JP2022156925A - Mullite sintered body with excellent thermal resistance and durability and production method thereof - Google Patents

Mullite sintered body with excellent thermal resistance and durability and production method thereof Download PDF

Info

Publication number
JP2022156925A
JP2022156925A JP2021060868A JP2021060868A JP2022156925A JP 2022156925 A JP2022156925 A JP 2022156925A JP 2021060868 A JP2021060868 A JP 2021060868A JP 2021060868 A JP2021060868 A JP 2021060868A JP 2022156925 A JP2022156925 A JP 2022156925A
Authority
JP
Japan
Prior art keywords
mullite
sintered body
phase
less
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021060868A
Other languages
Japanese (ja)
Other versions
JP6989722B1 (en
Inventor
光平 矢吹
Kohei Yabuki
健太郎 日下
Kentaro Kusaka
達也 粂
Tatsuya Kume
準弥 中西
Junya Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2021060868A priority Critical patent/JP6989722B1/en
Application granted granted Critical
Publication of JP6989722B1 publication Critical patent/JP6989722B1/en
Publication of JP2022156925A publication Critical patent/JP2022156925A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

To provide a mullite sintered body having an excellent thermal resistance and durability.SOLUTION: Provided is a mullite sintered body that satisfies the following requirements (1)-(6). (1) A mass ratio of Al2O3:SiO2 ranges from 73:27 to 77:23. (2) The sintered body consists of a single phase of mullite. (3) The relative density to the theoretical density is more than 95%. (4) The mean grain size is 7-15 μm. (5) The content of crystal grains whose size is 6 μm or less is 20% or less. (6) Deflection is 5 mm or less after holding for 5 hours at 1,650°C under applied stress of 3 MPa.SELECTED DRAWING: Figure 1

Description

本発明は、高い耐熱性と耐久性を備えたムライト焼結体及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a mullite sintered body having high heat resistance and durability and a method for producing the same.

従来のムライト焼結体はカオリン等の天然原料とアルミナ原料を混合し、反応焼結によって製造されているが、不純物が多く混在するため焼結体内部にシリカ等と反応したガラス相が多く形成されているため、高温では強度低下や負荷に対する大きな変形が起きるなど高温特性が低かった。その後、高温構造材料としてのムライト焼結体の開発がなされ、ムライト相を構成しているAl及びSiOのAl/SiO質量比をムライト相の理論組成(3Al・2SiO)になるように、ゾルゲル法などのケミカルプロセスにより不純物を少なくした原料粉体を作製し、その原料粉体を用いて作製した焼結体(特開昭61-286264)が提案され、高温特性が天然原料とアルミナ原料から作製した焼結体に比べて大きく向上した。しかしながら、使用温度が1500℃以上になると耐クリープ性が低下することから、より高温で安定したムライト焼結体が要望された。そこで、より高温特性を向上させるためにAl/SiO質量比、結晶粒径及び結晶相等を制御することで1600℃の高温でも使用可能なムライト焼結体が開発された(特開平6-227859)。しかしながら、負荷応力が低い場合には安定して使用できるが、使用における負荷応力の範囲であっても負荷応力が大きくなると変形が加速度的に大きくなり、変形による割れが起こりやすく、負荷応力に対する安定性に欠けることや、同時に高温で長時間保持によりアルミナ相が析出する結晶相変化によりムライト相とアルミナ相との熱膨張率の違いから加熱冷却の繰り返しにより焼結体内部に残留歪みが発生し、破壊する等の問題があった。 Conventional mullite sintered compacts are produced by mixing natural raw materials such as kaolin and alumina raw materials by reaction sintering. However, since many impurities are mixed, a large amount of glass phase is formed inside the sintered compact by reacting with silica, etc. Therefore, the high-temperature characteristics were poor, such as a decrease in strength and large deformation under load at high temperatures. After that, mullite sintered bodies were developed as high-temperature structural materials, and the Al 2 O 3 /SiO 2 mass ratio of Al 2 O 3 and SiO 2 constituting the mullite phase was defined as the theoretical composition of the mullite phase (3Al 2 O 3.2 SiO 2 ), a sintered body (Japanese Patent Application Laid-Open No. 61-286264 ) is proposed in which a raw material powder is prepared with less impurities by a chemical process such as a sol-gel method, and the raw material powder is used. and the high-temperature properties were greatly improved compared to sintered bodies made from natural raw materials and alumina raw materials. However, since the creep resistance decreases when the service temperature reaches 1500° C. or higher, there is a demand for a mullite sintered body that is stable at higher temperatures. Therefore, a mullite sintered body that can be used at a high temperature of 1600 ° C. was developed by controlling the Al 2 O 3 /SiO 2 mass ratio, crystal grain size, crystal phase, etc. in order to further improve high-temperature characteristics (Japanese Patent Application Laid-Open No. 6-227859). However, when the load stress is low, it can be used stably, but as the load stress increases even within the range of load stress in use, deformation increases at an accelerated rate, cracking due to deformation is likely to occur, and stability against load stress At the same time, repeated heating and cooling causes residual strain to occur inside the sintered body due to the difference in thermal expansion coefficient between the mullite phase and the alumina phase due to the crystal phase change in which the alumina phase precipitates when held at high temperature for a long time. , there were problems such as destruction.

特開昭61-286264号公報JP-A-61-286264 特開平6-227859号公報JP-A-6-227859

本発明の課題は、高い耐熱性と耐久性を備えたムライト焼結体を提供することである。 An object of the present invention is to provide a mullite sintered body with high heat resistance and durability.

本発明者らは、従来のムライト焼結体に比べて長期間の高温下及び高負荷下での使用でも耐クリープ性に優れ、変形による割れ等がなく安定であり、さらに結晶相の変化(ムライト相→ムライト相+アルミナ相)による劣化がないため、強度等の機械的特性の劣化が少ない、高い耐熱性と耐久性を備えたムライト焼結体の開発を開始した。開発を進めるなかで、ムライト焼結体において、AlとSiOの質量比、結晶相、特定以上の相対密度、結晶粒径を制御するだけでなく、特定のサイズの結晶粒子の含有率を特定値以下にすることにより、優れた耐熱性及び耐久性、安定性を有し、曲がり等の変形の負荷応力依存性が少ないムライト焼結体が得られることを見出した。即ち、高温下で破壊の起点となる気孔量(気孔率)をある特定値以上の相対密度に制御し、焼結体のAlとSiOの質量比を規定するだけでなく、結晶粒径がある特定の範囲内にあって、また特定のサイズの結晶粒子の含有率を特定値以下にすることにより、1500℃以上あるいは1600℃以上の高温下でも負荷応力に対して長期間安定して曲がり等の変形がほとんど無く、また、負荷応力変化に対しても優れた耐クリープ性を示すムライト焼結体が得られることを見出した。本発明はこうして完成されたものである。本発明のムライト焼結体は、例えば、熱処理炉の炉材・治具として、特にローラーハースキルン用ローラーとして採用することにより、高温・高荷重の条件下でも長期間安定した熱処理を可能とするものであった。本発明において、耐熱性とは使用温度における変形や変形による割れ等がなく、高い耐熱衝撃性を有していることを意味し、耐久性とは高温下での長期間保持による結晶相の変化や強度劣化等の機械的特性の劣化が少ないことを意味する。 The present inventors have found that compared to conventional mullite sintered bodies, they have excellent creep resistance even when used under high temperature and high load for a long period of time, are stable without cracks due to deformation, and further change in crystal phase ( Since there is no deterioration due to mullite phase → mullite phase + alumina phase), the development of mullite sintered bodies with high heat resistance and durability, with little deterioration in mechanical properties such as strength, has been started. In the course of development, in the mullite sintered body, we not only control the mass ratio of Al2O3 and SiO2 , the crystal phase, the relative density above a certain level, and the crystal grain size, but also the inclusion of crystal grains of a specific size. It was found that by setting the modulus to a specific value or less, a mullite sintered body having excellent heat resistance, durability, and stability and having less load stress dependence of deformation such as bending can be obtained. That is, the amount of pores (porosity), which is the starting point of fracture at high temperature, is controlled to a specific value or higher relative density, and not only the mass ratio of Al 2 O 3 and SiO 2 in the sintered body is specified, but also the crystal Stable against load stress for a long period of time even at high temperatures of 1500°C or higher or 1600°C or higher by keeping the grain size within a specific range and the content of crystal grains of a specific size below a specific value. As a result, it was found that a mullite sintered body can be obtained which has almost no deformation such as bending and exhibits excellent creep resistance against changes in load stress. The present invention is thus completed. The mullite sintered body of the present invention can be used, for example, as a furnace material or jig for a heat treatment furnace, particularly as a roller for a roller hearth kiln, enabling stable heat treatment for a long period of time even under conditions of high temperature and high load. It was something. In the present invention, heat resistance means that there is no deformation or cracking due to deformation at the use temperature and that it has high thermal shock resistance, and durability means that the crystal phase changes due to long-term storage at high temperature. It means that there is little deterioration of mechanical properties such as deterioration of strength and strength.

すなわち、本発明は以下に示す事項により特定されるものである。
[1]以下の要件(1)~(6)を満たすムライト焼結体。
(1)質量比で、Al:SiOが73:27~77:23
(2)ムライト単相からなる
(3)理論密度に対する相対密度が95%以上
(4)平均結晶粒径が7~15μm
(5)6μm以下の結晶粒子の含有率が20%以下
(6)1650℃、3MPaの負荷応力下で5時間保持後のたわみ量が5mm以下
[2]以下の要件(a)~(c)を満たすムライト粉体を成形し、大気中1600~1780℃で焼成するムライト焼結体の製造方法。
(a)質量比で、Al:SiOが73:27~77:23
(b)Al及びSiOの合計量が99.9質量%以上
(c)比表面積が8~15m/g
That is, the present invention is specified by the matters shown below.
[1] A mullite sintered body that satisfies the following requirements (1) to (6).
(1) Al 2 O 3 : SiO 2 is 73:27 to 77:23 in mass ratio
(2) Made of mullite single phase (3) Relative density to theoretical density is 95% or more (4) Average crystal grain size is 7 to 15 μm
(5) The content of crystal grains of 6 μm or less is 20% or less (6) The amount of deflection after holding for 5 hours at 1650° C. and a load stress of 3 MPa is 5 mm or less [2] Requirements (a) to (c) A method of manufacturing a mullite sintered body by molding mullite powder that satisfies the above conditions and firing at 1600 to 1780° C. in the air.
(a) Al 2 O 3 : SiO 2 is 73:27 to 77:23 in mass ratio
(b) The total amount of Al 2 O 3 and SiO 2 is 99.9% by mass or more (c) The specific surface area is 8 to 15 m 2 /g

本発明のムライト焼結体は、高い耐熱性と耐久性を備え、特に高負荷下においても高い耐熱性と耐久性を備える。本発明のムライト焼結体の製造方法は、高い耐熱性と耐久性を備える、特に高負荷下においても高い耐熱性と耐久性を備えるムライト焼結体を製造することができる。 The mullite sintered body of the present invention has high heat resistance and durability, particularly high heat resistance and durability even under high load. The method for producing a mullite sintered body according to the present invention can produce a mullite sintered body having high heat resistance and durability, particularly high heat resistance and durability even under high load.

図1は、実施例1で得られたムライト焼結体のSEM写真である。1 is an SEM photograph of the mullite sintered body obtained in Example 1. FIG. 図2は、比較例3で得られたムライト焼結体のSEM写真である。2 is an SEM photograph of the mullite sintered body obtained in Comparative Example 3. FIG. 図3は、比較例5で得られたムライト焼結体のSEM写真である。3 is an SEM photograph of the mullite sintered body obtained in Comparative Example 5. FIG.

本発明のムライト焼結体は、(1)質量比で、Al:SiOが73:27~77:23、(2)ムライト単相からなる、(3)理論密度に対する相対密度が95%以上、(4)平均結晶粒径が7~15μm、(5)6μm以下の結晶粒子の含有率が20%以下、及び(6)1650℃、3MPaの負荷応力下で5時間保持後のたわみ量が5mm以下の要件を満たすムライト焼結体である。以下、本発明のムライト焼結体の(1)~(6)の要件について説明する。 The mullite sintered body of the present invention has (1) a mass ratio of Al 2 O 3 : SiO 2 of 73:27 to 77:23, (2) a single mullite phase, and (3) a relative density to the theoretical density of 95% or more, (4) an average crystal grain size of 7 to 15 μm, (5) a content of 6 μm or less crystal grains of 20% or less, and (6) after holding for 5 hours at 1650 ° C. and a load stress of 3 MPa. The mullite sintered body satisfies the requirement that the amount of deflection is 5 mm or less. The requirements (1) to (6) of the mullite sintered body of the present invention are described below.

(1)質量比で、Al:SiOが73:27~77:23
本発明のムライト焼結体に含まれるAlとSiOの合計質量を100とした場合、AlとSiOとの比率は、質量比でAl:SiOが73:27~77:23である。AlとSiOの合計におけるAlの比率が73質量%を下回ると、SiO含有量が増加し、微量の不純物と反応して形成されるガラス相や第2相が焼結体内部の結晶粒界に多く形成され、これらが起点となって、高温下で結晶粒界が滑りやすくなり、耐クリープ性に劣り、耐熱性及び耐久性が低下する。一方、Alの比率が77質量%を超えると、Al含有量が増えることになり、焼結体内部にアルミナ粒子が析出しやすくなるため、このアルミナ結晶が起点となって耐クリープ性の劣化につながる。特に高温での長期間保持により、アルミナ結晶の析出がより加速するため好ましくない。また、AlとSiOとの比率が、上記範囲を外れる場合には耐熱衝撃抵抗性及び耐熱疲労性が低下する。耐熱性及び耐久性をより向上させる観点から、Al:SiOは、質量比で74:26~76:24が好ましい。ムライト焼結体におけるAlとSiOの含有量は、蛍光X線分析により測定することができる。
(1) Al 2 O 3 : SiO 2 is 73:27 to 77:23 in mass ratio
When the total mass of Al 2 O 3 and SiO 2 contained in the mullite sintered body of the present invention is 100, the mass ratio of Al 2 O 3 and SiO 2 is 73: Al 2 O 3 : SiO 2 :27-77:23. When the ratio of Al 2 O 3 in the sum of Al 2 O 3 and SiO 2 is less than 73% by mass, the SiO 2 content increases, and the glass phase and second phase formed by reacting with trace impurities are sintered. Many of them are formed at the crystal grain boundaries inside the body, and these serve as starting points at which the crystal grain boundaries become slippery at high temperatures, resulting in poor creep resistance, heat resistance, and durability. On the other hand, when the ratio of Al 2 O 3 exceeds 77% by mass, the content of Al 2 O 3 increases, and alumina particles tend to precipitate inside the sintered body. It leads to deterioration of creep resistance. In particular, long-term retention at high temperature accelerates the precipitation of alumina crystals, which is not preferable. Moreover, when the ratio of Al 2 O 3 and SiO 2 is out of the above range, thermal shock resistance and thermal fatigue resistance are lowered. From the viewpoint of further improving heat resistance and durability, Al 2 O 3 :SiO 2 preferably has a mass ratio of 74:26 to 76:24. The contents of Al 2 O 3 and SiO 2 in the mullite sintered body can be measured by fluorescent X-ray analysis.

(2)ムライト単相からなる
本発明のムライト焼結体は、結晶相がムライト単相からなる。ムライト焼結体が、結晶粒界に不純物とで形成されるガラス相、アルミナ相等の第2相を含有していると耐熱性及び耐久性が低下する。ムライト焼結体におけるガラス相、アルミナ相等の第2相は、次の方法で測定することができる。
(ガラス相)
焼結体表面を鏡面仕上げした試料を0~5℃の1%HF水溶液に24時間浸漬した後、十分に洗浄、乾燥し、走査型電子顕微鏡でHF処理前後の試料を1000~5000倍で観察する。HF処理後の試料では、ガラス相が存在していたところはHF処理によりガラス相の跡となりくさび状の空隙として観察される。観察した試料の面積をS、HF処理前の試料で観察された気孔及び空隙が占める面積をGBとし、HF処理後の試料で観察された気孔、空隙及びガラス相の跡が占める面積をGAとして、以下の式によりガラス相含有率を求める。
ガラス相含有率(%)=[(GA-GB)/S]×100
ガラス相は結晶粒界に形成されるが、高温下では軟化し、結晶粒界が滑りやすくなり、その結果、耐クリープ性の低下につながる。
(アルミナ相及びそれ以外の相)
ムライト焼結体がアルミナ相を含有しているか否かの同定は焼結体を指頭に感じないレベルまで粉砕し、粉砕した粉体を用いてX線回折により行う。X線回折条件はX線源がCuKα、出力40kV/40mA、発散スリットが1/2°、散乱スリットが1/2°、受光スリットが0.15mm、スキャンスピード:0.5°/min、走査軸が2θ/θ、モノクロ受光スリットが0.8mm、カウンタがシンチレーションカウンタ、及びモノクロメーターが自動モノクロメーターである。アルミナ相が定性された焼結体は、高温下での耐クリープ性は低負荷条件では大きな低下は見られないものの、負荷が大きくなると耐クリープ性の低下が見られる。これはムライト結晶粒子に比べて析出するアルミナ結晶粒子の大きさが小さいため、小さい結晶が高温特性の低下に大きく影響するためである。また、ある温度領域での長期間保持によりアルミナ結晶が析出してアルミナ相が増加し、特性劣化をきたしたり、室温まで冷却した際にムライト相とアルミナ相との熱膨張差により割れが発生したりする場合がある。アルミナ相の定量は得られた回折パターンを用いて以下の式により算出する。以下の式におけるI(113)はアルミナ相(113)面の回折強度であり、I(210)はムライト相(210)面の回折強度である。
アルミナ相量(容積%)=I(113)/[I(210)+I(113)]×100
ムライト焼結体がガラス相及びアルミナ相以外の第2相を含有しているか否かの同定及び定量は、アルミナ相の場合と同様にX線回折により行う。X線回折によりアルミナ相以外の第2相が定性された場合は特性が長期間安定して維持できる温度域が低くなる。
(ムライト単相)
本発明においては、得られたX線回折パターンでムライト相以外の回折ピークが見られないことが必要である。ただし、本発明のムライト焼結体においては、アルミナ相を3容積%まで含有することが許容できる。好ましくは、アルミナ相の量は2容積%までである。本発明のムライト焼結体においては、ガラス相及びアルミナ相以外の第2相は検出量限界値以下である。また、本発明のムライト焼結体においては、ガラス相を3%まで含有することが許容できる。好ましくは、ガラス相は2%までである。上記のとおり、本発明のムライト焼結体におけるムライト単相とは、第2相としてはアルミナ相とガラス相であり、ガラス相含有率が3%以下であり、アルミナ相含有率が3容積%以下であり、それ以外の第2相は検出量限界値以下であるムライト相であることをいう。
(2) Mullite Single Phase The crystal phase of the mullite sintered body of the present invention is a mullite single phase. If the mullite sintered body contains a second phase such as a glass phase or an alumina phase formed with impurities at the grain boundaries, the heat resistance and durability are lowered. The second phase such as the glass phase and the alumina phase in the mullite sintered body can be measured by the following method.
(glass phase)
After immersing the sample with a mirror-finished sintered surface in a 1% HF aqueous solution at 0 to 5°C for 24 hours, thoroughly wash and dry, and observe the sample before and after the HF treatment with a scanning electron microscope at a magnification of 1000 to 5000. do. In the sample after the HF treatment, where the glass phase existed, the traces of the glass phase are observed as wedge-shaped voids due to the HF treatment. Let S be the area of the observed sample, GB be the area occupied by the pores and voids observed in the sample before HF treatment, and GA be the area occupied by the pores, voids and traces of the glass phase observed in the sample after HF treatment. , the glass phase content is determined by the following formula.
Glass phase content (%) = [(GA-GB) / S] × 100
Although the glass phase is formed at the grain boundaries, it softens at high temperatures, making the grain boundaries slippery, resulting in a decrease in creep resistance.
(Alumina phase and other phases)
To identify whether or not the mullite sintered body contains an alumina phase, the sintered body is pulverized to a level that cannot be felt by fingers, and the pulverized powder is subjected to X-ray diffraction. X-ray diffraction conditions are: X-ray source CuKα, output 40 kV/40 mA, divergence slit 1/2°, scattering slit 1/2°, receiving slit 0.15 mm, scan speed: 0.5°/min. The axis is 2θ/θ, the monochrome receiving slit is 0.8 mm, the counter is a scintillation counter, and the monochromator is an automatic monochromator. A sintered body with a qualitative alumina phase does not show a large drop in creep resistance at high temperatures under low load conditions, but it shows a drop in creep resistance as the load increases. This is because the size of precipitated alumina crystal grains is smaller than that of mullite crystal grains, and small crystals greatly affect the deterioration of high-temperature properties. In addition, when kept in a certain temperature range for a long period of time, alumina crystals precipitate and the amount of alumina phase increases, resulting in deterioration of properties. When cooled to room temperature, cracks occur due to the difference in thermal expansion between the mullite phase and the alumina phase. may occur. The amount of alumina phase is calculated by the following formula using the obtained diffraction pattern. In the following equations, I A (113) is the diffraction intensity of the alumina phase (113) plane, and I M (210) is the diffraction intensity of the mullite phase (210) plane.
Alumina phase amount (volume %) = I A (113) / [I M (210) + I A (113)] x 100
The identification and quantification of whether or not the mullite sintered body contains a second phase other than the glass phase and the alumina phase is performed by X-ray diffraction as in the case of the alumina phase. When the second phase other than the alumina phase is qualitatively determined by X-ray diffraction, the temperature range in which the characteristics can be stably maintained for a long period of time becomes low.
(mullite single phase)
In the present invention, it is necessary that the obtained X-ray diffraction pattern shows no diffraction peaks other than those of the mullite phase. However, in the mullite sintered body of the present invention, it is permissible to contain up to 3% by volume of the alumina phase. Preferably, the amount of alumina phase is up to 2% by volume. In the mullite sintered body of the present invention, the amount of the second phase other than the glass phase and the alumina phase is below the detection limit. Further, in the mullite sintered body of the present invention, it is permissible to contain up to 3% of the glass phase. Preferably the glass phase is up to 2%. As described above, the mullite single phase in the mullite sintered body of the present invention is an alumina phase and a glass phase as the second phase, the glass phase content is 3% or less, and the alumina phase content is 3% by volume. or less, and the other second phase is a mullite phase below the detectable amount limit.

(3)理論密度に対する相対密度が95%以上
本発明のムライト焼結体の理論密度に対する相対密度は95%以上である。本発明における相対密度は、JIS1634に準じて測定することができる。相対密度が低い場合は焼結体内部に存在する気孔が多くなることになり、相対密度が95%未満の場合は、高温下であっても低負荷条件では耐クリープ性の低下に大きな影響を与えないが、高負荷になると気孔が基点となってクラックの進展が顕著になり、短い時間で破損しやすくなる。相対密度の上限は特に制限されないが、実際に製造する観点から相対密度の上限は98%程度である。本発明のムライト焼結体の相対密度は95~98%が好ましく、95~97%がより好ましい。
(3) Relative density to theoretical density is 95% or more The relative density to theoretical density of the mullite sintered body of the present invention is 95% or more. The relative density in the present invention can be measured according to JIS1634. When the relative density is low, the number of pores inside the sintered body increases, and when the relative density is less than 95%, even at high temperatures and under low load conditions, the creep resistance is greatly affected. However, when the load is high, the pores become the starting point, and the crack progresses remarkably, making it easy to break in a short time. Although the upper limit of the relative density is not particularly limited, the upper limit of the relative density is about 98% from the viewpoint of actual production. The relative density of the mullite sintered body of the present invention is preferably 95-98%, more preferably 95-97%.

(4)平均結晶粒径が7~15μm
本発明のムライト焼結体の平均結晶粒径は7~15μmである。平均結晶粒径が7μm未満の場合は耐クリープ性及び耐食性の低下をきたし、15μmを越える場合は強度が低くなり、耐熱衝撃性の低下につながる。耐クリープ性及び耐熱衝撃性をより向上させる観点から、本発明のムライト焼結体の平均結晶粒径は8~13μmが好ましい。本発明においては、焼結体を鏡面仕上げして熱エッチングしたサンプルを電子顕微鏡により観察して、一つの結晶粒子の長軸と短軸を測定し、この平均値を各結晶粒子の粒径とする。本発明における平均結晶粒径は、上記のとおり測定した任意の100個の結晶粒子の粒径の平均値である。
(4) Average crystal grain size is 7 to 15 μm
The average crystal grain size of the mullite sintered body of the present invention is 7 to 15 μm. If the average crystal grain size is less than 7 μm, the creep resistance and corrosion resistance are lowered, and if it exceeds 15 μm, the strength is lowered and the thermal shock resistance is lowered. From the viewpoint of further improving creep resistance and thermal shock resistance, the mullite sintered body of the present invention preferably has an average crystal grain size of 8 to 13 μm. In the present invention, a mirror-finished sintered body is thermally etched, and the sample is observed with an electron microscope to measure the major axis and minor axis of one crystal grain. do. The average crystal grain size in the present invention is the average value of the grain sizes of arbitrary 100 crystal grains measured as described above.

(5)6μm以下の結晶粒子の含有率が20%以下
本発明のムライト焼結体における粒径が6μm以下の結晶粒子の含有率は20%以下である。本発明における6μm以下の結晶粒子の含有率とは、平均結晶粒径を算出するために測定した100個の結晶粒子における、粒径が6μm以下の結晶粒子数の割合(6μm以下の結晶粒子の数/100)を%で表したものである。結晶粒径は耐クリープ性に大きく影響を与え、平均結晶粒径が本発明の要件を満たしていても、小さい結晶粒子の含有率が高くなると小さい結晶粒子の影響を受けやすくなり、耐クリープ性の低下をきたす。6μm以下の結晶粒子の含有率が20%を超えると、耐クリープ性が低下する。耐クリープ性をより向上させる観点から、本発明のムライト焼結体における6μm以下の結晶粒子の含有率は15%以下が好ましい。
(5) The Content of Crystal Grains with a Diameter of 6 μm or Less is 20% or Less The content of crystal grains with a diameter of 6 μm or less in the mullite sintered body of the present invention is 20% or less. The content of crystal grains of 6 μm or less in the present invention means the ratio of the number of crystal grains having a grain size of 6 μm or less in 100 crystal grains measured for calculating the average crystal grain size (the number of crystal grains of 6 μm or less number/100) in %. The grain size has a great effect on creep resistance. result in a decline in If the content of crystal grains of 6 μm or less exceeds 20%, the creep resistance is lowered. From the viewpoint of further improving creep resistance, the content of crystal grains of 6 μm or less in the mullite sintered body of the present invention is preferably 15% or less.

(6)1650℃、3MPaの負荷応力下で5時間保持後のたわみ量が5mm以下
本発明のムライト焼結体は、1650℃、3MPaで5時間保持する負荷応力下でのたわみ量が5mm以下であり、3mm以下が好ましい。本発明におけるムライト焼結体のたわみ量は、ムライト焼結体を5×2×150mmに加工し、上スパンが31.3mm、下スパンが100mmの4点曲げで3MPaの応力で1650℃、5時間保持後のサンプルの下スパン50mmの位置で測定されるたわみ量である。
(6) The mullite sintered body of the present invention has a deflection amount of 5 mm or less after being held at 1650 ° C. and 3 MPa for 5 hours under a load stress of 1650 ° C. and 3 MPa for 5 hours. and preferably 3 mm or less. The amount of deflection of the mullite sintered body in the present invention is obtained by processing the mullite sintered body to 5 × 2 × 150 mm, bending at four points with an upper span of 31.3 mm and a lower span of 100 mm, and applying a stress of 3 MPa at 1650 ° C. and 5 It is the amount of deflection measured at the position of the lower span of 50 mm of the sample after time holding.

本発明のムライト焼結体は、その製造方法は特に制限されるものではないが、例えば以下の本発明のムライト焼結体の製造方法により製造することができる。本発明のムライト焼結体の製造方法は、(a)質量比で、Al:SiOが73:27~77:23、(b)Al及びSiOの合計量が99.9質量%以上、及び(c)比表面積が8~15m/gを満たすムライト粉体を成形し、大気中1600~1780℃で焼成する方法である。上記(a)~(c)の要件を満たすムライト粉体の作製方法は特に制限されるものではないが、例えば、質量比で、Al:SiOが73:27~77:23になるようにアルミナゾルとシリカゾルを撹拌混合した混合液を乾燥し、乾燥後1000~1500℃で大気中で加熱することによりムライトを合成し、ムライト粉体を得ることができる。ムライト粉体はゾルゲル法だけに限らず、アルミニウム塩水溶液とシリコンアルコキシドを用いた共沈法やアルコキシド混合溶液を用いた加水分解法等による方法で作製した高純度のムライト粉体を用いることができる。後述する不純物を極力混入しないようにするために、使用するアルミナゾルやシリカゾル等のアルミナ及びシリカ源となるアルミニウム化合物やシリコン化合物は高純度のものを採用することが必要である。また、溶液の混合は、合成したムライト粉体のアルミナとシリカの均一性が低下し、焼結体としたときの個々のムライト結晶のAlとSiOの質量比のバラツキが大きくなって、耐熱性及び耐久性に劣ることを防止するために、高速ミキサーを用いるなどして溶液を均一に混合することが好ましい。作製したムライト粉体を比表面積が8~15m/g、好ましくは9~13m/gとなるように粉砕する。比表面積が8m/g未満の場合は焼結性が低くなり、15m/gを越える場合は焼結時に異常粒成長が起こり、平均結晶粒径が本発明における平均結晶粒径の範囲を上回るだけでなく、粒径分布が広くなりやすく、強度低下が起こり、耐熱衝撃性の低下をきたす。 The method for producing the mullite sintered body of the present invention is not particularly limited. In the method for producing a mullite sintered body of the present invention, (a) the mass ratio of Al 2 O 3 : SiO 2 is 73:27 to 77:23, and (b) the total amount of Al 2 O 3 and SiO 2 is 99. 9% by mass or more and (c) a specific surface area of 8 to 15 m 2 /g is molded and fired at 1600 to 1780° C. in air. The method for producing mullite powder that satisfies the above requirements ( a) to ( c ) is not particularly limited. A mixed solution obtained by stirring and mixing alumina sol and silica sol is dried and then heated in the atmosphere at 1000 to 1500° C. to synthesize mullite and obtain mullite powder. The mullite powder is not limited to the sol-gel method, and high-purity mullite powder prepared by a method such as a coprecipitation method using an aluminum salt aqueous solution and a silicon alkoxide or a hydrolysis method using an alkoxide mixed solution can be used. . In order to prevent the impurities described later from being mixed as much as possible, it is necessary to employ high-purity aluminum compounds and silicon compounds that serve as sources of alumina and silica, such as alumina sol and silica sol. In addition, the mixing of solutions reduces the uniformity of alumina and silica in the synthesized mullite powder, and increases the variation in the mass ratio of Al 2 O 3 and SiO 2 in individual mullite crystals when sintered. In order to prevent deterioration in heat resistance and durability, it is preferable to uniformly mix the solution by using a high-speed mixer or the like. The produced mullite powder is pulverized to have a specific surface area of 8 to 15 m 2 /g, preferably 9 to 13 m 2 /g. If the specific surface area is less than 8 m 2 /g, the sinterability will be low, and if it exceeds 15 m 2 /g, abnormal grain growth will occur during sintering, and the average crystal grain size will exceed the range of the average crystal grain size in the present invention. In addition, the particle size distribution tends to be widened, resulting in a decrease in strength and a decrease in thermal shock resistance.

ムライト粉体の粉砕方法は特に制限されないが、不純物が極力混入しないように粉砕する必要がある。粉砕方法としては、例えば湿式粉砕法等を挙げることができる。不純物が混入しないように粉砕するためには、アルミナ純度が99.9%以上の高純度アルミナ又は樹脂を内張りにしたポットと高純度アルミナボールを用いて粉砕を行い、粉体濃度やポット回転数等の条件をコントロールして、不純物が極力混入しないようにすることが重要である。アルミナ純度が低いボールを使用すると粉砕により不純物が多い摩耗粉が粉砕粉体に混入するので好ましくない。また、ジルコニアボールで粉砕した場合は粉砕により摩耗したジルコニア摩耗粉が粉砕粉体に混入するが、ジルコニアは耐熱性・耐久性を低下させるので好ましくない。作製したムライト粉体におけるTiO、Fe、CaO、NaO、KO、MgO、ZrO等の不純物は0.1質量%以下、好ましくは0.05質量%以下とする。すなわち、Al及びSiOの合計量が99.9質量%以上、好ましくは99.95質量%以上とする。不純物の含有量が0.1質量%を越える、すなわちAl及びSiOの合計量が99.9質量%未満になると結晶粒界に第2相やガラス相を形成し、高温特性の低下をきたす。 The method of pulverizing the mullite powder is not particularly limited, but it is necessary to pulverize it so as not to mix impurities as much as possible. Examples of the pulverization method include a wet pulverization method and the like. In order to pulverize without contamination with impurities, pulverization is performed using a pot lined with high-purity alumina with an alumina purity of 99.9% or more or a resin-lined pot and high-purity alumina balls. It is important to control such conditions to prevent impurities from being mixed as much as possible. The use of balls with low alumina purity is not preferable because abrasion powder containing a large amount of impurities is mixed into the pulverized powder. In the case of pulverization with zirconia balls, zirconia wear powder that has been worn by pulverization is mixed in with the pulverized powder. Impurities such as TiO 2 , Fe 2 O 3 , CaO, Na 2 O, K 2 O, MgO and ZrO 2 in the produced mullite powder are 0.1% by mass or less, preferably 0.05% by mass or less. That is, the total amount of Al 2 O 3 and SiO 2 is 99.9% by mass or more, preferably 99.95% by mass or more. When the content of impurities exceeds 0.1% by mass, that is, when the total amount of Al 2 O 3 and SiO 2 is less than 99.9% by mass, a second phase or glass phase is formed at the grain boundaries, resulting in poor high-temperature properties. cause a decline.

作製した上記(a)~(c)の要件を満たすムライト粉体を成形する。成形方法としては特に制限されないが、例えば、プレス成形、ラバープレス成形、押出成形、鋳込成形等を挙げることができる。プレス成形、ラバープレス成形等のプレス成形を採用する場合は、粉砕後のスラリーに、例えばワックスエマルジョン、PVA、アクリル系樹脂等の公知の成形助剤を加え、スプレードライヤー等の公知の方法で乾燥させた粉体を用いて所定の形状に成形できる。押出成形を採用する場合は、粉砕スラリーを乾燥、整粒し、混合機に水、及び例えばメチルセルロース等のバインダーを添加混合して、坏土を作製し、押出成形する。鋳込成形を採用する場合は、粉砕スラリーを乾燥した粉体を分散処理したスラリーを用いて石膏型や樹脂型を用いて鋳込成形し、成形体を得る。作製した成形体は1600~1780℃、好ましくは1650~1780℃で焼成することにより所定の形状の焼結体を得ることができる。本発明の製造方法においては、上記(a)~(c)の要件を満たすムライト粉体を使用することにより、1600~1780℃の範囲の焼成温度、粉体の粒度等を適宜調整することで、本発明のムライト焼結体を得ることができる。 The produced mullite powder satisfying the above requirements (a) to (c) is molded. The molding method is not particularly limited, and examples thereof include press molding, rubber press molding, extrusion molding, casting molding, and the like. When press molding such as press molding or rubber press molding is employed, a known molding aid such as wax emulsion, PVA, or acrylic resin is added to the slurry after pulverization, and dried by a known method such as a spray dryer. The obtained powder can be molded into a predetermined shape. When extrusion molding is employed, the pulverized slurry is dried and granulated, water and a binder such as methyl cellulose are added and mixed in a mixer to prepare a clay, which is then extruded. When cast molding is employed, slurry obtained by dispersing powder obtained by drying pulverized slurry is cast using a gypsum mold or a resin mold to obtain a compact. By firing the formed body at 1600 to 1780° C., preferably at 1650 to 1780° C., a sintered body having a predetermined shape can be obtained. In the production method of the present invention, by using mullite powder that satisfies the above requirements (a) to (c), the firing temperature in the range of 1600 to 1780 ° C., the particle size of the powder, etc. can be appropriately adjusted. , the mullite sintered body of the present invention can be obtained.

以下、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the technical scope of the present invention is not limited to these examples.

アルミナゾル及びシリカゾルを用いて、アルミナゾルとシリカゾルの質量比が表1記載の質量比となるように両者を混合し、混合液を乾燥した後、得られた乾燥物を1450℃で大気中で加熱してムライトを合成し、ムライト粉体を作製した。作製したムライト粉体を高純度アルミナポットを用いて直径10mmの高純度アルミナボール(ポット及びボールとも(株)ニッカトー製SSA-999W)を用いて所定時間、湿式粉砕して、表1記載の比表面積のムライト粉体とした。なお、比較例3ではアルミナ純度92%の直径10mmのアルミナボール((株)ニッカトー製HD)を、比較例6では直径10mmのジルコニアボール((株)ニッカトー製YTZ)を使用した。こうして実施例1~7及び比較例1~7のムライト粉体を作製した。粉砕後のスラリーを乾燥、整粒して成形用粉体を作製した。作製した成形用粉体を用いて板状のサンプルをプレス成形し、表1に示した1590~1800℃の各温度条件で焼成して、焼結体を得た。得られた焼結体の特性を表1に示す。また、実施例1及び比較例3の微構造をSEM(走査型電子顕微鏡)で撮影した写真を図1及び2にそれぞれ示す。ムライト結晶以外にアルミナ結晶粒子が存在する比較例5の微構造をSEMで撮影した写真を図3に示す。なお、矢印で示しているのはアルミナ結晶である。なお、実施例1のムライト焼結体は、結晶粒子一つ一つのSEM-EDX分析(エネルギー分散型X線分析:加速電圧:20kV、倍率:2000倍、照射時間:5秒、EMAX Evolution Model:X―Max80 HORIBA社製)によるAlとSiOの質量比(AlとSiOの合計量を100としたときの質量比)が、Al:SiOが74.7:25.6~76.1:23.9の範囲内にあり、バラツキが非常に少ないAlとSiOの質量比が均質な結晶粒子からなっていた。 Alumina sol and silica sol are mixed so that the mass ratio of alumina sol and silica sol is the mass ratio shown in Table 1, the mixed solution is dried, and the resulting dried product is heated at 1450 ° C. in the atmosphere. Then, mullite was synthesized and mullite powder was produced. The prepared mullite powder is wet-ground for a predetermined time using a high-purity alumina pot with high-purity alumina balls having a diameter of 10 mm (SSA-999W manufactured by Nikkato Co., Ltd.), and the ratio shown in Table 1. Mullite powder with a surface area was used. In Comparative Example 3, an alumina ball (HD manufactured by Nikkato Co., Ltd.) with an alumina purity of 92% and a diameter of 10 mm was used, and in Comparative Example 6, a zirconia ball (YTZ manufactured by Nikkato Co., Ltd.) with a diameter of 10 mm was used. Mullite powders of Examples 1 to 7 and Comparative Examples 1 to 7 were thus produced. The slurry after pulverization was dried and granulated to prepare molding powder. A plate-shaped sample was press-molded using the prepared molding powder, and fired under each temperature condition of 1590 to 1800° C. shown in Table 1 to obtain a sintered body. Table 1 shows the properties of the obtained sintered body. SEM (scanning electron microscope) photographs of the microstructures of Example 1 and Comparative Example 3 are shown in FIGS. 1 and 2, respectively. FIG. 3 shows a SEM photograph of the microstructure of Comparative Example 5 in which alumina crystal grains are present in addition to mullite crystals. Alumina crystals are indicated by arrows. The mullite sintered body of Example 1 was subjected to SEM-EDX analysis of each crystal grain (energy dispersive X-ray analysis: acceleration voltage: 20 kV, magnification: 2000 times, irradiation time: 5 seconds, EMAX Evolution Model: X - Max80 (manufactured by HORIBA), the mass ratio of Al 2 O 3 and SiO 2 ( mass ratio when the total amount of Al 2 O 3 and SiO 2 is 100) is 74. It was in the range of 7:25.6 to 76.1:23.9, and consisted of crystal grains with a uniform mass ratio of Al 2 O 3 and SiO 2 with very little variation.

(耐クリープ性の評価)
得られた焼結体を耐クリープ性の評価用サンプルとして5×2×150mmの短冊状に切断・加工した。耐クリープ性は、上スパンが31.3mm、下スパンが100mmの4点曲げにより1650℃、負荷荷重(P)を3MPaとして電気炉内で5時間保持し、室温まで冷却後のたわみ量(δmm)により評価した。評価用サンプルは、電気炉内で室温から1650℃まで昇温速度100℃/hで昇温し、5時間保持後、電気炉から取り出して室温まで自然冷却した。その結果を表1に示す。
(耐熱衝撃の評価)
得られた焼結体を耐熱衝撃テスト用サンプルとして10×10×50mmの角棒に加工し、耐熱衝撃テストをおこなった。テスト方法は、1450℃に加熱している電気炉の中へサンプルを投入し、1時間保持後、即座に炉外へ取り出す操作を3回おこなったときのクラック発生の有無で評価した。その結果を表1に示す。
(Evaluation of creep resistance)
The resulting sintered body was cut and processed into strips of 5×2×150 mm as samples for evaluation of creep resistance. Creep resistance is measured by four-point bending with an upper span of 31.3 mm and a lower span of 100 mm at 1650 ° C. and a load (P) of 3 MPa. ) was evaluated. The evaluation sample was heated from room temperature to 1,650° C. at a temperature elevation rate of 100° C./h in an electric furnace, held for 5 hours, taken out from the electric furnace, and naturally cooled to room temperature. Table 1 shows the results.
(Evaluation of Thermal Shock)
The obtained sintered body was processed into a square bar of 10×10×50 mm as a sample for thermal shock test, and subjected to a thermal shock test. The test method was to put the sample into an electric furnace heated to 1450° C., hold it for 1 hour, and immediately take it out of the furnace. Table 1 shows the results.

Figure 2022156925000002
Figure 2022156925000002

表1に示すように、本発明のムライト焼結体である実施例1~7で得られた焼結体は、1650℃、3MPa、5時間保持という過酷な条件下でもたわみ量が3mm以下と長期間安定した耐熱性と耐久性を有していた。さらに、実施例1~7で得られた焼結体は、耐熱衝撃テストにおいてクラックが発生しなかった。 As shown in Table 1, the sintered bodies obtained in Examples 1 to 7, which are the mullite sintered bodies of the present invention, have a deflection amount of 3 mm or less even under the severe conditions of holding at 1650 ° C., 3 MPa, and 5 hours. It had stable heat resistance and durability for a long period of time. Furthermore, the sintered bodies obtained in Examples 1 to 7 did not develop cracks in the thermal shock test.

一方、比較例1~7で得られた焼結体は、耐クリープ性と耐熱衝撃性の両方を満足することができず、耐熱性及び耐久性に欠けるものであった。比較例1は、ムライト粉体の比表面積及び焼成温度が本発明における範囲の下限値未満であったため、焼結が進みにくく、その結果、平均結晶粒径が本発明における範囲の下限値未満となり、たわみ量が大きく、耐熱性と耐久性が劣るものであった。比較例2は、ムライト粉体の比表面積及び焼成温度が本発明における範囲の上限値を超えたため、平均結晶粒径が本発明における範囲の上限値を超え、たわみ量は本発明の焼結体と同等であったが、結晶粒径が大きくなったため、強度が低下し、耐熱衝撃性が低下してクラックが発生し、耐熱性・耐久性が劣るものであった。比較例3は、原料粉体の粉砕にアルミナ純度が92%のボールを用いたため、粉砕によりボールが摩耗し、その摩耗粉に混入しているアルミナ以外の成分が不純物として混入し、不純物量が本発明における範囲の上限値を超えたため、AlとSiOの質量比は本発明における範囲内であったが、結晶粒界にガラス相が多く形成し、得られた焼結体のたわみ量が大きくなり、耐熱性・耐久性が劣るものであった。比較例4は、AlとSiOの質量比が本発明における範囲外であったため(アルミナが下限値未満であったため)、結晶粒界にガラス相が多く形成され、たわみ量が大きく、耐熱衝撃性が低くクラックが発生し、耐熱性・耐久性が劣るものであった。比較例5は、相対密度が本発明における範囲の下限値未満であったため、焼結不足で結晶粒子の成長が十分でなかったため、結晶粒径分布のバラツキが大きくなり、6μm以下の結晶粒子の含有率が本発明における範囲の上限値を超えたため、たわみ量が大きく、耐熱衝撃性も低くクラックが発生し、耐熱性・耐久性が劣るものであった。比較例6は、原料粉体の粉砕にジルコニアボールを用いたため、粉砕によりボールが摩耗し、その摩耗粉が不純物として混入し、得られた焼結体のたわみ量が大きくなり、耐熱性・耐久性が劣るものであった。比較例7は、AlとSiOの質量比が本発明における範囲外であったため(アルミナが上限値を超えたため)、焼結体にアルミナ相が規定範囲を超えて存在しことにより、たわみ量が大きく、耐熱衝撃性も低くクラックが発生し、耐熱性・耐久性が劣るものであった。 On the other hand, the sintered bodies obtained in Comparative Examples 1 to 7 failed to satisfy both creep resistance and thermal shock resistance, and lacked heat resistance and durability. In Comparative Example 1, since the specific surface area and firing temperature of the mullite powder were less than the lower limit values of the range in the present invention, sintering did not progress easily, and as a result, the average crystal grain size was less than the lower limit value of the range in the present invention. , the amount of deflection was large, and the heat resistance and durability were poor. In Comparative Example 2, since the specific surface area and firing temperature of the mullite powder exceeded the upper limit of the range in the present invention, the average grain size exceeded the upper limit of the range in the present invention, and the deflection amount was the same as the sintered body of the present invention. However, since the crystal grain size increased, the strength decreased, the thermal shock resistance decreased, cracks occurred, and the heat resistance and durability were inferior. In Comparative Example 3, since balls with a purity of alumina of 92% were used for pulverizing the raw material powder, the balls were worn by the pulverization, and components other than alumina mixed in the abrasion powder were mixed as impurities, and the amount of impurities was reduced. Since the upper limit of the range in the present invention was exceeded, the mass ratio of Al 2 O 3 and SiO 2 was within the range in the present invention, but a large amount of glass phase was formed at the grain boundaries, and the obtained sintered body The amount of deflection increased, and the heat resistance and durability were poor. In Comparative Example 4, since the mass ratio of Al 2 O 3 and SiO 2 was outside the range of the present invention (because alumina was less than the lower limit), a large amount of glass phase was formed at the grain boundaries and the amount of deflection was large. , the thermal shock resistance was low, cracks occurred, and the heat resistance and durability were poor. In Comparative Example 5, since the relative density was less than the lower limit of the range in the present invention, the crystal grains did not grow sufficiently due to insufficient sintering, so that the variation in the crystal grain size distribution increased, and the crystal grains of 6 μm or less were formed. Since the content exceeded the upper limit of the range in the present invention, the amount of deflection was large, the thermal shock resistance was low, cracks occurred, and the heat resistance and durability were poor. In Comparative Example 6, since zirconia balls were used for pulverizing the raw material powder, the balls were worn by the pulverization, and the abrasion powder was mixed as impurities, and the deflection amount of the obtained sintered body was increased, and heat resistance and durability were increased. It was of poor quality. In Comparative Example 7, the mass ratio of Al 2 O 3 and SiO 2 was outside the range of the present invention (because alumina exceeded the upper limit), so the alumina phase was present in the sintered body exceeding the specified range. , the amount of deflection was large, the thermal shock resistance was low, cracks occurred, and the heat resistance and durability were poor.

本発明のムライト焼結体は、従来のムライト焼結体に比べて高い耐熱性及び耐久性を有している。特に高温下かつ高負荷条件下でも優れた耐熱性と耐久性を発揮するため、電子部品等の先端材料の焼成に使用されているローラーハースキルンのローラー等の熱処理炉の炉材・治具として長期間安定して使用できる。また、本発明のムライト焼結体は、高温・高負荷の環境でも高い耐熱性及び耐久性を有しているため、例えばローラーハースキルン用ローラーとして使用する場合、ローラーのサイズを小さくしたり、肉厚を薄くしたりすることができることから、部材の軽量化がはかれる等の優位性も持ち合わせている。 The mullite sintered body of the present invention has higher heat resistance and durability than conventional mullite sintered bodies. Because it exhibits excellent heat resistance and durability even under high temperature and high load conditions, it is used as a furnace material and jig for heat treatment furnaces such as roller hearth kilns used for firing advanced materials such as electronic parts. It can be used stably for a long time. In addition, since the mullite sintered body of the present invention has high heat resistance and durability even in a high temperature and high load environment, for example, when used as a roller for a roller hearth kiln, the size of the roller can be reduced Since the thickness can be reduced, it also has the advantage of reducing the weight of the member.

Claims (2)

以下の要件(1)~(6)を満たすムライト焼結体。
(1)質量比で、Al:SiOが73:27~77:23
(2)ムライト単相からなる
(3)理論密度に対する相対密度が95%以上
(4)平均結晶粒径が7~15μm
(5)6μm以下の結晶粒子の含有率が20%以下
(6)1650℃、3MPaの負荷応力下で5時間保持後のたわみ量が5mm以下
A mullite sintered body that satisfies the following requirements (1) to (6).
(1) Al 2 O 3 : SiO 2 is 73:27 to 77:23 in mass ratio
(2) Made of mullite single phase (3) Relative density to theoretical density is 95% or more (4) Average crystal grain size is 7 to 15 μm
(5) The content of crystal grains of 6 μm or less is 20% or less (6) The amount of deflection after holding for 5 hours under a load stress of 3 MPa at 1650° C. is 5 mm or less
以下の要件(a)~(c)を満たすムライト粉体を成形し、大気中1600~1780℃で焼成するムライト焼結体の製造方法。
(a)質量比で、Al:SiOが73:27~77:23
(b)Al及びSiOの合計量が99.9質量%以上
(c)比表面積が8~15m/g
A method for producing a mullite sintered body, comprising molding mullite powder satisfying the following requirements (a) to (c) and firing at 1600 to 1780° C. in air.
(a) Al 2 O 3 : SiO 2 is 73:27 to 77:23 in mass ratio
(b) The total amount of Al 2 O 3 and SiO 2 is 99.9% by mass or more (c) The specific surface area is 8 to 15 m 2 /g
JP2021060868A 2021-03-31 2021-03-31 Mullite sintered body with excellent heat resistance and durability and its manufacturing method Active JP6989722B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021060868A JP6989722B1 (en) 2021-03-31 2021-03-31 Mullite sintered body with excellent heat resistance and durability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060868A JP6989722B1 (en) 2021-03-31 2021-03-31 Mullite sintered body with excellent heat resistance and durability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP6989722B1 JP6989722B1 (en) 2022-01-05
JP2022156925A true JP2022156925A (en) 2022-10-14

Family

ID=79239782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060868A Active JP6989722B1 (en) 2021-03-31 2021-03-31 Mullite sintered body with excellent heat resistance and durability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6989722B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286264A (en) * 1985-06-11 1986-12-16 株式会社ニッカト− Furnace center pipe for heating furnace and manufacture
JPS6389455A (en) * 1986-10-01 1988-04-20 東レ株式会社 Mullite sintered body
DE4228711A1 (en) * 1992-08-28 1994-03-03 Degussa Silicon-aluminum mixed oxide
JP2549976B2 (en) * 1993-02-03 1996-10-30 株式会社ニッカトー Heat-resistant mullite sintered body
JP4822605B2 (en) * 2001-04-19 2011-11-24 株式会社ニッカトー Roller hearth roller made of heat-resistant mullite sintered body
WO2015186560A1 (en) * 2014-06-06 2015-12-10 日本碍子株式会社 Mullite sintered compact, method for producing same, and composite substrate
JP2020097509A (en) * 2018-12-13 2020-06-25 昭和電工株式会社 Mullite-based sintered compact and method for producing the same

Also Published As

Publication number Publication date
JP6989722B1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6052735B2 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
US2842447A (en) Method of making a refractory body and article made thereby
JP2010508231A (en) Compound for manufacturing heat-resistant materials
Li et al. Optimized sintering and mechanical properties of Y-TZP ceramics for dental restorations by adding lithium disilicate glass ceramics
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
Badiee et al. The effect of nano-TiO2 addition on the properties of mullite-zirconia composites prepared by slip casting
US5401450A (en) β-silicon nitride sintered body and method of producing same
JP2013209244A (en) Member for firing consisting of zirconia quality sintered body
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
Sardjono The characterization of ceramic alumina prepared by using additive glass beads
Sathiyakumar et al. Role of wollastonite additive on density, microstructure and mechanical properties of alumina
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JP2022156925A (en) Mullite sintered body with excellent thermal resistance and durability and production method thereof
CZ20012699A3 (en) High-strength zirconium oxide being partially stabilized by magnesium oxide
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2020097509A (en) Mullite-based sintered compact and method for producing the same
KR101174622B1 (en) Manufacturing method of mullite using agalmatolite
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2003040688A (en) Lightweight ceramic sintered compact
JP4822605B2 (en) Roller hearth roller made of heat-resistant mullite sintered body
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JPH07315915A (en) Orientated alumina sintered compact
JP2005082429A (en) Zirconia-made heat treating member
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210601

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211202

R150 Certificate of patent or registration of utility model

Ref document number: 6989722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150