JPH04367578A - Porous sintered compact and its production - Google Patents

Porous sintered compact and its production

Info

Publication number
JPH04367578A
JPH04367578A JP16620391A JP16620391A JPH04367578A JP H04367578 A JPH04367578 A JP H04367578A JP 16620391 A JP16620391 A JP 16620391A JP 16620391 A JP16620391 A JP 16620391A JP H04367578 A JPH04367578 A JP H04367578A
Authority
JP
Japan
Prior art keywords
magnesia
sintered body
range
volume
organic beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16620391A
Other languages
Japanese (ja)
Inventor
Masaharu Yamada
雅治 山田
Fumio Sasaki
文夫 佐々木
Hiroshi Sasaki
博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP16620391A priority Critical patent/JPH04367578A/en
Publication of JPH04367578A publication Critical patent/JPH04367578A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve strength with a homogeneous pore size and pore distribution. CONSTITUTION:A magnesia sintered compact containing alumina has a pore diameter within the range of 1-50mum and the pore form is spherical open pores. The aforementioned sintered compact is produced by blending fine powdery magnesia with 10-35wt.% fine powdery alumina having 1-20mum average grain size and mixing the resultant raw material with 1-20vol.% organic beads having 3-50mum grain size and an organic binder, then forming the resultant mixture, heating the formed compact and sintering the obtained compact at 1400-1600 deg.C. The average grain size of the fine powdery magnesia is 1-20mum. The heating is carried out at <=50 deg.C/hr heating rate for the organic beads added in an amount within the range of 1-10vol.% to <350 deg.C and at <=50 deg.C/hr heating rate for the organic beads added in an amount within the range of >10vol.% to 20vol.%. Furthermore, the heating rate is <=200 deg.C/hr from 350 deg.C to the sintering temperature. Methacrylic acid polymer, styrene polymer, etc., are cited as the organic beads.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、多孔質焼結体及びその
製造方法に関し、更に詳しくはアルミナを含むマグネシ
ア焼結体からなり軽量であり、かつ強度が大きく、また
低熱容量であって炉材やサヤ材に適する球状閉気孔を有
する多孔質焼結体及びその製造方法に関する。
[Industrial Application Field] The present invention relates to a porous sintered body and a method for manufacturing the same, and more specifically, the present invention relates to a porous sintered body and a method for manufacturing the same, and more specifically, it is made of a magnesia sintered body containing alumina, is lightweight, has high strength, and has a low heat capacity. The present invention relates to a porous sintered body having spherical closed pores suitable for use as wood and pod wood, and a method for manufacturing the same.

【0002】0002

【従来の技術】焼結体は、粉末を成形、焼成して製造さ
れるが、緻密な焼結体を得るには最蜜充填法に沿った粒
子の混合を行ない、またいわゆるレンガに代表されるよ
うに、多孔質焼結体は、破砕粉を各種の粒度に分け各種
粒度配合を行い、これらをバインダーと共に混合した後
、成形して焼結することにより製造している。
[Prior Art] Sintered bodies are manufactured by molding and firing powder, but in order to obtain dense sintered bodies, particles are mixed according to the densest packing method. As described above, porous sintered bodies are manufactured by dividing crushed powder into various particle sizes, blending them with various particle sizes, mixing these with a binder, and then shaping and sintering.

【0003】この多孔質焼結体には、開気孔又は連続気
孔と言われるものと閉気孔又は独立気孔と言われるもの
とがあるが、炉材やセッター材の用途にはガスの拡散を
防止する目的で閉気孔の焼結体が用いられる。このよう
な多孔質焼結体の製造に際しては、経験的に粒度構成を
考えて粒子の混合を行なうことにより焼結体の気孔率を
制御することが行なわれていた。
There are two types of porous sintered bodies: those with open pores or continuous pores, and those with closed pores or independent pores, but they are used as furnace materials and setter materials to prevent gas diffusion. A closed-pore sintered body is used for this purpose. When manufacturing such a porous sintered body, the porosity of the sintered body has been controlled by mixing particles based on the particle size structure based on experience.

【0004】0004

【発明が解決しようとする課題】しかしながら、多孔質
焼結体の製造方法は、経験的に粒度構成を考えて粒子の
混合を行なうので、得られた焼結体の気孔分布、即ち気
孔の形状、気孔の平均粒径等が不均一で、しかも気孔の
量、即ち気孔率の制御を十分行なうことができなかった
[Problems to be Solved by the Invention] However, in the method of manufacturing a porous sintered body, particles are mixed by considering the particle size composition empirically, so it is difficult to determine the pore distribution of the obtained sintered body, that is, the shape of the pores. The average particle size of the pores was non-uniform, and the amount of pores, that is, the porosity could not be sufficiently controlled.

【0005】更に気孔そのものが粒子と粒子のすき間で
あるため、その大きさも不揃いであり、微細な気孔が均
一に分散された材料を作ることができなかった。したが
って、従来の多孔質焼結体の製造方法では、多孔質焼結
体の強度が弱く薄物などの高級な炉材製品を製造するこ
とが困難であった。
Furthermore, since the pores themselves are gaps between particles, their sizes are also irregular, making it impossible to create a material in which fine pores are uniformly dispersed. Therefore, in the conventional method for manufacturing a porous sintered body, the strength of the porous sintered body is low, making it difficult to manufacture high-quality furnace material products such as thin products.

【0006】そこで、本発明者等は、前記の問題点であ
る気孔サイズ、気孔分布等の不均一が生じない多孔質焼
結体、特に多孔質マグネシア焼結体について種々研究し
た結果、原料マグネシアに有機質ビーズを混合すること
により初期の課題が解決されることを見出した。
Therefore, the present inventors conducted various studies on porous sintered bodies, particularly porous magnesia sintered bodies, which do not suffer from the above-mentioned problems of non-uniformity in pore size, pore distribution, etc., and found that the raw material magnesia It was discovered that the initial problem could be solved by mixing organic beads with.

【0007】更にマグネシアにアルミナを10重量%〜
35重量%を配合することでマグネシアの特性を損なわ
ずに高強度材料が得られることを見出した。本発明は、
これらの知見に基づいて成されたものである。したがっ
て、本発明が解決しようとする課題は、気孔サイズ、気
孔分布の均一で強度に優れた薄物などの高級な炉材製品
を得ることができる多孔質焼結体及びその製造方法を得
ることにある。
[0007] Furthermore, 10% by weight of alumina is added to magnesia.
It has been found that by blending 35% by weight, a high-strength material can be obtained without impairing the properties of magnesia. The present invention
This was done based on these findings. Therefore, the problem to be solved by the present invention is to obtain a porous sintered body and a method for producing the same, which can yield high-grade furnace material products such as thin products with uniform pore size and distribution and excellent strength. be.

【0008】[0008]

【課題を解決するための手段】前記発明が解決するため
の手段は、以下の(1)から(3)の事項によりそれぞ
れ達成される。 (1)アルミナを含むマグネシア焼結体の気孔径が1μ
m〜50μmの範囲で気孔形態が微細な球状閉気孔であ
ることを特徴とする多孔質焼結体。
Means for Solving the Problems The means for solving the problems described above are achieved by the following items (1) to (3). (1) The pore diameter of the magnesia sintered body containing alumina is 1μ
A porous sintered body characterized in that the pores are fine spherical closed pores in the range of m to 50 μm.

【0009】(2)平均粒径1μm〜20μmの微粉マ
グネシアに平均粒径1μm〜20μmの微粉アルミナを
10重量%〜35重量%を配合した原料に粒径3μm〜
50μmの有機質ビーズを1容量%〜20容量%と有機
質バインダーとを添加混合した後、成形し、得られた成
形体を昇温し、1400℃〜1600℃の範囲で焼結す
ることを特徴とする多孔質焼結体の製造方法。
(2) A raw material prepared by blending 10% to 35% by weight of finely divided alumina with an average particle size of 1 μm to 20 μm to finely powdered magnesia with an average particle size of 1 μm to 20 μm, and a particle size of 3 μm to 20 μm.
It is characterized by adding and mixing 1% to 20% by volume of 50 μm organic beads and an organic binder, then molding, raising the temperature of the obtained molded body, and sintering in the range of 1400°C to 1600°C. A method for producing a porous sintered body.

【0010】(3)前記第2項記載の昇温において、3
50℃未満までは、有機質ビーズの添加量が1容量%〜
10容量%の範囲内で昇温速度は50℃/時間以下であ
り、有機質ビーズの添加量が10容量%を越えて20容
量%までの範囲内では昇温速度は20℃/時間以下であ
り、更に350℃から焼結温度までは昇温速度は200
℃/時間以下であることを特徴とする多孔質焼結体の製
造方法。
(3) In the temperature increase described in item 2 above, 3
Below 50℃, the amount of organic beads added is 1% by volume or more.
The heating rate is 50°C/hour or less within the range of 10% by volume, and the heating rate is 20°C/hour or less when the amount of organic beads added exceeds 10% by volume and reaches 20% by volume. , furthermore, the temperature increase rate from 350℃ to the sintering temperature is 200℃.
A method for producing a porous sintered body, characterized in that the temperature is less than or equal to ℃/hour.

【0011】以下、本発明を更に詳しく説明する。本発
明の閉気孔又は独立気孔を有する多孔質マグネシアにア
ルミナを配合した焼結体は、気孔サイズ、気孔分布等が
均一であるため、強度に優れており、また微粉マグネシ
アに有機質ビーズを混合して成形したものを1400℃
〜1600℃の範囲で焼結するので、気孔サイズ、気孔
分布等が均一のものが得られる。
The present invention will be explained in more detail below. The sintered body of the present invention, which is made by mixing alumina with porous magnesia having closed or independent pores, has a uniform pore size and distribution, so it has excellent strength. molded at 1400℃
Since sintering is performed at a temperature in the range of ~1600°C, a product with uniform pore size, pore distribution, etc. can be obtained.

【0012】更に焼結温度までの昇温速度を限定したの
で、気孔の形状として揃った球状とすることができると
ともに、一層の気孔サイズ、気孔分布等の均一のものが
得られる。本発明に用いられる原料のマグネシアとして
は、電融マグネシア、マグネシアクリンカー等が使用さ
れる。
Furthermore, since the rate of temperature increase up to the sintering temperature is limited, the pores can be formed into a uniform spherical shape, and the pore size and distribution can be made even more uniform. As the raw material magnesia used in the present invention, fused magnesia, magnesia clinker, etc. are used.

【0013】配合原料としては、アルミナとマグネシア
の組成でアルミナを10重量%〜35重量%配合したも
のが使用される。これらのアルミナとマグネシアは、そ
れぞれ粉砕して、平均粒径1μm〜20μmの粉末原料
とする。更に好ましくは1μm〜10μmである。
[0013] As a blending raw material, a composition of alumina and magnesia is used, in which alumina is blended in an amount of 10% by weight to 35% by weight. These alumina and magnesia are each ground into powder raw materials having an average particle size of 1 μm to 20 μm. More preferably, it is 1 μm to 10 μm.

【0014】平均粒径が1μmより小さいと粉砕コスト
及び粉末原料の取扱の点から好ましくなく、また平均粒
径が20μmを越えるときは、成形、焼結により粒界が
大きく残り高強度化が図れない。本発明では、マグネシ
アにアルミナを10重量%〜35重量%配合することに
よりマグネシアの特性を失わずに高強度を得ることがで
きる。
[0014] If the average particle size is smaller than 1 μm, it is unfavorable from the viewpoint of crushing cost and handling of the powder raw material, and if the average particle size exceeds 20 μm, the grain boundaries remain large due to compaction and sintering, and high strength cannot be achieved. do not have. In the present invention, high strength can be obtained without losing the properties of magnesia by blending 10% to 35% by weight of alumina with magnesia.

【0015】本発明は多孔質焼結体が球状の均一な閉気
孔又は独立気孔を形成するために有機質ビーズを用いる
もので、この有機質ビーズの形状は球形で、粒径が3μ
m〜50μmの各種の粒度を有するもので、目的に応じ
て選択することができる。この有機質ビーズの材質とし
ては、各種のものが用いられるが、比較的低温度で分解
し揮散するものが好ましく、例えばメタクリル酸重合体
、スチレン重合体等が良好に用いられる。
[0015] The present invention uses organic beads to form spherical uniform closed pores or closed pores in a porous sintered body, and the organic beads are spherical in shape and have a particle size of 3 μm.
It has various particle sizes ranging from m to 50 μm, and can be selected depending on the purpose. Various materials can be used for the organic beads, but materials that decompose and volatilize at relatively low temperatures are preferred, and for example, methacrylic acid polymers, styrene polymers, etc. are well used.

【0016】本発明では、原料のアルミナ配合マグネシ
アに添加する有機質ビーズの添加量は、1容量%〜20
容量%であり、通常の方法で混合する。有機質ビーズの
添加量が1容量%より少ないときは、均一な気孔ができ
ず、また20容量%を越えると閉気孔とすることが困難
となる。本発明では、原料のマグネシアに有機質ビーズ
を添加すると共に成形できるようにまたは成形品の取扱
が可能であるように、これらに有機質バインダーを通常
1重量%〜15重量%添加する。
In the present invention, the amount of organic beads added to the alumina-containing magnesia raw material ranges from 1% by volume to 20% by volume.
% by volume and mixed in the usual manner. When the amount of organic beads added is less than 1% by volume, uniform pores cannot be formed, and when it exceeds 20% by volume, it becomes difficult to form closed pores. In the present invention, organic beads are added to magnesia as a raw material, and an organic binder is usually added in an amount of 1% to 15% by weight to enable molding or handling of molded products.

【0017】この有機質バインダーとしては、ポリビニ
ルアルコールやポリエチレングリコール(PEG)など
の市販の有機質バインダー等が使用される。多孔質焼結
体の気孔の大きさは、1μm〜50μmの範囲で用いる
ことが好ましく、50μmを越えると肉薄製品の場合に
、強度低下が起こり好ましくない。マグネシア焼結体の
場合、体積収縮率が約20%であるので、有機質ビーズ
のサイズより若干小さな気孔となる。
As this organic binder, commercially available organic binders such as polyvinyl alcohol and polyethylene glycol (PEG) are used. The size of the pores in the porous sintered body is preferably in the range of 1 μm to 50 μm, and if it exceeds 50 μm, the strength will decrease in the case of a thin product, which is not preferable. In the case of a magnesia sintered body, the volume shrinkage rate is about 20%, so the pores are slightly smaller than the size of the organic beads.

【0018】また微細気孔の分布は、焼結体中に均一に
分布させることが重要であり、そのためには原料のマグ
ネシアと有機質ビーズを十分に混合することが必要であ
る。混合には、通常この技術分野において用いられる混
合機が用いられ、また成形には同様にプレス法や押し出
し法等の通常の成形手段が用いられる。更に焼成には、
通常電気炉等が用いられる。
[0018] Furthermore, it is important to uniformly distribute the fine pores in the sintered body, and for this purpose, it is necessary to sufficiently mix the raw material magnesia and organic beads. For mixing, a mixer commonly used in this technical field is used, and for molding, a common molding method such as a press method or an extrusion method is similarly used. Furthermore, for firing,
Usually, an electric furnace or the like is used.

【0019】本発明の多孔質アルミナ配合マグネシア焼
結体の製造方法において、350℃未満までは、有機質
ビーズの添加量が1容量%〜10容量%の範囲内で昇温
速度が50℃/時間以下であり、有機質ビーズの添加量
が10容量%を越えて20容量%までの範囲内では昇温
速度が20℃/時間以下であり、更に350℃から焼結
温度までは昇温速度が200℃/時間以下であるのは、
混合された有機質ビーズが、200℃〜300℃で分解
し、揮散するため成形体の脱脂は、350℃付近までは
ゆっくり昇温させる必要があるためである。
In the method for producing a porous alumina-containing magnesia sintered body of the present invention, the heating rate is 50°C/hour when the amount of organic beads added is within the range of 1% by volume to 10% by volume below 350°C. If the amount of organic beads added is more than 10% by volume and up to 20% by volume, the temperature increase rate is 20℃/hour or less, and from 350℃ to the sintering temperature, the temperature increase rate is 200℃/hour or less. °C/hour or less is
This is because the mixed organic beads decompose and volatilize at 200°C to 300°C, so it is necessary to slowly raise the temperature to around 350°C to degrease the molded body.

【0020】したがって、昇温速度が大きいと有機質ビ
ーズの分解が急速すぎて、成形体にクラックが入ったり
、膨れ上がる等の弊害が発生し好ましくない。成形体の
焼結温度は、1400℃〜1600℃で行なう。本発明
の製造方法で得られた閉気孔又は独立気孔を有する多孔
質マグネシア焼結体は、高級炉材、セッター、サヤ材等
に有用であり、肉薄ものから肉厚の材料まで、各種のも
のに適応できるものである。
[0020] Therefore, if the temperature increase rate is too high, the organic beads will decompose too quickly, causing problems such as cracking and swelling of the molded product, which is not preferable. The molded body is sintered at a temperature of 1400°C to 1600°C. The porous magnesia sintered body having closed or independent pores obtained by the production method of the present invention is useful for high-grade furnace materials, setters, sheath materials, etc., and is useful for various materials from thin to thick materials. It can be adapted to

【0021】[0021]

【実施例】以下、本発明を実施例をもって更に詳しく説
明するが、本発明は、これらの例に限定されるものでは
ない。 実施例 原料であるアルミナ及び電融マグネシアをそれぞれ微粉
砕し、これを分級して平均粒径5μmのものを得、これ
らを乾式混合する。
EXAMPLES The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to these examples. Alumina and electrofused magnesia, which are raw materials of the example, are each finely pulverized and classified to obtain particles having an average particle size of 5 μm, and these are dry mixed.

【0022】この5μmのアルミナ混合電融マグネシア
100gにメタクリル酸重合体ビーズを15容量%添加
し、更に有機質バインダーとしてポリビニルアルコール
を3重量%添加して十分に混合する。
To 100 g of this 5 μm alumina-mixed electrofused magnesia, 15% by volume of methacrylic acid polymer beads were added, and further, 3% by weight of polyvinyl alcohol as an organic binder was added and thoroughly mixed.

【0023】このようにして得られた混練物を200K
g/cm2 で加圧してプレス成形した後、これを電気
炉で350℃までは20℃/hrで昇温し、ついで16
00℃まで150℃/hrで昇温した。更に1600℃
で1時間加熱した。得られた結果を表1に示す。
[0023] The kneaded material thus obtained was heated to 200K.
After press-forming under pressure at
The temperature was raised to 00°C at a rate of 150°C/hr. Further 1600℃
It was heated for 1 hour. The results obtained are shown in Table 1.

【0024】[0024]

【表1】[Table 1]

【0025】表1から明らかなように、気孔の形状は、
球状であり、しかも気孔が均一に分散された焼結体が得
られたばかりでなく、高強度のものが得られた。また曲
げ強度も従来のものに比べ格段に優れたいることが分か
る。本発明の焼結体は、マグネシアの特性を備えている
ため特にセッター材料に有用である。
As is clear from Table 1, the shape of the pores is
Not only was a sintered body that was spherical and had pores evenly distributed, but also had high strength. It can also be seen that the bending strength is significantly superior to that of conventional products. The sintered body of the present invention has the characteristics of magnesia and is therefore particularly useful as a setter material.

【0026】[0026]

【発明の効果】本発明は、閉気孔又は独立気孔であるた
め炉材、セッター材、サヤ材等の用途に使用される。ま
た原料のアルミナ配合マグネシアに有機質ビーズを含有
させたものを焼成するので、気孔サイズ、気孔分布等が
均一のものが得られるばかりでなく、高強度に優れ、軽
量な肉薄品の製造が可能であり、その上熱ショックに強
いものが得られる。
[Effects of the Invention] Since the present invention has closed pores or independent pores, it can be used for applications such as furnace materials, setter materials, and pod materials. In addition, since we sinter the raw material, alumina-blended magnesia, containing organic beads, we can not only obtain products with uniform pore size and pore distribution, but also make it possible to manufacture lightweight, thin-walled products with excellent high strength. Moreover, it is resistant to heat shock.

【0027】更に焼結温度までの昇温速度を限定したの
で、気孔の形状として揃った球状とすることができると
ともに、一層の気孔サイズ、気孔分布等の均一のものが
得られる。
Furthermore, since the rate of temperature rise up to the sintering temperature is limited, the pores can be formed into a uniform spherical shape, and the pore size and distribution can be made even more uniform.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  アルミナを含むマグネシア焼結体の気
孔径が1μm〜50μmの範囲で気孔形態が微細な球状
閉気孔であることを特徴とする多孔質焼結体。
1. A porous sintered body containing alumina, characterized in that the pore diameter of the magnesia sintered body is in the range of 1 μm to 50 μm, and the pores are fine spherical closed pores.
【請求項2】  平均粒径1μm〜20μmの微粉マグ
ネシアに平均粒径1μm〜20μmの微粉アルミナを1
0重量%〜35重量%を配合した原料に粒径3μm〜5
0μmの有機質ビーズを1容量%〜20容量%と有機質
バインダーとを添加混合した後、成形し、得られた成形
体を昇温し、1400℃〜1600℃の範囲で焼結する
ことを特徴とする多孔質焼結体の製造方法。
[Claim 2] Finely powdered alumina having an average particle size of 1 μm to 20 μm is added to finely powdered magnesia having an average particle size of 1 μm to 20 μm.
Particle size of 3 μm to 5 μm to the raw material containing 0% to 35% by weight
It is characterized by adding and mixing 1% to 20% by volume of 0 μm organic beads and an organic binder, then molding, heating the obtained molded body, and sintering in the range of 1400°C to 1600°C. A method for producing a porous sintered body.
【請求項3】  請求項2記載の昇温において、350
℃未満までは、有機質ビーズの添加量が1容量%〜10
容量%の範囲内で昇温速度は50℃/時間以下であり、
有機質ビーズの添加量が10容量%を越えて20容量%
までの範囲内では昇温速度は20℃/時間以下であり、
更に350℃から焼結温度までは昇温速度は200℃/
時間以下であることを特徴とする多孔質焼結体の製造方
法。
3. In the temperature increase according to claim 2, 350
Below ℃, the amount of organic beads added is 1% to 10% by volume.
The temperature increase rate is 50°C/hour or less within the range of volume %,
The amount of organic beads added exceeds 10% by volume and is 20% by volume.
Within the range up to, the heating rate is 20°C/hour or less,
Furthermore, the temperature increase rate from 350℃ to the sintering temperature is 200℃/
A method for manufacturing a porous sintered body, characterized in that the manufacturing time is less than 3 hours.
JP16620391A 1991-06-12 1991-06-12 Porous sintered compact and its production Withdrawn JPH04367578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16620391A JPH04367578A (en) 1991-06-12 1991-06-12 Porous sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16620391A JPH04367578A (en) 1991-06-12 1991-06-12 Porous sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH04367578A true JPH04367578A (en) 1992-12-18

Family

ID=15827007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16620391A Withdrawn JPH04367578A (en) 1991-06-12 1991-06-12 Porous sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH04367578A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223879A (en) * 1994-02-07 1995-08-22 Kanebo Ltd Ceramic raw material
JPH07232974A (en) * 1994-02-17 1995-09-05 Kanebo Ltd Porous piezoelectric ceramic element and its production
JP2002316870A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of zirconia sintered compact
JP2003040688A (en) * 2001-07-25 2003-02-13 Nitsukatoo:Kk Lightweight ceramic sintered compact
JP2004083371A (en) * 2002-08-28 2004-03-18 National Institute For Materials Science Process for producing ceramic porous body
JP2006342054A (en) * 2006-06-19 2006-12-21 National Institute For Materials Science Ceramic porous body
JP2017024987A (en) * 2011-09-20 2017-02-02 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing light ceramic materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223879A (en) * 1994-02-07 1995-08-22 Kanebo Ltd Ceramic raw material
JPH07232974A (en) * 1994-02-17 1995-09-05 Kanebo Ltd Porous piezoelectric ceramic element and its production
JP2002316870A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of zirconia sintered compact
JP2003040688A (en) * 2001-07-25 2003-02-13 Nitsukatoo:Kk Lightweight ceramic sintered compact
JP2004083371A (en) * 2002-08-28 2004-03-18 National Institute For Materials Science Process for producing ceramic porous body
JP2006342054A (en) * 2006-06-19 2006-12-21 National Institute For Materials Science Ceramic porous body
JP2017024987A (en) * 2011-09-20 2017-02-02 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing light ceramic materials

Similar Documents

Publication Publication Date Title
US4407967A (en) Method for producing spheroidal ceramics
JP2001510432A (en) Gel Strengthening Additives for Agaroid-Based Injection Molding Compositions
JPH01500909A (en) Method for manufacturing porous shaped products
US6146560A (en) Process for forming an article from recycled ceramic molding compound
JPH06509790A (en) Aqueous process for injection molding of ceramic powders with high solids loading
Trunec et al. Advanced ceramic processes
KR20070115720A (en) Method of making cemented carbide or cermet agglomerated powder mixtures
JPH08283073A (en) Kiln tool
IL127507A (en) Whisker-reinforced ceramics
JPH04367578A (en) Porous sintered compact and its production
JPH0380749B2 (en)
JPS63403A (en) Composition for plastic molding useful as stock for industrial art works and its production
US3238049A (en) Dry grinding of ceramics
JPH04338178A (en) Porous magnesia sintered body and production thereof
JPH04367577A (en) Porous sintered compact and its production
EP0986523B1 (en) Aluminum oxide-based molding compound
TWI779371B (en) Molybdenum oxychloride with improved bulk density
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
JPH0369545A (en) Manufacturing white ware ceramic product
JPH04338179A (en) Porous magnesia sintered body and production thereof
JPH0925171A (en) Granulated powder for forming, its production and silicon nitride sintered body produced by using the same
JPS59213669A (en) Manufacture of zircon-zirconia refrctories
JPS5825070B2 (en) Manufacturing method for low-shrinkage quartz glass refractories
RU2196118C2 (en) Method of manufacturing chromo-alumino-zirconium refractory materials
JPH0483752A (en) Mixture of sinterable substance

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903