so that the weight ratio is 6.5: 3.5, 8: 2, 8.5: 1.5, 9: 1, respectively. Except for the above, fired bodies of magnesium oxide-spinel composite oxide obtained through the same steps as in Comparative Example 6 were referred to as Comparative Examples 7 to 10, respectively. In Comparative Examples 6 to 10, the rate of temperature increase per unit dry weight was the same value as in Comparative Example 6.

[実験結果]
一般的な昇温速度である200℃/hで焼成した比較例1〜5の焼成体では、その表面に細かなクラックが多数みられた。また、昇温速度をより遅くし、室温から600℃までの温度領域で昇温速度を40℃/hとし600℃から1500℃までの温度領域で昇温速度を100℃/hとして焼成した比較例6〜10の焼成体でも、その表面に細かなクラックが多数みられた。一方、実施例1〜10の焼成体では、その表面にクラックはみられなかった。この結果より、酸化マグネシウム−スピネル複合酸化物の原料を水を溶媒として混合したあと、所定の昇温速度以下の範囲で焼成すると、脱水やスピネルの生成に伴う体積変化によるクラックの発生を抑制することができることが明らかとなった。なお、実施例1〜10では、トータルの焼成時間が長いということがあるが、それよりも、仮焼工程・仮焼に伴う粉砕工程などを省略できるため、作業量をより低減できるメリットが高かった。
[Experimental result]
In the fired bodies of Comparative Examples 1 to 5 fired at a general temperature increase rate of 200 ° C./h, many fine cracks were observed on the surface. In addition, a comparison was made by firing at a slower rate of temperature rise and a rate of temperature rise of 40 ° C./h in the temperature range from room temperature to 600 ° C. and a rate of temperature rise of 100 ° C./h in the temperature range from 600 ° C. to 1500 ° C. Even in the fired bodies of Examples 6 to 10, many fine cracks were observed on the surface. On the other hand, in the fired bodies of Examples 1 to 10, no cracks were observed on the surface. From this result, after mixing the raw material of the magnesium oxide-spinel composite oxide with water as a solvent, firing in a range below a predetermined rate of temperature increase suppresses the generation of cracks due to dehydration and volume change accompanying the generation of spinel. It became clear that it was possible. In Examples 1 to 10, the total firing time may be long, but the calcination process and the pulverization process associated with calcination can be omitted. It was.

Claims (8)

第1元素と第2元素とを含む複合酸化物の製造方法であって、
第1元素を含み水と共存すると水和する化合物及び該第1元素を含む水和後の化合物の少なくとも一方である第1化合物と第2元素を含む第2化合物とを水を溶媒として混合して混合原料を得る原料調製工程と、
前記混合原料を成形して成形体を得る成形工程と、
前記成形体を該成形体に基づいて定められる所定の緩昇温速度以下の範囲の昇温速度で昇温して焼成し焼成体を得る焼成工程と、
を含む複合酸化物の製造方法。
A method for producing a composite oxide containing a first element and a second element,
A first compound, which is at least one of a compound containing the first element and hydrated when coexisting with water and a compound after hydration containing the first element, and a second compound containing the second element are mixed using water as a solvent. Raw material preparation process to obtain mixed raw materials,
A molding step of molding the mixed raw material to obtain a molded body;
A firing step of obtaining a fired body by heating and firing the molded body at a temperature increase rate within a range of a predetermined slow temperature increase rate determined based on the molded body;
The manufacturing method of the complex oxide containing this.
前記焼成工程では、前記第1元素を含む水和化合物の脱水温度領域では所定の第1緩昇温速度以下の範囲の昇温速度で昇温し、前記第1元素と前記第2元素との化合物である第3化合物の生成温度領域では所定の第2緩昇温速度以下の範囲の昇温速度で昇温する、請求項1に記載の複合酸化物の製造方法。   In the firing step, in the dehydration temperature region of the hydrated compound containing the first element, the temperature is increased at a temperature increase rate within a predetermined first slow temperature increase rate, and the first element and the second element are heated. 2. The method for producing a composite oxide according to claim 1, wherein the temperature is raised at a temperature rise rate in a range equal to or lower than a predetermined second slow temperature rise rate in a generation temperature region of the third compound as a compound. 前記原料調製工程では、前記第1元素をマグネシウムとし、前記第2元素をアルミニウムとして混合原料を得て、
前記焼成工程では、前記第1元素を含む水和化合物としての水酸化マグネシウムの脱水温度領域では所定の第1緩昇温速度以下の範囲の昇温速度で昇温し、第3化合物としてのスピネルの生成温度領域では所定の第2緩昇温速度以下の範囲の昇温速度で昇温する、請求項2に記載の複合酸化物の製造方法。
In the raw material preparation step, the first element is magnesium and the second element is aluminum to obtain a mixed raw material,
In the firing step, in the dehydration temperature region of magnesium hydroxide as the hydrated compound containing the first element, the temperature is raised at a temperature rise rate in a range equal to or lower than a predetermined first slow temperature rise rate, and spinel as the third compound The method for producing a composite oxide according to claim 2, wherein the temperature is raised at a temperature rise rate in a range equal to or lower than a predetermined second slow temperature rise rate in the generation temperature region.
前記焼成工程では、前記所定の第1緩昇温速度として30℃/h以下の範囲の昇温速度で昇温し、前記所定の第2緩昇温速度として100℃/h以下の範囲の昇温速度で昇温する、請求項3に記載の複合酸化物の製造方法。   In the firing step, the temperature is increased at a temperature increase rate in the range of 30 ° C./h or less as the predetermined first slow temperature increase rate, and the temperature is increased in the range of 100 ° C./h or less as the predetermined second slow temperature increase rate. The method for producing a composite oxide according to claim 3, wherein the temperature is increased at a temperature rate. 前記原料調製工程では、前記混合後に溶媒である水を乾燥すると共に前記混合原料の粒度を調整する造粒処理を行い前記混合原料を得て、
前記成形工程では、前記造粒した混合原料を成形して成形体を得る、請求項1〜4のいずれか1項に記載の複合酸化物の製造方法。
In the raw material preparation step, after the mixing, the water as a solvent is dried and a granulation treatment for adjusting the particle size of the mixed raw material is performed to obtain the mixed raw material,
5. The method for producing a composite oxide according to claim 1, wherein in the forming step, the granulated mixed raw material is formed to obtain a formed body.
前記原料調製工程では、前記第1元素をマグネシウムとし、前記第2元素をアルミニウムとして混合原料を得る、請求項1に記載の複合酸化物の製造方法。   2. The method for producing a composite oxide according to claim 1, wherein in the raw material preparation step, a mixed raw material is obtained using magnesium as the first element and aluminum as the second element. 前記原料調製工程では、前記第1化合物としての酸化マグネシウムと前記第2化合物としての酸化アルミニウムとを混合する、請求項1〜6のいずれか1項に記載の複合酸化物の製造方法。   The method for producing a composite oxide according to claim 1, wherein in the raw material preparation step, magnesium oxide as the first compound and aluminum oxide as the second compound are mixed. 前記原料調製工程では、前記第1化合物としての酸化マグネシウムと前記第2化合物としてのスピネルとを混合する、請求項1〜6のいずれか1項に記載の複合酸化物の製造方法。   The method for producing a composite oxide according to claim 1, wherein in the raw material preparation step, magnesium oxide as the first compound and spinel as the second compound are mixed.
JP2008318366A 2008-12-15 2008-12-15 Method for producing composite oxide Expired - Fee Related JP5352218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318366A JP5352218B2 (en) 2008-12-15 2008-12-15 Method for producing composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318366A JP5352218B2 (en) 2008-12-15 2008-12-15 Method for producing composite oxide

Publications (2)

Publication Number Publication Date
JP2010138050A true JP2010138050A (en) 2010-06-24
JP5352218B2 JP5352218B2 (en) 2013-11-27

Family

ID=42348516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318366A Expired - Fee Related JP5352218B2 (en) 2008-12-15 2008-12-15 Method for producing composite oxide

Country Status (1)

Country Link
JP (1) JP5352218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147449A1 (en) * 2011-04-28 2012-11-01 第一稀元素化学工業株式会社 Spinel powder and manufacturing process therefor, and processes for producing thermal spraying film and gas sensor elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954299A (en) * 1972-04-28 1974-05-27
JPH0288420A (en) * 1988-09-27 1990-03-28 Shin Nippon Kagaku Kogyo Co Ltd Production of spinel clinker
JPH08337467A (en) * 1995-04-27 1996-12-24 Abb Patent Gmbh Ceramic material and its production
JP2001002413A (en) * 1999-06-18 2001-01-09 Sumitomo Chem Co Ltd Production of magnesia spinel powder
JP2004217488A (en) * 2003-01-17 2004-08-05 Asahi Glass Ceramics Co Ltd Magnesia spinel refractory and its producing method
JP2004300026A (en) * 2003-03-20 2004-10-28 National Institute Of Advanced Industrial & Technology Alumina-based porous ceramic and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954299A (en) * 1972-04-28 1974-05-27
JPH0288420A (en) * 1988-09-27 1990-03-28 Shin Nippon Kagaku Kogyo Co Ltd Production of spinel clinker
JPH08337467A (en) * 1995-04-27 1996-12-24 Abb Patent Gmbh Ceramic material and its production
JP2001002413A (en) * 1999-06-18 2001-01-09 Sumitomo Chem Co Ltd Production of magnesia spinel powder
JP2004217488A (en) * 2003-01-17 2004-08-05 Asahi Glass Ceramics Co Ltd Magnesia spinel refractory and its producing method
JP2004300026A (en) * 2003-03-20 2004-10-28 National Institute Of Advanced Industrial & Technology Alumina-based porous ceramic and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147449A1 (en) * 2011-04-28 2012-11-01 第一稀元素化学工業株式会社 Spinel powder and manufacturing process therefor, and processes for producing thermal spraying film and gas sensor elements
US9340680B2 (en) 2011-04-28 2016-05-17 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Spinel powder and manufacturing process therefor, and processes for producing thermal spraying film and gas sensor elements

Also Published As

Publication number Publication date
JP5352218B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5122527B2 (en) Method for producing aluminum magnesium titanate
TW201107268A (en) Method for producing aluminum titanate ceramic body
JP2012140305A (en) Alpha alumina sintered body for production of sapphire single crystal
CN108530057B (en) Preparation of morphology-controllable CaTiO applied to energy storage by sol-gel method3Method for producing ceramic
KR20120057615A (en) Method for producing aluminum titanate ceramic, and aluminum titanate ceramic
CN102548934A (en) Method for producing aluminum titanate ceramic fired body
KR20190052668A (en) Magnesium oxide-containing spinel powder and method for producing the same
WO2010113895A1 (en) Method for producing aluminum titanate ceramic body
CN102245534A (en) Process for producing aluminum titanate-based fired product
CN102510847A (en) Method for producing ceramic fired article
JP4981561B2 (en) Method for producing magnesia spinel molded body
WO2010074231A1 (en) Method for producing aluminum titanate fired body
JPH10273364A (en) Production of transparent yttrium oxide sintered body
JP5133208B2 (en) Manufacturing method of aluminum titanate ceramics
JP5133207B2 (en) Manufacturing method of aluminum titanate ceramics
JP5352218B2 (en) Method for producing composite oxide
JP2016500362A (en) Ceramic material
JP6502495B2 (en) Ceramic powder with controlled size distribution
KR101143312B1 (en) Heat shielding materials with excellent heat resistance and manufacturing method of the same
JP2000203933A (en) Production of transparent yttrium/aluminum/garnet sintered body by dry mixing method
FR2521981A1 (en) PROCESS FOR THE PRODUCTION OF A FORMED BOEHMITE PRODUCT AND A FORMED AND CALCINED BOEHMITE PRODUCT
JP2010013310A (en) Ceramic sintered body for solid pressure medium and solid pressure medium
US20100272997A1 (en) Densification of metal oxides
JP5400363B2 (en) Method for producing magnesium oxide-spinel composite oxide
JP2008120025A (en) Manufacturing process of inorganic material molding by binderless shaping using hydration reaction, and molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5352218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees