JP5005012B2 - Ceramic capacitor firing method and firing setter - Google Patents

Ceramic capacitor firing method and firing setter Download PDF

Info

Publication number
JP5005012B2
JP5005012B2 JP2009212615A JP2009212615A JP5005012B2 JP 5005012 B2 JP5005012 B2 JP 5005012B2 JP 2009212615 A JP2009212615 A JP 2009212615A JP 2009212615 A JP2009212615 A JP 2009212615A JP 5005012 B2 JP5005012 B2 JP 5005012B2
Authority
JP
Japan
Prior art keywords
setter
firing
surface layer
ceramic capacitor
bazro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009212615A
Other languages
Japanese (ja)
Other versions
JP2010111566A (en
Inventor
常夫 古宮山
泰久 中西
彰 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2009212615A priority Critical patent/JP5005012B2/en
Publication of JP2010111566A publication Critical patent/JP2010111566A/en
Application granted granted Critical
Publication of JP5005012B2 publication Critical patent/JP5005012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes

Description

本発明はセラミックコンデンサーの焼成方法および焼成用セッターに関するものである。 The present invention relates to a method for firing a ceramic capacitor and a setter for firing.

電子部品焼成用セッターとしては、耐熱性や機械的強度の他に、焼成するセラミック電子部品と反応しないことが要求される。セラミック電子部品との反応性の低さという観点からは、特にジルコニア質セッターが好適であり、従来より、CaO,MgO,Y、CeO等の安定化剤を添加したジルコニア質セッターが用いられてきた(特許文献1)。 The setter for firing electronic parts is required not to react with the ceramic electronic parts to be fired in addition to heat resistance and mechanical strength. From the viewpoint of low reactivity with ceramic electronic parts, zirconia setters are particularly suitable. Conventionally, zirconia setters to which stabilizers such as CaO, MgO, Y 2 O 3 , CeO 2 are added are preferred. It has been used (Patent Document 1).

近年、各企業の二酸化炭素排出量削減方針を受け、セラミックコンデンサー等のセラミック電子部品製造においても、低温で焼成可能な組成を有するワークの開発が進められている。これらの低温で焼成可能な組成を有するワークは、BaO,MnO,CaO,SrO,NiO等の低融点金属酸化物を含有することを特徴とするものである。   In recent years, in response to the carbon dioxide emission reduction policy of each company, in the production of ceramic electronic parts such as ceramic capacitors, work having a composition that can be fired at a low temperature has been developed. These workpieces having a composition that can be fired at a low temperature contain a low-melting-point metal oxide such as BaO, MnO, CaO, SrO, or NiO.

これらの低融点金属酸化物は、ワークの低温焼成を可能とする一方で、ワーク焼成時にセッター表層で化学反応によるセッターの変質を引き起こす新たな問題の要因となっている。   While these low-melting point metal oxides enable low-temperature firing of a workpiece, they cause a new problem that causes setter alteration due to a chemical reaction on the setter surface layer during workpiece firing.

具体的には、ジルコニア質セッターの表層に拡散した低融点金属酸化物が焼成温度下で化学反応を誘発し、ジルコン酸塩を生成する。当該ジルコン酸塩生成反応は結晶構造の変化を伴うため、当該部分に応力が発生し、発生応力に由来してセッターのソリやキレ、割れといった現象が生じ、セッター寿命が短くなる問題が生じていた。   Specifically, the low-melting-point metal oxide diffused in the surface layer of the zirconia setter induces a chemical reaction at a firing temperature to produce a zirconate. Since the zirconate formation reaction involves a change in the crystal structure, stress is generated in the part, causing problems such as warping, cracking, and cracking of the setter due to the generated stress, resulting in a problem that the setter life is shortened. It was.

特開8−178549号公報JP-A-8-178549

本発明の目的は、前記問題を解決し、低融点金属酸化物を含有するワークの焼成時にセッターのソリやキレ、割れといった問題を生じることのないセラミックコンデンサーの焼成方法および焼成用セッターを提供することである。 An object of the present invention is to provide a ceramic capacitor firing method and a firing setter that solve the above-mentioned problems and do not cause problems such as warping, sharpening, and cracking of a setter when firing a work containing a low-melting-point metal oxide. That is.

上記課題を解決するためになされた本発明のセラミックコンデンサーの焼成方法は、CaO、MgO、Y23、CeO2から選ばれた一種以上の安定化剤によって安定化された安定化ジルコニアの焼成体からなる基材の表面に、BaZrO 3 を30〜100質量%含有し、BaZrO 3 含有率が100%未満の場合における残部が安定化ジルコニアからなる表層を10〜500μm形成した気孔率10〜50%のセッターを用いて、BaTiO を主成分とするセラミックコンデンサーの焼成を行うことにより、セッター表面の結晶構造の変化を抑制するとともに、セラミックコンデンサーと表層由来成分との化学反応に伴うセラミックコンデンサーの色調変化を抑制することを特徴とするものである。 The method for firing a ceramic capacitor of the present invention made to solve the above-mentioned problems is the firing of stabilized zirconia stabilized by one or more stabilizers selected from CaO, MgO, Y 2 O 3 and CeO 2. On the surface of the substrate made of body , 30 to 100% by mass of BaZrO 3 was formed, and when the BaZrO 3 content was less than 100%, the surface layer was made of stabilized zirconia and the porosity was 10 to 500 μm. By firing a ceramic capacitor containing BaTiO 3 as a main component using a 50% setter , the change in the crystal structure of the setter surface is suppressed , and the ceramic capacitor associated with the chemical reaction between the ceramic capacitor and the surface layer-derived component It is characterized by suppressing a change in color tone .

請求項2記載の発明は、請求項1記載のセラミックコンデンサーの焼成方法に用いる焼成用セッターであって、CaO、MgO、Y 2 3 、CeO 2 から選ばれた一種以上の安定化剤によって安定化された安定化ジルコニアの焼成体からなる基材の表面に、BaZrO 3 と安定化ジルコニアからなる表層を10〜500μm形成した焼成用セッターであって、該表層は、BaZrO 3 を30〜100質量%含有するとともに、残部が安定化ジルコニアからなり、該基材は、気孔率が10〜50%であることを特徴とするものである。 The invention according to claim 2 is a setter for firing used in the method for firing a ceramic capacitor according to claim 1, which is stabilized by one or more stabilizers selected from CaO, MgO, Y 2 O 3 and CeO 2. A setter for firing in which a surface layer composed of BaZrO 3 and stabilized zirconia is formed on the surface of a base material composed of a stabilized fired body of stabilized zirconia, the surface layer comprising BaZrO 3 in an amount of 30 to 100 mass. %, The balance is made of stabilized zirconia, and the substrate has a porosity of 10 to 50%.

請求項3記載の発明は、請求項2記載の焼成用セッターにおいて、溶射層あるいは焼き付けコート層であることを特徴とするものである。 The invention described in claim 3 is the setter for firing according to claim 2 , characterized in that it is a sprayed layer or a baked coat layer .

本発明に係るセラミックコンデンサーの焼成方法は、aO、MgO、Y23、CeO2から選ばれた一種以上の安定化剤によって安定化された安定化ジルコニアの焼成体からなる基材の表面に、BaZrO 3 を30〜100質量%含有し、BaZrO 3 含有率が100%未満の場合における残部が安定化ジルコニアからなる表層を10〜500μm形成した気孔率10〜50%のセッターを用いて、BaTiO を主成分とするセラミックコンデンサーの焼成を行う構成により、従来ジルコニア質セッターを用いて低融点金属酸化物を含有するワークを焼成する際に生じていた問題(ジルコニアと低融点金属酸化物が化学反応してジルコン酸塩化し、当該部分で結晶構造の変化が起こり、当該変化に由来してセッターのソリやキレ、割れが生じる問題およびセラミックコンデンサーと表層由来成分との化学反応に伴ってセラミックコンデンサーの色調変化が生じる問題)を効果的に防止することが可能となった。 A method for firing a ceramic capacitor according to the present invention is provided on the surface of a base material comprising a fired body of stabilized zirconia stabilized by one or more stabilizers selected from aO, MgO, Y 2 O 3 , and CeO 2. , containing BaZrO 3 30 to 100 wt%, the balance in the case BaZrO 3 content is less than 100% was 10~500μm form a surface layer consisting of stabilized zirconia, with a porosity of 10-50% of the setter, The problem of firing a workpiece containing a low-melting-point metal oxide by using a zirconia-based setter is caused by the structure in which the ceramic capacitor mainly composed of BaTiO 3 is fired (the zirconia and the low-melting-point metal oxide are A zirconate is formed by chemical reaction, and the crystal structure changes at the relevant part. It has become possible to prevent a change in color tone problems resulting ceramic capacitors) with the chemical reaction in question and ceramic capacitors and the surface layer derived components occurring effectively.

本発明の焼成用セッターの断面説明図である。It is sectional explanatory drawing of the setter for baking of this invention.

本発明の焼成用セッターは、基材の表面にジルコン酸塩を含有する表層を備えるものである。図1には、本発明の一実施形態を示している。以下、図1に示すように、基材2は、安定化ジルコニアからなり、ジルコン酸塩を含有する表層1が、基材2表面に形成された本発明の実施の形態について説明する。   The setter for firing of the present invention comprises a surface layer containing a zirconate salt on the surface of a substrate. FIG. 1 shows an embodiment of the present invention. Hereinafter, as shown in FIG. 1, an embodiment of the present invention in which a substrate 2 is made of stabilized zirconia and a surface layer 1 containing a zirconate salt is formed on the surface of the substrate 2 will be described.

本発明を構成する表層は、BaZrO 3 を30〜100質量%含有し、BaZrO 3 含有率が100%未満の場合における残部を安定化ジルコニアとしたものである。このように、予めセッター表層にBaZrO 3 含有させることにより、BaTiO を主成分とするセラミックコンデンサーをジルコニア質セッターで焼成した場合であっても、低融点金属酸化物であるBaTiO を主成分とするセラミックコンデンサーとの化学反応は生じず、セッター表面の結晶構造の変化に起因する応力発生や、それに伴うセッターのソリやキレ、割れによるセッターの短寿命化を効果的に防止することができる。セッターの表層に、BaZrO 3 以外のジルコン酸塩、例えばCaZrO(ギブズ自由エネルギー(以下、G)=−2080kJ/mol)の皮膜を形成した場合には、焼成条件によっては、被焼成物(BaTiO(G=−1860kJ/mol)を主成分とするセラミックコンデンサー)の焼成時に、該表層の一部で、該コンデンサー由来のBaとの反応によって、該表層成分(CaZrO)からBaZrO(G==−2110kJ/mol)に組成変化が生じると共に、該コンデンサーの一部で、該表層由来のCaとの反応が生じ、それに伴う色調変化が発生する問題が生じうる。 The surface layer constituting the present invention contains 30 to 100% by mass of BaZrO 3, and the balance when the BaZrO 3 content is less than 100% is stabilized zirconia . Thus, by containing BaZrO 3 in the setter surface layer in advance, even when a ceramic capacitor mainly composed of BaTiO 3 is fired with a zirconia setter, the low melting point metal oxide BaTiO 3 is the main component. No chemical reaction occurs with the ceramic capacitor, and it is possible to effectively prevent the generation of stress due to the change in the crystal structure of the setter surface and the shortening of the setter life due to the setter's warpage, cracking and cracking. . When a film of a zirconate other than BaZrO 3 , for example, CaZrO 3 (Gibbs free energy (hereinafter referred to as G) = − 2080 kJ / mol) is formed on the surface layer of the setter, depending on the firing conditions, an object to be fired (BaTiO 3). 3 (ceramic capacitor having G = −1860 kJ / mol) as a main component), the surface layer component (CaZrO 3 ) is converted into BaZrO 3 (G by a reaction with Ba derived from the capacitor in a part of the surface layer. == − 2110 kJ / mol), a composition change may occur, and a reaction with Ca derived from the surface layer may occur in a part of the capacitor, resulting in a change in color tone.

尚、本発明を構成する表層は、焼き付け(焼付)又はプラズマ溶射により形成されることが好ましい。また、本発明を構成する表層の厚さは、10〜500μmであることが好ましい。表層厚みが10μmよりも薄い場合、ワーク成分の浸透がおこりやすく、基材部のジルコン酸塩化が進む。それに伴いセッター表面に応力発生し、ソリやキレが起こりセッターの短寿命化となる。また、表層厚みが500μmよりも厚い場合、コートと基材の熱膨張率が異なったとき、コート表層にクラックが発生するためである。   The surface layer constituting the present invention is preferably formed by baking (baking) or plasma spraying. Moreover, it is preferable that the thickness of the surface layer which comprises this invention is 10-500 micrometers. When the surface layer thickness is thinner than 10 μm, the penetration of the work component is likely to occur, and zirconate formation of the base material portion proceeds. As a result, stress is generated on the surface of the setter, causing warping and sharpening and shortening the life of the setter. Moreover, when the surface layer thickness is thicker than 500 μm, cracks are generated in the coat surface layer when the thermal expansion coefficients of the coat and the substrate are different.

表層のBaZrO 3 含有率は30〜100質量%であって、BaZrO 3 含有率が100%未満の場合、他の成分としては安定化ジルコニアが含有される。BaZrO 3 含有率が30質量%に満たない場合には、表層の他の成分として含有される安定化ジルコニアが、低融点金属酸化物の化学反応によりジルコン酸塩化し、セッター表面の結晶構造の変化に起因する応力発生や、それに伴うセッターのソリやキレ、割れによるセッターの短寿命化を効果的に防止することができない。従って、望ましくは、表層のジルコン酸塩の含有率を100質量%として、ワーク焼成時の表層のジルコン酸塩化を完全に抑止することが好ましい。 The BaZrO 3 content of the surface layer is 30 to 100% by mass, and when the BaZrO 3 content is less than 100%, stabilized zirconia is contained as another component. When the BaZrO 3 content is less than 30% by mass, the stabilized zirconia contained as the other component of the surface layer is converted to zirconate by a chemical reaction of a low melting point metal oxide, and the crystal structure of the setter surface changes. It is not possible to effectively prevent the generation of stress due to, and the resulting setter warpage, cracking, and cracking, resulting in a shortened life of the setter. Therefore, it is desirable that the content of zirconate on the surface layer is preferably 100% by mass, and that the formation of zirconate on the surface layer during the firing of the workpiece is completely suppressed.

本発明を構成する基材はCaO、MgO、Y23、CeO2から選ばれた一種以上の安定化剤によって安定化された、安定化ジルコニアの焼成体であって、その気孔率は10〜50%であることが好ましい。気孔率が10%よりも低い緻密体だとコート施工した際、コートと基材との密着が悪く剥離し易い。また、気孔率50%を超えるポーラスな材料だとコート施工した際に、基材自体の強度が乏しく、基材が劣化しコート層の剥離が生じる。 The substrate constituting the present invention is a sintered body of stabilized zirconia stabilized by one or more stabilizers selected from CaO, MgO, Y 2 O 3 and CeO 2 , and the porosity thereof is 10 It is preferably ˜50%. When a dense body having a porosity lower than 10% is applied, the adhesion between the coat and the substrate is poor and the film is easily peeled off. Further, when a porous material having a porosity exceeding 50% is applied, the strength of the base material itself is poor, the base material is deteriorated, and the coating layer is peeled off.

次に、本発明の焼成用セッターの製造方法を説明する。基材と表層の2層構造を有する本発明の焼成用セッターは、基材表面に、焼き付け又はプラズマ溶射で表層を形成して製造される。   Next, the manufacturing method of the setter for baking of this invention is demonstrated. The setter for firing of the present invention having a two-layer structure of a substrate and a surface layer is produced by forming a surface layer on the surface of the substrate by baking or plasma spraying.

ここで、溶射とは、金属又はセラミックの微粉末(以下、「溶射材料」という。)を加熱して溶融状態とし、対象物の表面に吹き付けることにより溶射被膜を形成する方法をいう。加熱の方法により燃焼炎を用いるガス溶射、アークを用いるアーク溶射等、種々の方法が存在するが、本発明においてはプラズマジェットを用いるプラズマ溶射により中間層の溶射被膜を形成することが好ましい。   Here, thermal spraying refers to a method of forming a thermal spray coating by heating a metal or ceramic fine powder (hereinafter referred to as “thermal spray material”) to a molten state and spraying it on the surface of an object. There are various methods such as gas spraying using a combustion flame and arc spraying using an arc depending on the heating method. In the present invention, it is preferable to form a sprayed coating on the intermediate layer by plasma spraying using a plasma jet.

本発明では、プラズマ溶射の中でも水プラズマ溶射(水安定化プラズマ溶射)を用いることが、特に好ましい。ガスプラズマ溶射による溶射被膜は、最大膜厚が300μm程度であるが、水(安定化)プラズマ溶射によれば最大膜厚1000μm程度の厚い被膜を形成することができるからである。また、水(安定化)プラズマ溶射は、比較的ポーラスで表面が荒れた被膜を形成できるため、基材に対する密着性が向上する点においても好ましい。   In the present invention, it is particularly preferable to use water plasma spraying (water stabilized plasma spraying) among plasma spraying. This is because the thermal spray coating by gas plasma spraying has a maximum film thickness of about 300 μm, but a thick coating with a maximum film thickness of about 1000 μm can be formed by water (stabilized) plasma spraying. Also, water (stabilized) plasma spraying is preferable in terms of improving adhesion to a substrate because a relatively porous and rough coating can be formed.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1〜10、12、15、16、比較例1〜9)
以下に示す方法で、電子部品用焼成治具のテストピースをそれぞれ作製した。ここで、表1、表2の実施例1〜9及び比較例1〜5は、主に、基材の気孔率及び表層のジルコン酸塩含有率検討のためのテストピースである。また、実施例10、12、15、16、比較例6〜9は、主に、表層のジルコン酸塩の種類及び表層の厚み検討のためのテストピースであり、実施例10、12、15、16、比較例8〜9のテストピースにおいて、ジルコン酸塩含有率は100質量%とした。
( Examples 1-10, 12, 15, 16, Comparative Examples 1-9)
Test pieces of firing jigs for electronic parts were produced by the following methods. Here, Examples 1 to 9 and Comparative Examples 1 to 5 in Tables 1 and 2 are test pieces mainly for examining the porosity of the substrate and the zirconate content of the surface layer. Examples 10, 12, 15, 16, and Comparative Examples 6 to 9 are test pieces mainly for examining the type of surface zirconate and the thickness of the surface layer, and Examples 10, 12, 15, 16 In the test pieces of Comparative Examples 8 to 9, the zirconate content was 100% by mass.

(基材の作製方法)
(1)プレス成型(実施例1〜4、実施例7〜9、実施例12、実施例15〜16、比較例1〜2、比較例4〜9):
不純物の含有量が0.39質量%であるCaO安定化ジルコニア原料を#100F粉末が40質量%、#325F粉末が60質量%の配合比となるように秤量し、乾式で混合した。次いで、バインダー(ポリビニルアルコール)と水を加え、フレットで混練して坏土を得た。得られた坏土を油圧プレスにより100MPaの圧力で成形し、88mm×88mm×3mmの寸法の成形体を得た。これを電気炉にて1500℃で3時間焼成し、各々表1に示す気孔率を有するテストピース用基材を作製した。
(2)鋳込み成型(実施例5〜6、実施例10、比較例3):
不純物の含有量が0.39質量%であるCaO安定化ジルコニア原料を#100F粉末が20質量%、#325F粉末が80質量%の配合比となるように秤量し、さらに酸化物系分散剤と水を添加し、ポットミルで24h混合した。次いで、得られたスラリーを石膏型にて鋳込成形し、150mm×150mm×7mmの寸法の成形体を得た。これを電気炉にて1500℃で3時間焼成し、各々表1に示す気孔率を有するテストピース用基材を作製した。
(Method for producing substrate)
(1) Press molding ( Examples 1-4, Examples 7-9, Example 12, Examples 15-16, Comparative Examples 1-2, Comparative Examples 4-9):
A CaO-stabilized zirconia raw material having an impurity content of 0.39% by mass was weighed so that the blending ratio of # 100F powder was 40% by mass and # 325F powder was 60% by mass, and mixed in a dry manner. Next, a binder (polyvinyl alcohol) and water were added and kneaded with frets to obtain a clay. The obtained clay was molded by a hydraulic press at a pressure of 100 MPa to obtain a molded body having dimensions of 88 mm × 88 mm × 3 mm. This was fired at 1500 ° C. for 3 hours in an electric furnace to prepare test piece substrates each having the porosity shown in Table 1.
(2) Casting molding (Examples 5 to 6, Example 10, Comparative Example 3):
A CaO-stabilized zirconia raw material having an impurity content of 0.39% by mass is weighed so that the blending ratio of # 100F powder is 20% by mass and # 325F powder is 80% by mass. Water was added and mixed in a pot mill for 24 h. Subsequently, the obtained slurry was cast and molded with a plaster mold to obtain a molded body having dimensions of 150 mm × 150 mm × 7 mm. This was fired at 1500 ° C. for 3 hours in an electric furnace to prepare test piece substrates each having the porosity shown in Table 1.

(表層の作製方法)
(1)コート施工(実施例2〜6、8、10、15〜16、比較例2、3、5〜8):BaZrO3、SrZrO3、CaZrO3、MgZrO3から選ばれたジルコン酸塩に安定化ジルコニアを、表1に示す所定量含有させ、溶媒に水を用いて、スラリー化した。得られたスラリーを基材に塗布した後、1450℃、5時間保持し、表1に示す厚さの表層をそれぞれ焼き付けた。
(2)プラズマ溶射施工(実施例1、7、9、12、比較例4、9):BaZrO3、SrZrO3、CaZrO3、MgZrO3から選ばれたジルコン酸塩に安定化ジルコニアを、表1に示す所定量含有させ、基材にプラズマ溶射を行うことにより、表1に示す厚さの表層を作製した。
なお、比較例1は表層を有さないジルコニアセッターとした。
(Method for producing surface layer)
(1) Coat construction ( Examples 2-6 , 8 , 10 , 15-16 , Comparative Examples 2, 3 , 5-8): Zirconate selected from BaZrO 3 , SrZrO 3 , CaZrO 3 , MgZrO 3 Stabilized zirconia was contained in a predetermined amount shown in Table 1, and slurried using water as a solvent. After apply | coating the obtained slurry to a base material, 1450 degreeC was hold | maintained for 5 hours and the surface layer of the thickness shown in Table 1 was baked, respectively.
(2) Plasma spraying ( Examples 1 , 7 , 9, 12 and Comparative Examples 4 and 9): Stabilized zirconia is added to zirconates selected from BaZrO 3 , SrZrO 3 , CaZrO 3 and MgZrO 3. A surface layer having a thickness shown in Table 1 was prepared by containing the predetermined amount shown in FIG.
Comparative Example 1 was a zirconia setter having no surface layer.

Figure 0005005012
Figure 0005005012

上記の作製方法で得られたテストピースを、以下の方法で評価を行った。その結果を表2に示す。   The test piece obtained by the above production method was evaluated by the following method. The results are shown in Table 2.

(テストピースの評価方法1:表層剥離が起こるまでの焼成回数)
2質量%のBaCO、2質量%のMnCO、26質量%のBaTiOを70質量%水に分散させた液を作製し、その液(0.8g)をテストピース(サイズ:150×20×4mm)の表面に塗布後、1400℃、1時間保持する焼成を繰り返し行い、表層の剥離が生じるまでの焼成回数を評価した。
(Test piece evaluation method 1: number of firings until surface peeling occurs)
A liquid in which 2% by mass of BaCO 3 , 2% by mass of MnCO 3 and 26% by mass of BaTiO 3 were dispersed in 70% by mass of water was prepared, and the liquid (0.8 g) was prepared as a test piece (size: 150 × 20 After the coating on the surface of × 4 mm), firing was carried out repeatedly at 1400 ° C. for 1 hour, and the number of firings until peeling of the surface layer occurred was evaluated.

(テストピースの評価方法2:表層剥離に伴う剥離面のソリ量)
2質量%のBaCO、2質量%のMnCO、26質量%のBaTiOを70質量%水に分散させた液を作製し、その液(0.8g)をテストピース(サイズ:150×20×4mm)の表面に塗布後、1400℃、1時間保持する焼成を5回繰り返した後、テストピース全体の反りを床面からの最大距離で計測し、ソリ量を評価した。
◎:ソリ量が1.0mm以下
○:ソリ量が1.0〜3.0mm以下
△:ソリ量が3.0mm以上
(Test piece evaluation method 2: amount of warping of the peeled surface accompanying surface peeling)
A liquid in which 2% by mass of BaCO 3 , 2% by mass of MnCO 3 and 26% by mass of BaTiO 3 were dispersed in 70% by mass of water was prepared, and the liquid (0.8 g) was prepared as a test piece (size: 150 × 20 After coating on the surface of × 4 mm), baking at 1400 ° C. for 1 hour was repeated 5 times, and then the warpage of the entire test piece was measured at the maximum distance from the floor surface to evaluate the amount of warpage.
A: The warp amount is 1.0 mm or less. ○: The warp amount is 1.0 to 3.0 mm or less. Δ: The warp amount is 3.0 mm or more.

(テストピースの評価方法3:ワーク(被焼成体)との反応性[ワーク反応度])
BaTiO3を主成分とする材料からプレート状(サイズ:40mm×40mm×2mm)のワークを作製した。得られたワークをテストピースに載置し、1400℃、5時間保持する焼成を行った後、ワークの変質状態を外観観察で評価した。
◎:ワークの変質が確認されない。
○:ワークの変質が一部(全面の50%程度以下)確認される。
△:ワークの変質が大半(全面の50%程度以上)に確認される。
(Test piece evaluation method 3: reactivity with workpiece (sintered body) [work reactivity])
A plate-shaped workpiece (size: 40 mm × 40 mm × 2 mm) was prepared from a material mainly composed of BaTiO 3 . The obtained workpiece was placed on a test piece, fired at 1400 ° C. for 5 hours, and then the state of alteration of the workpiece was evaluated by appearance observation.
A: Deterioration of the work is not confirmed.
○: Part of the work is confirmed (about 50% or less of the entire surface).
Δ: Deterioration of the work is confirmed in the majority (about 50% or more of the entire surface).

Figure 0005005012
Figure 0005005012

以下、表2に基づく考察を行う。
基材の気孔率及び表層のジルコン酸塩含有率検討(実施例1〜9、比較例1〜5)に関する考察:実施例6〜8に示すように、表層のBaZrO 3 含有率を75%〜100%とすることにより、低融点金属酸化物を含有するワークの焼成を繰り返し行っても、セッターのソリやセッター表層の剥離といった問題の発生を抑制することができた。ただし、実施例9に示すように、表層のBaZrO 3 含有率を100%とした場合であっても、基材の気孔率が大きい(50%)の場合には、前記抑制効果が得られなかった。なお、比較例2、4、5に示すように、基材の気孔率が60%以上の場合、数回の焼成で表層剥離が生じ、表層をジルコン酸塩化したことによる前記効果が得られなかった。
Hereinafter, consideration based on Table 2 is performed.
Study on porosity of substrate and zirconate content rate of surface layer (Examples 1-9, Comparative Examples 1-5): As shown in Examples 6-8, the BaZrO 3 content of the surface layer is 75%- By setting it as 100%, it was possible to suppress the occurrence of problems such as setter warpage and setter surface peeling even when the workpiece containing the low melting point metal oxide was repeatedly fired. However, as shown in Example 9, even when the BaZrO 3 content of the surface layer is set to 100%, when the porosity of the substrate is large (50%), the suppression effect cannot be obtained. It was. In addition, as shown in Comparative Examples 2, 4, and 5, when the porosity of the base material is 60% or more, surface layer peeling occurs after firing several times, and the above-described effect due to zirconate formation of the surface layer cannot be obtained. It was.

表層のジルコン酸塩の種類及び表層の厚み検討(実施例10、12、15、16、比較例6〜9)に関する考察:
表層の厚みが10μmに満たない場合(比較例6、7)や、表層の厚みが500μmを超える場合(比較例8、9)には、表層をジルコン酸塩化したことによる前記効果が充分得られなかった。
Considerations regarding types of surface zirconate and surface layer thickness studies ( Examples 10 , 12 , 15 , 16 and Comparative Examples 6 to 9):
When the thickness of the surface layer is less than 10 μm (Comparative Examples 6 and 7), or when the thickness of the surface layer exceeds 500 μm (Comparative Examples 8 and 9), the above-described effects due to the zirconate formation of the surface layer are sufficiently obtained. There wasn't.

1 表層
2 基材
1 Surface layer 2 Base material

Claims (3)

CaO、MgO、Y23、CeO2から選ばれた一種以上の安定化剤によって安定化された安定化ジルコニアの焼成体からなる基材の表面に、BaZrO 3 を30〜100質量%含有し、BaZrO 3 含有率が100%未満の場合における残部が安定化ジルコニアからなる表層を10〜500μm形成した気孔率10〜50%のセッターを用いて、BaTiO を主成分とするセラミックコンデンサーの焼成を行うことにより、セッター表面の結晶構造の変化を抑制するとともに、セラミックコンデンサーと表層由来成分との化学反応に伴うセラミックコンデンサーの色調変化を抑制することを特徴とするセラミックコンデンサーの焼成方法。 30 to 100% by mass of BaZrO 3 is contained on the surface of the base material made of a sintered body of stabilized zirconia stabilized by one or more stabilizers selected from CaO, MgO, Y 2 O 3 and CeO 2. When a BaZrO 3 content is less than 100% , a ceramic capacitor mainly composed of BaTiO 3 is fired by using a setter having a porosity of 10 to 50% , with the remaining 10 to 500 μm of a surface layer made of stabilized zirconia. A method for firing a ceramic capacitor, comprising suppressing the change in crystal structure of the setter surface and suppressing a change in color tone of the ceramic capacitor due to a chemical reaction between the ceramic capacitor and the surface layer-derived component . 請求項1記載のセラミックコンデンサーの焼成方法に用いる焼成用セッターであって、A setter for firing used in the firing method of the ceramic capacitor according to claim 1,
CaO、MgO、YCaO, MgO, Y 22 O 3Three 、CeO, CeO 22 から選ばれた一種以上の安定化剤によって安定化された安定化ジルコニアの焼成体からなる基材の表面に、BaZrOBaZrO is formed on the surface of a base material made of a sintered body of stabilized zirconia stabilized by one or more stabilizers selected from 3Three と安定化ジルコニアからなる表層を10〜500μm形成した焼成用セッターであって、該表層は、BaZrOAnd a setter for firing in which a surface layer made of stabilized zirconia is formed to 10 to 500 μm, and the surface layer is made of BaZrO. 3Three を30〜100質量%含有するとともに、残部が安定化ジルコニアからなり、該基材は、気孔率が10〜50%であることを特徴とする焼成用セッター。And a balance of 10 to 50%, and the base material has a porosity of 10 to 50%.
該表層が、溶射層あるいは焼き付けコート層であることを特徴とする請求項2記載の焼成用セッター。The firing setter according to claim 2, wherein the surface layer is a sprayed layer or a baked coating layer.
JP2009212615A 2008-10-07 2009-09-15 Ceramic capacitor firing method and firing setter Expired - Fee Related JP5005012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009212615A JP5005012B2 (en) 2008-10-07 2009-09-15 Ceramic capacitor firing method and firing setter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008260345 2008-10-07
JP2008260345 2008-10-07
JP2009212615A JP5005012B2 (en) 2008-10-07 2009-09-15 Ceramic capacitor firing method and firing setter

Publications (2)

Publication Number Publication Date
JP2010111566A JP2010111566A (en) 2010-05-20
JP5005012B2 true JP5005012B2 (en) 2012-08-22

Family

ID=42215808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212615A Expired - Fee Related JP5005012B2 (en) 2008-10-07 2009-09-15 Ceramic capacitor firing method and firing setter

Country Status (4)

Country Link
JP (1) JP5005012B2 (en)
KR (1) KR20100039223A (en)
CN (1) CN101713616A (en)
TW (1) TW201022614A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465216B2 (en) * 2010-08-11 2014-04-09 日本碍子株式会社 Setter for firing
WO2015174288A1 (en) * 2014-05-12 2015-11-19 株式会社村田製作所 Firing tool
JP2018138498A (en) * 2017-02-24 2018-09-06 住友電気工業株式会社 Sintering substrate and method for manufacturing sintering substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270911A (en) * 1992-03-25 1993-10-19 Ngk Insulators Ltd Zirconia refractory setter
JP3579155B2 (en) * 1995-01-18 2004-10-20 東芝セラミックス株式会社 Tools for firing
JP2002265282A (en) * 2001-03-08 2002-09-18 Toshiba Ceramics Co Ltd Vessel for calcination
JP4993812B2 (en) * 2001-04-19 2012-08-08 株式会社ニッカトー Heat treatment member made of zirconia sintered body
JP2003286091A (en) * 2002-03-27 2003-10-07 Toshiba Ceramics Co Ltd Tool for burning
JP2007076935A (en) * 2005-09-13 2007-03-29 Toshiba Ceramics Co Ltd Tool for firing electronic component and its production method

Also Published As

Publication number Publication date
KR20100039223A (en) 2010-04-15
JP2010111566A (en) 2010-05-20
TW201022614A (en) 2010-06-16
CN101713616A (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP5005012B2 (en) Ceramic capacitor firing method and firing setter
JP6948466B2 (en) Firing jig
JP2007015882A (en) Firing tool for electronic component
JPWO2014103465A1 (en) Alumina substrate and substrate for semiconductor device
JP4691145B2 (en) Setter for firing
JP5465143B2 (en) Tool material for SiC firing
JP2006183972A (en) Baking fixture for electronic component
JP2007076935A (en) Tool for firing electronic component and its production method
JP4549091B2 (en) Electronic component firing jig
TW543051B (en) Burning tool for electronic parts
JPWO2008129834A1 (en) Kiln tools for firing electronic components
JP5100726B2 (en) Setter
JP3395549B2 (en) Jig for firing electronic components
JP3819352B2 (en) Electronic component firing jig
JP2005170729A (en) Container for firing
TWI383965B (en) A ceramic material for a ceramic ceramic container, a method for manufacturing the same, and a method for producing the same
JP3549099B2 (en) Manufacturing method of electronic component firing jig
JP3643022B2 (en) Electronic component firing jig
JP3949950B2 (en) Thermal shock resistant alumina / zirconia firing jig and manufacturing method thereof (normal firing)
JP2017024916A (en) Jig for electronic component firing
JP4446633B2 (en) Coating agent for firing jig and firing jig
JP5448648B2 (en) Heat treatment jig
JPWO2008149656A1 (en) Manufacturing method of electronic component firing jig
JP2000247752A (en) Jig for baking electronic part with suppressed reaction and peeling
JP2001089249A (en) Firing tool material and its production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees