JP2549976B2 - Heat-resistant mullite sintered body - Google Patents

Heat-resistant mullite sintered body

Info

Publication number
JP2549976B2
JP2549976B2 JP5016048A JP1604893A JP2549976B2 JP 2549976 B2 JP2549976 B2 JP 2549976B2 JP 5016048 A JP5016048 A JP 5016048A JP 1604893 A JP1604893 A JP 1604893A JP 2549976 B2 JP2549976 B2 JP 2549976B2
Authority
JP
Japan
Prior art keywords
sintered body
mullite
heat
sio
mullite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5016048A
Other languages
Japanese (ja)
Other versions
JPH06227859A (en
Inventor
宏司 大西
克己 前田
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP5016048A priority Critical patent/JP2549976B2/en
Publication of JPH06227859A publication Critical patent/JPH06227859A/en
Application granted granted Critical
Publication of JP2549976B2 publication Critical patent/JP2549976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温における耐久性に
優れた耐熱性ムライト焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant mullite sintered body having excellent durability at high temperatures.

【0002】[0002]

【従来のは技術及びその課題】ムライトセラミックス
は、古くから理化学用磁器、耐火物等として利用されて
きたが、非酸化物系セラミックスと比べて、熱安定性に
優れていることから、最近耐熱性構造材料として注目を
浴びるようになってきた。
BACKGROUND OF THE INVENTION Mullite ceramics have been used as porcelain for science and chemistry, refractories, etc. for a long time. It has come to the spotlight as a structural material.

【0003】従来のムライトセラミックスは、カオリ
ン、アルミナ等の天然原料から反応焼成によって製造さ
れているが、この場合には、原料にアルカリ金属、アル
カリ土類金属等の不純物がかなり存在し、またムライト
の組成よりシリカが過剰に使用されているために、焼結
体中にガラス相が多量に形成され、その熱的性質は、1
300℃以上では劣るものであった。
[0003] Conventional mullite ceramics are produced by reaction firing from natural raw materials such as kaolin and alumina. In this case, however, impurities such as alkali metals and alkaline earth metals are considerably present in the raw materials, and mullite is also used. Since silica is used in excess of the composition of No. 1, a large amount of glass phase is formed in the sintered body, and its thermal property is 1
It was inferior at 300 ° C or higher.

【0004】近年、Al2 3 /SiO2 比がムライト
組成比となるように合成したムライト原料粉体を用い
て、ガラス相の少ないムライト質焼結体を製造すること
がなされており(例えば、特開昭61−286264号
公報)、従来のムライト焼結体に比して、高温強度に優
れた焼結体が得られている。しかしながら、この新しい
ムライト焼結体においても、実用的な観点からは、高温
における耐久性等が不十分であり、耐熱性構造材料とし
ては、1500℃程度以上の高温における耐熱性の改善
が要望されている。
Recently, a mullite-based sintered body having a small glass phase has been produced by using a mullite raw material powder synthesized so that the Al 2 O 3 / SiO 2 ratio becomes a mullite composition ratio (for example, , JP-A-61-286264), a sintered body excellent in high temperature strength is obtained as compared with the conventional mullite sintered body. However, this new mullite sintered body also has insufficient durability at high temperatures from a practical viewpoint, and as a heat resistant structural material, improvement in heat resistance at high temperatures of about 1500 ° C. or higher is demanded. ing.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記したよ
うな従来技術の問題点に鑑みて、高温における耐久性に
優れた耐熱性ムライト焼結体を得るべく鋭意研究を重ね
てきた。その結果、Al2 3 /SiO2 比を一定範囲
に調整すると共に、焼結体の密度、ムライト結晶の結晶
粒径及び焼結体の曲げ歪量を適切に調節して得た主とし
てムライト結晶からなる焼結体は、耐熱性、耐熱衝撃
性、耐久性等に優れたものとなり、更に、焼結体中にZ
rO2 を実質的に存在させない場合には、特に耐久性に
優れたムライト焼成体が得られることを見出し、ここに
本発明を完成するに至った。
In view of the problems of the prior art as described above, the present inventor has earnestly studied to obtain a heat-resistant mullite sintered body having excellent durability at high temperature. As a result, mainly the mullite crystals obtained by adjusting the Al 2 O 3 / SiO 2 ratio within a certain range and appropriately adjusting the density of the sintered body, the crystal grain size of the mullite crystal, and the bending strain amount of the sintered body. The sintered body made of is excellent in heat resistance, thermal shock resistance, durability and the like.
It has been found that a mullite fired body having particularly excellent durability can be obtained when rO 2 is not substantially present, and the present invention has been completed here.

【0006】即ち、本発明は、下記の耐熱性ムライト焼
結体を提供するものである。
That is, the present invention provides the following heat-resistant mullite sintered body.

【0007】1. (1)Al2 3 /SiO2 (重量比)が71/29〜
78/22であり、(2)平均結晶粒径が1〜50μm
であり、(3)理論密度に対する相対密度が85〜94
%であり、(4)1600℃、荷重10kgf/cm2
における曲げ歪量が1時間当たり5%以下であり、
(5)主としてムライト結晶からなることを特徴とする
耐熱性ムライト焼結体。
1. (1) Al 2 O 3 / SiO 2 (weight ratio) is 71 / 29-
78/22 and (2) average crystal grain size of 1 to 50 μm
And (3) the relative density to the theoretical density is 85 to 94.
%, (4) 1600 ° C., load 10 kgf / cm 2
The amount of bending strain in 5% or less per hour,
(5) A heat-resistant mullite sintered body, which is mainly composed of mullite crystals.

【0008】2.ZrO2 を実質的に含有しないことを
特徴とする上記項1に記載の耐熱性ムライト焼結体。
2. 2. The heat-resistant mullite sintered body according to item 1, which is substantially free of ZrO 2 .

【0009】以下、本発明の耐熱性ムライト焼結体が充
足すべき各要件について詳細に説明する。
The requirements to be satisfied by the heat-resistant mullite sintered body of the present invention will be described in detail below.

【0010】(a)Al2 3 とSiO2 との成分割合
は、Al2 3 /SiO2 (重量比)=71/29〜7
8/22の範囲内とする。
(A) The component ratio of Al 2 O 3 and SiO 2 is Al 2 O 3 / SiO 2 (weight ratio) = 71/29 to 7
Within the range of 8/22.

【0011】Al2 3 とSiO2 との割合がこの範囲
内の場合に、特に焼結体の耐久性が高くなる。SiO2
がこの割合を上回ると、焼結工程でSiO2 又は非晶質
相が生成し易くなり、常温における強度等は向上する
が、耐久性が低下するので好ましくない。一方、Al2
3 が過剰になり過ぎると、アルミナが多量に析出し、
またムライト結晶が針状から粒状に変って、アスペクト
比の小さな結晶となり、耐熱衝撃性、耐久性等が低下す
る。Al2 3 /SiO2 比は、72/28〜77/2
3であることが好ましく、73/27〜76/24であ
ることがより好ましい。
When the ratio of Al 2 O 3 and SiO 2 is within this range, the durability of the sintered body becomes particularly high. SiO 2
However, if it exceeds this ratio, SiO 2 or an amorphous phase is likely to be generated in the sintering step, and the strength at room temperature is improved, but the durability is lowered, which is not preferable. On the other hand, Al 2
When O 3 becomes too much, a large amount of alumina precipitates,
Further, the mullite crystals change from acicular to granular and become crystals with a small aspect ratio, and the thermal shock resistance, durability, etc. are reduced. Al 2 O 3 / SiO 2 ratio is 72/28 to 77/2
It is preferably 3 and more preferably 73/27 to 76/24.

【0012】(b)焼結体中のムライト結晶の平均粒径
を1〜50μmとする。
(B) The average particle size of the mullite crystals in the sintered body is 1 to 50 μm.

【0013】ムライト結晶の平均粒径が1μmを下回る
場合には、焼結体の耐久性は改善されず、平均粒径が5
0μmを上回ると強度が低下するので好ましくない。ム
ライト結晶の平均粒径は2〜30μmであることが好ま
しい。尚、ムライト結晶の粒径分布は、粒径0.5μm
以下の結晶が30容量%以下であることが好ましく、こ
の様な焼結体は、所望の優れた性能を発揮することがで
きる。粒径0.5μm以下の結晶が連続して多く存在す
る場合には、この部分から高温においてクリープが発生
しやすいので好ましくない。
When the average grain size of the mullite crystals is less than 1 μm, the durability of the sintered body is not improved and the average grain size is 5
If it exceeds 0 μm, the strength decreases, which is not preferable. The average particle size of the mullite crystals is preferably 2 to 30 μm. The particle size distribution of mullite crystals is 0.5 μm.
The following crystals are preferably 30% by volume or less, and such a sintered body can exhibit desired excellent performance. When many crystals having a grain size of 0.5 μm or less are continuously present, creep is likely to occur from this portion at high temperature, which is not preferable.

【0014】(c)理論密度に対する相対密度を85〜
94%の範囲とする。
(C) The relative density to the theoretical density is 85 to
The range is 94%.

【0015】相対密度が85〜94%の場合には、ムラ
イト焼結体中に6〜15%の空孔が存在することとな
り、この空孔が粒界拡散を阻害し、塑性変形を抑制し
て、耐久性を向上させることができる。またこの空孔に
よる機械的強度の低下は比較的小さい。空孔は主として
粒界に存在させることが好ましい。従来の耐熱性ムライ
ト焼結体は、相対密度が95%以上となるように焼結さ
せて機械的、熱的特性を向上させていたが、この場合に
は、高温における耐熱性、耐久性が十分ではなく、しか
も難焼結性の材料を緻密化するために、微細な原料粉末
を使用するか、より高温で焼成する必要があり、コスト
が高くなるという問題点がある。また、相対密度が85
%未満の場合には、機械的特性、耐食性等が劣るものと
なる。相対密度は、88〜94%とすることが望まし
い。
When the relative density is 85 to 94%, 6 to 15% of vacancies are present in the mullite sintered body, and these vacancies inhibit grain boundary diffusion and suppress plastic deformation. Therefore, durability can be improved. Further, the decrease in mechanical strength due to the holes is relatively small. Voids are preferably present mainly at the grain boundaries. The conventional heat-resistant mullite sintered body has been sintered to have a relative density of 95% or more to improve mechanical and thermal characteristics. In this case, heat resistance and durability at high temperature are improved. In order to densify the material which is not sufficient and is difficult to sinter, it is necessary to use a fine raw material powder or to fire at a higher temperature, which causes a problem of high cost. Also, the relative density is 85
If it is less than%, the mechanical properties, corrosion resistance, etc. are inferior. The relative density is preferably 88 to 94%.

【0016】(d)1600℃、荷重10kgf/cm
2 における曲げ歪量が1時間当たり5%以下である。
(D) 1600 ° C., load 10 kgf / cm
The bending strain amount in 2 is 5% or less per hour.

【0017】本発明において、曲げ歪量は、1600℃
に保持された炉内で試料に荷重10kgf/cm2 を加
え、4点曲げにおいて定常歪みになった後、5時間測定
し、その1時間当りの平均値から次式により求める。
In the present invention, the bending strain amount is 1600 ° C.
A load of 10 kgf / cm 2 was applied to the sample in the furnace held at, and after a steady strain was obtained in 4-point bending, measurement was performed for 5 hours, and the average value per hour was calculated by the following formula.

【0018】歪量(%)=6tδ2 ÷{(L+2m)
(L−m)}×100 L:下スパンの長さ、m:上スパンの長さ、t:試料の
長さ、δ:変形量 本発明者の研究によれば、ムライト焼結体の高温特性
は、低温での挙動から推定することはできず、高温度に
おける耐熱性、耐熱衝撃性、耐久性等が良好であるため
には、上記した方法で求めた1600℃におけるムライ
ト焼結体の曲げ歪量が5%以下である必要があり、これ
が5%を上回ると1500℃程度以上の高温で長時間使
用した場合に、寿命が短くなることが判った。これは、
ムライト焼結体は、1550℃近辺で、粘性流動が生
じ、1500℃以下の特性が同等でも1600℃近辺に
なると異なった挙動を示すことによるものと考えられ
る。上記曲げ歪量は3%以下であることが好ましい。
Strain amount (%) = 6tδ 2 ÷ {(L + 2m)
(Lm)} × 100 L: Length of lower span, m: Length of upper span, t: Length of sample, δ: Deformation amount According to the study of the present inventors, high temperature of mullite sintered body The properties cannot be estimated from the behavior at low temperatures, and in order to have good heat resistance, thermal shock resistance, durability, etc. at high temperatures, the mullite sintered body at 1600 ° C. obtained by the above method should be used. It has been found that the bending strain amount needs to be 5% or less, and if it exceeds 5%, the life is shortened when used for a long time at a high temperature of about 1500 ° C. or higher. this is,
It is considered that the mullite sintered body causes viscous flow at around 1550 ° C. and exhibits different behavior at around 1600 ° C. even though the properties at 1500 ° C. or less are the same. The bending strain amount is preferably 3% or less.

【0019】(e)焼結体が主としてムライト結晶から
なる。
(E) The sintered body is mainly composed of mullite crystals.

【0020】焼結体は、主としてムライト結晶からなる
ことが必要であり、ムライト結晶は焼結体中に70容量
%程度以上存在することが好ましい。アルミナ相は、1
5容量%程度まで含まれても良く、これによって焼結体
の物性が大きく阻害されることはない。また、SiC、
Cr2 3 等を40重量%程度まで含んでも焼結体の物
性に悪影響を及ぼすことはなく、靭性や強度を向上させ
ることができる。アルカリ金属酸化物やCaOの含有量
は、夫々0.1重量%以下とすることが好ましい。焼結
体のガラス相は5容量%程度以下であることが好まし
い。
The sintered body needs to consist mainly of mullite crystals, and it is preferable that the mullite crystals are present in the sintered body in an amount of about 70% by volume or more. Alumina phase is 1
It may be contained up to about 5% by volume, and this does not significantly impair the physical properties of the sintered body. In addition, SiC,
Even if Cr 2 O 3 or the like is contained up to about 40% by weight, the physical properties of the sintered body are not adversely affected and the toughness and strength can be improved. It is preferable that the content of each of the alkali metal oxide and CaO is 0.1% by weight or less. The glass phase of the sintered body is preferably about 5% by volume or less.

【0021】また、本発明のムライト焼結体は、ZrO
2 を実質的に含有しないことが好ましい。従来のムライ
ト焼結体の製法は、一般的にZrO2 が微量混入する方
法が採用されているが、本発明者の研究によれば、Zr
2 が存在する場合には、高温で焼結体の粒界に存在す
るZrO2 がムライトの焼結を促進する効果がある反
面、1500℃以上の温度においてムライトの塑性変形
に影響を及ぼし、高温強度や耐クリープ性等の高温特性
を劣化させることが判った。よって、ZrO2 は、不可
抗力で混入する0.1重量%程度未満とすることが好ま
しく、0.05重量%程度未満とすることがより好まし
く、通常の重量法による化学分析において分析限界以下
であることが最も望ましい。
The mullite sintered body of the present invention is ZrO 2.
2 is preferably substantially free of. As a conventional method for producing a mullite sintered body, a method in which a trace amount of ZrO 2 is mixed is generally adopted.
When O 2 is present, ZrO 2 existing at the grain boundaries of the sintered body at a high temperature has the effect of promoting the sintering of mullite, but at the temperature of 1500 ° C. or higher, it affects the plastic deformation of mullite, It has been found that it deteriorates high temperature properties such as high temperature strength and creep resistance. Therefore, ZrO 2 is preferably mixed in an amount of force majeure of less than about 0.1% by weight, more preferably less than about 0.05% by weight, and not more than the analytical limit in the chemical analysis by the usual gravimetric method. Is most desirable.

【0022】本発明のムライト焼結体を製造するには、
Al2 3 とSiO2 との比率が、所定の範囲内にあ
り、Al2 3 とSiO2 とからなる主たる成分が予め
仮焼によってムライト化している粉体原料を常法に従っ
て成形し、焼成することが望ましい。この様な粉体原料
は、液体原料を使用する公知の種々の方法で調製可能で
あり、製造方法は特に限定されない。更に、AlとSi
を含む化合物から固相法や溶融法によって合成してもよ
く、更には、これらの原料から直接反応焼結によって焼
結体を得ても良い。
To produce the mullite sintered body of the present invention,
A powder raw material in which the ratio of Al 2 O 3 and SiO 2 is within a predetermined range, and the main component consisting of Al 2 O 3 and SiO 2 is previously mullitized by calcination is molded by an ordinary method, Baking is desirable. Such powder raw material can be prepared by various known methods using a liquid raw material, and the manufacturing method is not particularly limited. In addition, Al and Si
It may be synthesized by a solid phase method or a melting method from a compound containing, and further, a sintered body may be obtained from these raw materials by direct reaction sintering.

【0023】ムライト粉体原料を得るための最も一般的
な方法である共沈法又はゾルゲル法の場合には、例え
ば、ムライト成形焼結体中のAl/Si比に相当するA
l化合物、Si化合物を含有する液状原料を調製し、各
化合物を共沈又はゲル化させた後、乾燥して粉体を得
る。次いで、ムライト生成温度である900〜1500
℃で仮焼した後、粉砕して、好ましくは平均粒径5μm
以下の焼結用の粉体原料とすればよい。この様にして得
られた粉体には、粒径50μm程度以下のムライトの粗
粒を加えても良い。
In the case of the coprecipitation method or the sol-gel method, which is the most general method for obtaining a mullite powder raw material, for example, A corresponding to the Al / Si ratio in the mullite compact sintered body is used.
A liquid raw material containing a 1-compound and a Si compound is prepared, and each compound is coprecipitated or gelled and then dried to obtain a powder. Next, the mullite generation temperature of 900 to 1500
After calcination at ℃, crushed, preferably with an average particle size of 5μm
The following powder raw material for sintering may be used. Coarse mullite particles having a particle size of about 50 μm or less may be added to the powder thus obtained.

【0024】上記のようにして製造された原料粉体は、
CIP、メカプレス、押出し、鋳込成形等の常法に従っ
て成形され、1600〜1800℃程度で焼成されて本
発明の焼結体となる。
The raw material powder produced as described above is
The sintered body of the present invention is formed by a conventional method such as CIP, mechanical press, extrusion, or cast molding, and is fired at about 1600 to 1800 ° C.

【0025】尚、本発明の焼結体の製造において、Zr
2 、アルカリ金属酸化物、アルカリ土類金属酸化物、
Fe2 3 、TiO2 等が多く混入すると焼結体の曲げ
歪量が大きくなりやすいので、前記した所定の曲げ歪量
とするためには、これらが極力混入しない材料や工程を
採用することが好ましい。
In the production of the sintered body of the present invention, Zr
O 2 , alkali metal oxide, alkaline earth metal oxide,
If a large amount of Fe 2 O 3 , TiO 2 or the like is mixed, the bending strain amount of the sintered body tends to be large. Therefore, in order to obtain the above-mentioned predetermined bending strain amount, it is necessary to adopt a material or process that does not mix these as much as possible. Is preferred.

【0026】[0026]

【発明の効果】本発明のムライト焼結体は、高温におけ
る耐久性、耐熱性、耐熱衝撃性、高温強度、熱安定性等
に優れたものであり、1500℃を越える高温において
も優れた特性を発揮するため、高温用のローラー、ベル
ト、容器などの熱処理用部材、高温特性測定用治具、炉
心管等として有用性が高いものである。
EFFECTS OF THE INVENTION The mullite sintered body of the present invention is excellent in high temperature durability, heat resistance, thermal shock resistance, high temperature strength, thermal stability, and the like, and has excellent characteristics even at high temperatures exceeding 1500 ° C. Therefore, it is highly useful as a roller for high temperature, a belt, a member for heat treatment such as a container, a jig for measuring high temperature characteristics, a core tube and the like.

【0027】[0027]

【実施例】以下、実施例を示して、本発明を更に詳細に
説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0028】実施例1 Al2 3 及びSiO2 としての重量比が表1に示す割
合であるAl化合物及びSi化合物を含有する液状原料
から、ゾルゲル法により、粉体を製造し、これを乾燥し
た後、1380℃で2時間仮焼してムライトを合成し、
平均粒径1.5μmに粉砕した。これに、バインダーと
して水溶性アクリル系高分子を添加し、スプレードライ
ヤーにて約60μmの成形用の顆粒を得た。これを用い
て、CIP法により、成形圧1.5トン/cm2 で成形
し、表1に示す温度で3時間焼成してムライト焼結体を
得た。歪量の測定は、幅5mm、厚さ2mm、長さ14
0mmの試料を用い、前記した算出式におけるL=10
cm、m=3cmにて荷重10kgf/cm2 を加えて
行なった。これらの焼結体の特性を表1に示す。
Example 1 A powder was produced by a sol-gel method from a liquid raw material containing an Al compound and a Si compound whose weight ratios as Al 2 O 3 and SiO 2 were the ratios shown in Table 1, and dried. After that, it is calcined at 1380 ° C for 2 hours to synthesize mullite,
It was ground to an average particle size of 1.5 μm. To this, a water-soluble acrylic polymer was added as a binder, and a spray dryer was used to obtain granules for molding having a size of about 60 μm. Using this, a mullite sintered body was obtained by molding at a molding pressure of 1.5 ton / cm 2 by the CIP method and firing at the temperature shown in Table 1 for 3 hours. The measurement of the amount of strain is as follows: width 5 mm, thickness 2 mm, length 14
Using a 0 mm sample, L = 10 in the above calculation formula
It was performed by applying a load of 10 kgf / cm 2 at cm and m = 3 cm. The characteristics of these sintered bodies are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例2 実施例1の表1の試料番号1で使用したムライト粉砕粉
末80重量部にAl2 3 /SiO2 比が76/24の
電気溶融法で作製した平均粒径40μmのムライト粒を
20重量部加えた後、更に12時間粉砕分散し、乾燥後
水とバインダーを添加して練土を作製し、成形圧50k
g/cm2 で押出成形し、表2に示す温度で3時間焼成
して、ムライト焼結体を得た。これらの焼結体の特性を
表2に示す。
Example 2 80 parts by weight of the mullite crushed powder used in Sample No. 1 in Table 1 of Example 1 had an Al 2 O 3 / SiO 2 ratio of 76/24 and had an average particle size of 40 μm. After adding 20 parts by weight of mullite particles, further pulverize and disperse for 12 hours, and after drying, add water and a binder to prepare a kneaded material, forming pressure 50 k
It was extruded at g / cm 2 and fired at the temperature shown in Table 2 for 3 hours to obtain a mullite sintered body. Table 2 shows the characteristics of these sintered bodies.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例3 Al2 3 及びSiO2 としての重量比が表3に示す割
合であるAl化合物及びSi化合物を含有する液状原料
から、ゾルゲル法により、粉体を製造し、これを乾燥し
た後、1380℃で2時間仮焼してムライトを合成し
た。次いで、試料番号12を除き、表3に示す量のZr
2 を添加し、スプレードライヤーにて約60μmの成
形用の顆粒を得た。これを用いて、CIP法により、成
形圧1.5トン/cm2 で成形し、表3に示す温度で3
時間焼成してムライト焼結体を得た。これらの焼結体の
特性を表3に示す。
Example 3 A powder was produced by a sol-gel method from a liquid raw material containing an Al compound and a Si compound in a weight ratio of Al 2 O 3 and SiO 2 shown in Table 3, and dried. Then, it was calcined at 1380 ° C. for 2 hours to synthesize mullite. Then, except for sample No. 12, the amount of Zr shown in Table 3
O 2 was added and about 60 μm of granules for molding were obtained by a spray dryer. Using this, molding was carried out at a molding pressure of 1.5 ton / cm 2 by the CIP method, and at a temperature shown in Table 3
It was fired for a time to obtain a mullite sintered body. Table 3 shows the characteristics of these sintered bodies.

【0033】[0033]

【表3】 [Table 3]

【0034】試験例1 上記した実施例の試料により、外径30mm、内径24
mm、長さ1mのチューブを製作し、炉内温度1600
℃、炉内有効幅40cmの電気炉に挿入し、2rpmで
回転させながら、チューブに2kgの荷重を加え、72
時間運転した後、チューブの曲量を測定した。途中でチ
ューブが10mm曲がった場合には、その時点で中止
し、その時間を測定した。
Test Example 1 An outer diameter of 30 mm and an inner diameter of 24 were obtained using the samples of the above-described examples.
Manufacture a tube with a length of 1 mm and a temperature of 1600
℃, put in an electric furnace with an effective width of 40 cm in the furnace, while rotating at 2 rpm, apply a load of 2 kg to the tube,
After running for an hour, the bending amount of the tube was measured. When the tube bent 10 mm on the way, the tube was stopped at that time and the time was measured.

【0035】測定終了後、チューブを炉から素早く引抜
いて室温の煉瓦の上に置き、熱衝撃で破損されるか否か
を調べた。これらの結果を表4に示す。
After the completion of the measurement, the tube was quickly pulled out from the furnace and placed on a brick at room temperature to examine whether it would be damaged by thermal shock. The results are shown in Table 4.

【0036】[0036]

【表4】 [Table 4]

【0037】以上の結果から、試料番号1〜5,10〜
13の本発明ムライト焼結体は、高温における耐熱性、
耐久性に優れ、耐熱衝撃性も良好であることが判った。
From the above results, sample numbers 1 to 5, 10
The mullite sintered body of the present invention of No. 13 has heat resistance at high temperature,
It was found that the durability was excellent and the thermal shock resistance was also good.

【0038】[0038]

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(1)Al2 3 /SiO2 (重量比)が
71/29〜78/22であり、(2)平均結晶粒径が
1〜50μmであり、(3)理論密度に対する相対密度
が85〜94%であり、(4)1600℃、荷重10k
gf/cm2 における曲げ歪量が1時間当たり5%以下
であり、(5)主としてムライト結晶からなることを特
徴とする耐熱性ムライト焼結体。
(1) Al 2 O 3 / SiO 2 (weight ratio) is 71/29 to 78/22, (2) average crystal grain size is 1 to 50 μm, and (3) relative to the theoretical density. Relative density is 85-94%, (4) 1600 ° C, load 10k
(5) A heat-resistant mullite sintered body, which has a bending strain amount of 5% or less per hour in gf / cm 2 and is mainly composed of mullite crystals.
【請求項2】ZrO2 を実質的に含有しないことを特徴
とする請求項1に記載の耐熱性ムライト焼結体。
2. The heat-resistant mullite sintered body according to claim 1, which is substantially free of ZrO 2 .
JP5016048A 1993-02-03 1993-02-03 Heat-resistant mullite sintered body Expired - Lifetime JP2549976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5016048A JP2549976B2 (en) 1993-02-03 1993-02-03 Heat-resistant mullite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5016048A JP2549976B2 (en) 1993-02-03 1993-02-03 Heat-resistant mullite sintered body

Publications (2)

Publication Number Publication Date
JPH06227859A JPH06227859A (en) 1994-08-16
JP2549976B2 true JP2549976B2 (en) 1996-10-30

Family

ID=11905699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5016048A Expired - Lifetime JP2549976B2 (en) 1993-02-03 1993-02-03 Heat-resistant mullite sintered body

Country Status (1)

Country Link
JP (1) JP2549976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316869A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Roller for roller hearth kiln consisting of heat resistant mullite sintered compact

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507148B2 (en) * 2000-10-24 2010-07-21 株式会社ニッカトー Heat treatment member made of mullite sintered body
JP5861016B1 (en) * 2014-06-06 2016-02-16 日本碍子株式会社 Sintered mullite, its manufacturing method and composite substrate
JP6989722B1 (en) * 2021-03-31 2022-01-05 株式会社ニッカトー Mullite sintered body with excellent heat resistance and durability and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316869A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Roller for roller hearth kiln consisting of heat resistant mullite sintered compact

Also Published As

Publication number Publication date
JPH06227859A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
CN109311760B (en) Zirconia ceramic, porous material made therefrom, and method for manufacturing zirconia ceramic
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
JPS61197464A (en) Manufacture of sintered formed body
JPH04305054A (en) Aluminum titanate structure and production thereof
JP2549976B2 (en) Heat-resistant mullite sintered body
JPH05170525A (en) Heat-resistant fiber composition
JPH01308868A (en) Ceramic of aluminum titanate and production thereof
JP2509093B2 (en) Refractory manufacturing method for slide gates
JPH02248362A (en) Aluminum titanate ceramics
JPS647030B2 (en)
JP2844908B2 (en) Composite sintered body and method for producing the same
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JP2002316870A (en) Member for heat treatment consisting of zirconia sintered compact
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
JPH08198664A (en) Alumina-base sintered body and its production
JPH04139057A (en) Wear resistant refractory
JPH0881259A (en) Mullite-based ceramics and their production
JPS6158858A (en) Manufacture of alumina ceramic sintered body
JPH07206532A (en) Monolithic refractory
JP2515527B2 (en) Method for manufacturing SiC refractory
JPH0777980B2 (en) Method for manufacturing refractory for casting
JPH03115166A (en) Zirconia sintered body and production thereof
JPH05117019A (en) Basic refractory brick
JPH0558757A (en) Furnace material for firing of ceramics
JPS5978971A (en) Magnesia laumina refractories

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 17