JPH07232974A - Porous piezoelectric ceramic element and its production - Google Patents

Porous piezoelectric ceramic element and its production

Info

Publication number
JPH07232974A
JPH07232974A JP6045223A JP4522394A JPH07232974A JP H07232974 A JPH07232974 A JP H07232974A JP 6045223 A JP6045223 A JP 6045223A JP 4522394 A JP4522394 A JP 4522394A JP H07232974 A JPH07232974 A JP H07232974A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
porosity
acoustic impedance
ceramic element
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6045223A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ina
克芳 伊奈
Seiji Omura
大村  誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP6045223A priority Critical patent/JPH07232974A/en
Publication of JPH07232974A publication Critical patent/JPH07232974A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a porous piezoelectric ceramic element having acoustic impedance reduced to a level equal to that of the acoustic impedance of a living body or water and also having such strength as to make the element withstand practical use. CONSTITUTION:Foamed polystyrene balls as a pore forming material are mixed with an aq. slurry of piezoelectric ceramic powder contg. a hardenable resin and the resulting mixture is hardened and fired to produce the objective porous piezoelectric ceramic element having spherical pores of 0.05-5mm pore diameter at 50-85% porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療用診断装置や魚群
探知機或いはソナー等に用いる多孔質圧電性セラミック
ス素子及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous piezoelectric ceramic element used in a medical diagnostic apparatus, a fish finder, a sonar, etc., and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、生体や水を対象とした医療用
診断装置や魚群探知機或いはソナー等の圧電性セラミッ
クス素子材料として、チタン酸ジルコン酸鉛系セラミッ
クスをはじめとする種々の圧電性セラミックス材料が使
用されている。しかし、これらの材料は音響インピーダ
ンスが約30×106kg/m2S であり、生体や水の音響イ
ンピーダンス(約1.5×106kg/m2S )に比べると著
しく高いため、水中を伝わる音波が素子界面で反射し、
送受信に支障をきたすという問題がある。そのため、圧
電性セラミックスを多孔質化することにより音響インピ
ーダンスを低減させ、生体や水との整合性をとることが
行われている。
2. Description of the Related Art Conventionally, various piezoelectric ceramics such as lead zirconate titanate-based ceramics have been used as piezoelectric ceramics element materials for medical diagnostic devices for fish and water, fish finder, sonar, etc. Material is used. However, these materials have an acoustic impedance of about 30 × 10 6 kg / m 2 S, which is significantly higher than the acoustic impedance of living organisms and water (about 1.5 × 10 6 kg / m 2 S). The sound wave that propagates through is reflected at the element interface,
There is a problem that it hinders transmission and reception. Therefore, by making the piezoelectric ceramic porous, the acoustic impedance is reduced and the compatibility with the living body and water is taken.

【0003】多孔質化した圧電性セラミックス素子とし
ては、発泡ウレタンフォーム等の有機質三次元網状構
造物を利用し、形成したもの(特開昭61−13697
3号公報等)、棒状又は線状の圧電性セラミックスを
三次元的に組み上げたもの(特開平2−57099号公
報等)、球状の圧電性セラミックス成型物を充填し、
焼成したもの、等が挙げられる。しかしながら及び
の素子は、高い空隙率は得られるものの、その機械的強
度は低く、そのため実用に耐えない。又、の素子は、
空隙率が理論上、最密充填体の空隙率である約25%を
越えることができないため、素子の音響インピーダンス
を生体や水の音響インピーダンスと同等レベルまで低減
することが困難である。従って、従来の素子及びその製
造方法では、生体や水との整合性が高く、且つ、機械的
強度の高い多孔質圧電性セラミックス素子は提供できな
いのが現状である。
The piezoelectric ceramic element made porous is formed by utilizing an organic three-dimensional network structure such as urethane foam (Japanese Patent Laid-Open No. 61-13697).
No. 3, etc.), three-dimensionally assembled rod-shaped or linear piezoelectric ceramics (JP-A-2-57099, etc.), spherical piezoelectric ceramics moldings, and
Examples include baked products. However, although the elements of and have a high porosity, they have low mechanical strength and therefore cannot be used practically. Also, the element of
Since the porosity cannot theoretically exceed about 25% which is the porosity of the close-packed body, it is difficult to reduce the acoustic impedance of the element to the same level as the acoustic impedance of the living body or water. Therefore, under the present circumstances, the conventional element and the manufacturing method thereof cannot provide a porous piezoelectric ceramic element having high compatibility with living bodies and water and high mechanical strength.

【0004】[0004]

【発明が解決しようとする課題】本発明者は上記の問題
に鑑み、鋭意研究を続けた結果本発明を完成したもので
あって、その目的とするところは、生体や水の音響イン
ピーダンスと同等レベルの音響インピーダンスを有し、
且つ充分な機械的強度を有する多孔質圧電性セラミック
ス素子及びその製造方法を提供することにある。
The present inventor has completed the present invention as a result of intensive studies in view of the above problems, and its purpose is to equalize the acoustic impedance of a living body or water. Has a level of acoustic impedance,
Another object of the present invention is to provide a porous piezoelectric ceramic element having sufficient mechanical strength and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上述の目的の素子は、気
孔径0.05〜5mmの球状気孔を有し、且つ空隙率が
50〜85%の多孔質圧電性セラミックス素子により達
成され、上述の目的の素子の製造方法は、気孔形成材で
ある発泡したポリスチロール球と、硬化型樹脂を含有す
る圧電性セラミックス粉体の水性スラリーを混合し、そ
の後前記混合物を硬化せしめ、次いで焼成することを特
徴とする多孔質圧電性セラミックス素子の製造方法によ
り達成される。
The above-mentioned element is achieved by a porous piezoelectric ceramic element having spherical pores having a pore diameter of 0.05 to 5 mm and a porosity of 50 to 85%. The method of manufacturing an element for the purpose is to mix foamed polystyrene balls that are pore-forming materials and an aqueous slurry of piezoelectric ceramic powder containing a curable resin, then cure the mixture, and then fire it. And a method for manufacturing a porous piezoelectric ceramic element.

【0006】本発明において重要なことは、球状気孔に
することにより多孔質でありながら、その機械的強度を
高め、且つ、気孔径、空隙率を厳密に制御することによ
り、音響インピーダンスを生体或いは水の音響インピー
ダンスと同等レベルまで低減したことである。
What is important in the present invention is that the acoustic impedance of a living body or a living body is improved by increasing the mechanical strength of the porous material by forming it into spherical pores and by strictly controlling the pore diameter and porosity. This is a reduction to the same level as the acoustic impedance of water.

【0007】本発明の気孔形状は球状である。球状気孔
としない場合、機械的強度は低くなり、その結果、小さ
な衝撃力でさえ素子自体が破損する危険性がある。換言
すれば、球状気孔とすることによって同一の強度であり
ながら高い空隙率を実現でき、その結果、音響インピー
ダンスを充分低減できる。
The pore shape of the present invention is spherical. If spherical pores are not used, the mechanical strength will be low, so that even a small impact force may damage the element itself. In other words, the spherical pores can achieve a high porosity with the same strength, and as a result, the acoustic impedance can be sufficiently reduced.

【0008】本発明における気孔径は0.05〜5mm
である。球状気孔とすることにより、空隙率を高くでき
る。0.05mm未満の気孔径は製法上、その製造が困
難である。一方、気孔径が5mmを越えると得られる素
子の機械的強度が低下し、実用に耐えない。
The pore size in the present invention is 0.05 to 5 mm.
Is. The porosity can be increased by using spherical pores. A pore diameter of less than 0.05 mm is difficult to manufacture due to the manufacturing method. On the other hand, if the pore diameter exceeds 5 mm, the mechanical strength of the obtained element decreases, and it cannot be put to practical use.

【0009】本発明の素子の空隙率は50〜85%であ
る。空隙率が50%未満では音響インピーダンスの低減
が不十分である。一方、空隙率が85%を越えると機械
的強度が低下し、実用に耐えない。
The porosity of the device of the present invention is 50 to 85%. If the porosity is less than 50%, the reduction of acoustic impedance is insufficient. On the other hand, when the porosity exceeds 85%, the mechanical strength is lowered and it cannot be put to practical use.

【0010】本発明の素子の骨格部を形成する圧電性セ
ラミックス材料としては、チタン酸鉛、ジルコン酸鉛、
チタン酸ジルコン酸鉛、マグネシウムニオブ酸鉛、チタ
ン酸バリウム、ニオブ酸コバルト、ニオブ酸リチウム、
タンタル酸リチウム等が挙げられる。これらの内キュリ
ー温度が高く、圧電性の高いチタン酸ジルコン酸鉛が特
に好ましい。
The piezoelectric ceramic material forming the skeleton of the device of the present invention includes lead titanate, lead zirconate,
Lead zirconate titanate, lead magnesium niobate, barium titanate, cobalt niobate, lithium niobate,
Examples thereof include lithium tantalate. Among these, lead zirconate titanate having a high Curie temperature and high piezoelectricity is particularly preferable.

【0011】以下、本発明の素子の製造方法について記
述する。本発明の製造方法は、少なくとも圧電性セラミ
ックス粉体、硬化型樹脂、及び水からなる水性スラリー
を用意し、このスラリーと所望の気孔径を有する発泡し
たポリスチロール球及び硬化剤を混合後、硬化型樹脂を
硬化せしめ、次いで乾燥、脱脂、焼成工程を経て、多孔
質圧電性セラミックス素子を作製することよりなる。
The method of manufacturing the device of the present invention will be described below. The manufacturing method of the present invention prepares an aqueous slurry comprising at least a piezoelectric ceramic powder, a curable resin, and water, and after mixing the slurry with foamed polystyrene balls having a desired pore diameter and a curing agent, curing The mold resin is cured, and then, the steps of drying, degreasing and firing are performed to produce a porous piezoelectric ceramic element.

【0012】本発明における圧電性セラミックス粉体と
しては、前記の通常使用されている圧電性セラミックス
材料の粉体であるならば如何なるものを使用してもよ
い。圧電性セラミックス粉体の粒径は、水との混合によ
りスラリー化しやすい大きさのものを用いるのが好まし
い。具体的には、0.1〜10μmの中心粒子径をもっ
た粉体が好ましい。0.1μm未満では、スラリーに必
要な水の量が多くなり、又、その粘度が高くなりすぎる
ため、その使用に際し支障をきたす等、作業上の問題が
あり、好ましくない。一方、10μmを越えた場合、ス
ラリー中に粉体が沈澱し、均一に分散できない、或いは
焼結性に劣るなどの問題が生じるため、好ましくない。
As the piezoelectric ceramic powder in the present invention, any powder may be used as long as it is a powder of the above-mentioned commonly used piezoelectric ceramic material. The particle size of the piezoelectric ceramic powder is preferably such that it can be easily slurried by mixing with water. Specifically, a powder having a central particle diameter of 0.1 to 10 μm is preferable. If it is less than 0.1 μm, the amount of water required for the slurry is large, and the viscosity thereof is too high, so that there is a problem in working such as trouble in using the slurry, which is not preferable. On the other hand, when it exceeds 10 μm, the powder is precipitated in the slurry and cannot be uniformly dispersed, or the sinterability is deteriorated, which is not preferable.

【0013】本発明の製造方法に適応される気孔形成材
は、発泡したポリスチロール球である。発泡したポリス
チロール球は、その体積に比して少量の有機物で構成さ
れているため、脱脂が他の有機物に比べスムーズに実行
できるという利点がある。発泡したスチロール球は、ポ
リスチレン球中にブタン等の発泡ガスを含有せしめたビ
ーズを例えば100〜140℃の蒸気中若しくは加温器
で3分〜20時間処理することにより製造するが、その
際の発泡倍率は、好ましくは5倍以上である。発泡倍率
が少なすぎる場合、脱脂が困難となり、又、空隙率を高
くできない。本発明において、発泡したポリスチロール
球を以下単に、発泡スチロール球と記す。
The pore forming material applicable to the manufacturing method of the present invention is expanded polystyrene spheres. Since the foamed polystyrene balls are composed of a small amount of organic matter in comparison with the volume thereof, there is an advantage that degreasing can be performed more smoothly than other organic matter. Foamed styrene spheres are produced by treating beads in which a foaming gas such as butane is contained in polystyrene spheres in steam at 100 to 140 ° C. or in a warmer for 3 minutes to 20 hours. The expansion ratio is preferably 5 times or more. If the expansion ratio is too low, degreasing becomes difficult and the porosity cannot be increased. In the present invention, the expanded polystyrene balls will be simply referred to as expanded polystyrene balls hereinafter.

【0014】発泡スチロール球は、気孔形成材として使
用されるため、最終製品である素子には残存せず、全て
製造工程中に除去される。除去方法としては、発泡スチ
ロール球を溶解する溶剤を用いる方法や、熱処理によっ
て発泡スチロール球を焼却する方法等が挙げられるが、
本発明の多孔質圧電性セラミックス素子を製造するに
は、30〜60℃で発泡スチロール球を少量溶解するパ
ラフィン系溶剤を予め発泡スチロール球表面にコーティ
ングし、30〜60℃で処理し該発泡スチロール球を少
量溶解し、後述する脱脂工程で完全に焼却除去するのが
好ましい。
Since the Styrofoam spheres are used as a pore-forming material, they do not remain in the final product element and are all removed during the manufacturing process. Examples of the removal method include a method of using a solvent that dissolves Styrofoam spheres, a method of incinerating Styrofoam spheres by heat treatment, and the like.
In order to manufacture the porous piezoelectric ceramics element of the present invention, a paraffinic solvent that dissolves a small amount of styrofoam spheres at 30 to 60 ° C. is coated on the styrofoam sphere surface in advance, and the styrofoam sphere is treated at 30 to 60 ° C. It is preferable to dissolve and completely incinerate and remove in a degreasing step described later.

【0015】発泡スチロール球は、上記のようにポリス
チレン球中にブタン等の発泡ガスを含有せしめたビーズ
を例えば100〜140℃の蒸気中若しくは加温器で3
分〜20時間処理することにより製造する。この発泡処
理は、完全に発泡ガスが除去されるまで実施するのが好
ましい。発泡ガスが残存している場合、その後成形体を
乾燥させる等の加熱処理の段階で更にスチロール球が膨
張し、成形体骨格を傷めるのが危惧される。具体的に
は、100〜140℃の加熱処理によって発泡させる
が、その処理時間の経過と共にポリスチレンは一旦大き
く発泡し、発泡ガスが完全に除去された後、ポリスチレ
ンの発泡は止まり、その後徐々に収縮する。従って収縮
段階に至ったのを確認した上で発泡処理を終了し、その
スチロール球を使用するのが好ましい。
The Styrofoam spheres are prepared by using beads obtained by allowing a foaming gas such as butane to be contained in polystyrene spheres as described above in steam at 100 to 140 ° C. or in a warmer.
It is produced by treating for 20 minutes to 20 hours. This foaming treatment is preferably carried out until the foaming gas is completely removed. If the foaming gas remains, it is feared that the styrene spheres will be further expanded and the skeleton of the molded body will be damaged during the subsequent heat treatment such as drying of the molded body. Specifically, it is foamed by a heat treatment at 100 to 140 ° C., but with the lapse of the treatment time, the polystyrene once largely foams, and after the foaming gas is completely removed, the polystyrene foaming stops and then gradually shrinks. To do. Therefore, it is preferable to confirm that the shrinking stage has been reached, complete the foaming treatment, and use the styrene balls.

【0016】発泡スチロール球は、次いでスラリーと混
合され一体となり、30〜60℃型枠内で硬化するが、
その時、発泡スチロール球に応力が働く。この応力が架
かった状態で型枠から成形体を取り出すと成形体の骨格
を傷める。そこでその応力を緩和するため、前述したよ
うに30〜60℃の型枠内での硬化状態で発泡スチロー
ル球が溶解するよう発泡スチロール球の表面に予めパラ
フィン系の溶剤をコーティングさせるのが好ましい。パ
ラフィン系の溶媒をコーティングすることにより発泡ス
チロール球は、30〜60℃の比較的低温で溶解を開始
する。
The Styrofoam spheres are then mixed with the slurry to become a unit and cure in a mold at 30-60 ° C.
At that time, stress acts on the Styrofoam sphere. If the molded body is taken out from the mold with this stress applied, the skeleton of the molded body is damaged. Therefore, in order to relieve the stress, it is preferable to coat the surface of the styrofoam spheres with a paraffinic solvent in advance so that the styrofoam spheres dissolve in the cured state in the mold at 30 to 60 ° C. as described above. Styrofoam spheres start to dissolve at a relatively low temperature of 30 to 60 ° C. by coating with a paraffinic solvent.

【0017】発泡スチロール球の粒径は、ポリスチレン
球の大きさ、発泡ガスの含有量及び発泡条件により所望
の粒径に適宜制御することができる。又、前述したよう
に発泡ガスが完全に除去されたのちに継続して100〜
140℃で加温処理を施すとスチロール球は徐々に収縮
するのを利用し、所望の粒径を得ることもできる。尚、
発泡スチロール球の粒径は、最終製品の気孔径を決定す
るので、所望の気孔径を得るために、分級等して、予め
粒径をそろえるのが好ましい。又、焼成に伴い、素子が
焼成収縮するために、予め焼成収縮率を考慮し、この粒
径を適宜選択するのが好ましい。
The particle size of the Styrofoam spheres can be appropriately controlled to a desired particle size depending on the size of the polystyrene spheres, the content of the foaming gas and the foaming conditions. In addition, as described above, after the foaming gas is completely removed, 100 to 100
It is also possible to obtain a desired particle size by utilizing the fact that styrene balls gradually shrink when heated at 140 ° C. still,
Since the particle size of the Styrofoam spheres determines the pore size of the final product, it is preferable to classify the particle sizes in advance by classifying in order to obtain the desired pore size. Further, since the element shrinks by firing along with firing, it is preferable to appropriately select this particle size in consideration of the rate of firing shrinkage in advance.

【0018】本発明における水性スラリーは、少なくと
も前記の圧電性セラミックス材料粉体、硬化型樹脂及び
分散媒体である水より成り、必要に応じて圧電性セラミ
ックス粉体を効率よく安定に分散させるための解膠剤、
スラリーの作業性を好適にするための粘性調整剤、エチ
レングリコールやポリエチレングリコール等の乾燥速度
調整剤、気泡性を低減するための抑泡剤や消泡剤、pH
調整剤等を含有せしめることができる。圧電性セラミッ
クス粉体のスラリーの調整は常法に従い、ボールミルや
アトライター等の分散装置を用いることにより作製され
る。
The aqueous slurry in the present invention comprises at least the above-mentioned piezoelectric ceramic material powder, a curable resin and water as a dispersion medium, and is used to disperse the piezoelectric ceramic powder efficiently and stably as required. Peptizer,
Viscosity adjusting agent for making the workability of the slurry suitable, drying rate adjusting agent such as ethylene glycol or polyethylene glycol, defoaming agent or defoaming agent for reducing foaming property, pH
A regulator etc. can be contained. The piezoelectric ceramic powder slurry is prepared according to a conventional method by using a dispersing device such as a ball mill or an attritor.

【0019】本発明における硬化型樹脂は、圧電性セラ
ミックス粉体を含有するスラリー中にあって、硬化剤の
添加と共にその硬化作用により骨格強度を高める。硬化
型樹脂としては、反応により三次元状網目結合を形成す
る架橋反応型樹脂が好ましい。具体的にはアクリル、酢
酸ビニル等のビニル系樹脂や、エポキシ、フェノール、
尿素、メラミン、ウレタン等の可溶型又は分散型の樹脂
等がある。これらのうち、解膠剤が有効に作用するアル
カリ性領域で架橋反応が起きる水溶性のエポキシ樹脂が
好ましい。
The curable resin in the present invention is in a slurry containing piezoelectric ceramic powder, and enhances the skeleton strength by the curing action of the curing agent as it is added. As the curable resin, a crosslinking reaction type resin that forms a three-dimensional network bond by reaction is preferable. Specifically, vinyl resins such as acrylic and vinyl acetate, epoxy, phenol,
Examples include soluble or dispersed resins such as urea, melamine, and urethane. Of these, water-soluble epoxy resins that cause a crosslinking reaction in the alkaline region where the peptizer effectively acts are preferable.

【0020】硬化型樹脂の含有量は、圧電性セラミック
ス粉体100重量部に対し、1〜20重量部、好ましく
は3〜10重量部である。樹脂の含有量が少なすぎる場
合、硬化後の成形体の強度が小さくなり、一方、その含
有量が多すぎる場合、この樹脂分の脱脂が困難となり、
結果として何れの場合も最終製品の強度が小さくなる。
The content of the curable resin is 1 to 20 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the piezoelectric ceramic powder. If the content of the resin is too small, the strength of the molded body after curing becomes small, while if the content is too large, it becomes difficult to degrease this resin component,
As a result, in either case, the strength of the final product is reduced.

【0021】本発明において、圧電性セラミックス粉体
の水性スラリーと発泡スチロール球との混合は、単に発
泡スチロール球とスラリーを容器内で撹はんして混合し
た後、型枠内に注入する、或いは予め容器内に発泡スチ
ロール球を充填し、その空隙内にスラリーを流し込む等
様々な方法がある。
In the present invention, the aqueous slurry of piezoelectric ceramic powder and the Styrofoam spheres are mixed by simply stirring and mixing the Styrofoam spheres and the slurry in a container and then injecting them into a mold or in advance. There are various methods such as filling expanded polystyrene balls in a container and pouring the slurry into the voids.

【0022】前記混合体は、スラリー中の硬化型樹脂の
硬化作用により、その強度を高め、次いで、分散媒体で
ある水を蒸発させる。具体的には、樹脂の硬化は、型枠
内で30〜60℃で0.5〜10時間、分散溶媒のであ
る水が蒸発しないように放置する。その後型枠から成形
体を取り出し、60〜120℃で10〜200時間を架
け徐々に乾燥させる。尚、水の蒸発を極力ゆっくりさせ
るため乾燥初期での湿度は、80%以上の高湿度の状態
で実施するのが好ましい。
The mixture enhances its strength by the curing action of the curable resin in the slurry, and then evaporates water as a dispersion medium. Specifically, the resin is left to cure in a mold at 30 to 60 ° C. for 0.5 to 10 hours so that water as a dispersion solvent does not evaporate. After that, the molded body is taken out from the mold and gradually dried at 60 to 120 ° C. for 10 to 200 hours. In order to slow the evaporation of water as much as possible, it is preferable that the initial humidity of the drying is 80% or higher.

【0023】硬化反応により骨格強度を高め、十分乾燥
させた成形体は、次いで脱脂、焼成する。脱脂及び焼成
は常法により実施される。脱脂工程は比較的穏やかな昇
温速度で500〜600℃迄昇温する事により、バイン
ダ−、発泡スチロール球等の有機物を除去する。この
際、新鮮な空気を炉内に流し、これを促進することもで
きる。焼成において、鉛等の高温にて蒸発を伴う圧電性
セラミックスを使用する場合、これを補うため密閉した
容器中で、或いは、蒸発物質を発生する粉体中に埋め、
所定の温度(通常1200〜1350℃)にて焼成する
のが好ましい。
The molded body which has been sufficiently dried by increasing the skeleton strength through the curing reaction is then degreased and fired. Degreasing and firing are carried out by a conventional method. In the degreasing step, the organic substances such as the binder and Styrofoam spheres are removed by raising the temperature to 500 to 600 ° C. at a relatively moderate temperature raising rate. At this time, it is possible to flow fresh air into the furnace to promote it. When using piezoelectric ceramics that evaporate at high temperatures such as lead during firing, fill them in a sealed container to compensate for this, or in powder that generates evaporative substances,
It is preferable to bake at a predetermined temperature (usually 1200 to 1350 ° C.).

【0024】[0024]

【実施例】以下実施例を挙げて本発明を具体的に説明す
る。 実施例1 先ず、発泡スチロール原料(エスレンビーズ、HJ、積
水化成品工業(株)製)を110℃で7分間発泡し、完
全に発泡ガスが除去されたのを確認した後、直径0.5
mmに分級した。次いで、発泡スチロ−ル球(発泡倍率
10倍)に流動パラフィン(和光試薬)を表面にコーテ
ィングした。次いで、50×100×100mm寸法の
ポリプロピレン製メス型容器に振動充填した後、中央に
注入口を有するオス型にて、40×100×100mm
寸法に圧縮して発泡スチロ−ル成形体を用意した。
EXAMPLES The present invention will be specifically described with reference to the following examples. Example 1 First, a styrofoam raw material (Eslen beads, HJ, manufactured by Sekisui Plastics Co., Ltd.) was foamed at 110 ° C. for 7 minutes, and after confirming that the foaming gas was completely removed, a diameter of 0.5 was obtained.
It was classified to mm. Next, foamed Styrole spheres (foaming ratio 10 times) were coated on the surface with liquid paraffin (Wako reagent). Then, after vibrating and filling into a polypropylene female container of 50 × 100 × 100 mm size, 40 × 100 × 100 mm with a male type having an injection port in the center
A styrofoam molded body was prepared by compressing to a size.

【0025】次いで、以下に示す組成の圧電性セラミッ
クス粉体のスラリーをボールミルを用いて作製した。 〔スラリー組成〕 PZT(チタン酸ジルコン酸鉛)粉末 100重量部 (PE-650 富士チタン工業(株)製) 架橋反応型水溶性エポキシ樹脂 10重量部 (EX-421 長瀬化成(株)製) 水 18重量部 分散剤(ホ゜リカルホ゛ン酸アンモニウム塩) 1重量部 硬化剤(トリエチレンテトラミン ) 1.5重量部・・・・後から混合
Next, a slurry of piezoelectric ceramic powder having the following composition was prepared using a ball mill. [Slurry composition] PZT (lead zirconate titanate) powder 100 parts by weight (PE-650 Fuji Titanium Industry Co., Ltd.) Crosslinking type water-soluble epoxy resin 10 parts by weight (EX-421 Nagase Kasei Co., Ltd.) Water 18 parts by weight Dispersant (polycarboxylic acid ammonium salt) 1 part by weight Curing agent (triethylenetetramine) 1.5 parts by weight ...

【0026】尚、硬化剤は、ボールミル混合した後スラ
リーを5℃以下に冷やした状態で混合した。作成したス
ラリーを予め用意した発泡スチロール成形体の上部注入
口より素早く注入した。その後、50℃で3時間硬化さ
せ、成形体を型枠から取り出し、温度70℃湿度90%
で10時間、温度90℃湿度90%で10時間、温度1
10℃湿度80%で20時間放置し、成形体を得た。得
られた成形体は充分乾燥しており、又、発泡スチロール
も充分収縮しており骨格を傷めていないことを確認し
た。次いで、1230℃で2時間焼成し多孔質焼成体を
得た。焼成時の昇温速度は、脱脂を伴う400℃までを
1℃/minとし、その後を3℃/minとした。得ら
れた素子の空隙率、気孔径、音響インピーダンス及び曲
げ強度を以下に示す方法によって測定した。尚、比較の
ため、従来提案されている素子に関しても同一粉末を使
用して試作し、それらの性能も測定した。結果を表1に
示す。
The hardener was mixed in a ball mill and then mixed in a state where the slurry was cooled to 5 ° C. or lower. The prepared slurry was quickly injected from the upper injection port of the Styrofoam molded body prepared in advance. Then, it is cured at 50 ° C for 3 hours, the molded body is taken out of the mold, and the temperature is 70 ° C and the humidity is 90%.
10 hours, temperature 90 ° C, humidity 90%, 10 hours, temperature 1
A molded body was obtained by allowing to stand at 10 ° C. and 80% humidity for 20 hours. It was confirmed that the obtained molded product was sufficiently dried, and the styrofoam was also sufficiently shrunk so that the skeleton was not damaged. Then, it was fired at 1230 ° C. for 2 hours to obtain a porous fired body. The temperature rising rate during firing was 1 ° C./min up to 400 ° C. accompanied with degreasing, and 3 ° C./min thereafter. The porosity, pore diameter, acoustic impedance and bending strength of the obtained device were measured by the methods described below. For comparison, the devices proposed hitherto were prototyped using the same powder, and their performances were also measured. The results are shown in Table 1.

【0027】〔空隙率〕下記の式に基づき、焼結体の空
隙率を算出した。 空隙率=(1−ρ/ρt )×100(%) ρ:焼結体のかさ密度(kg/m3 ) ρt :用いたセラミックスの理論密度(kg/m3 ) 〔気孔径〕光学顕微鏡にて観察した。 〔音響インピーダンス〕6×6×15mm寸法に試験片
を切り出し、対向する面に銀電極を塗布し、800℃で
焼き付けた。これを120℃のシリコンオイル中で1〜
2kv/mmで1時間分極処理を行い、多孔質圧電性セ
ラミックス素子を作製した。この素子を用いて共振周波
数を測定し、以下の式に基づき、音響インピーダンスを
算出した。 音響インピーダンス=2×l×fr ×ρ l:振動の伝搬方向の長さ(m) fr :共振周波数(Hz) ρ:焼結体のかさ密度(kg/m3 ) 〔曲げ強度〕6×8×50mm寸法に試験片を切り出
し、クロスヘッドスピード0.5mm/min、スパン
40mmの条件で、三点曲げ強度を測定した。
[Porosity] The porosity of the sintered body was calculated based on the following formula. Porosity = (1-ρ / ρt) × 100 (%) ρ: Bulk density of sintered body (kg / m 3 ) ρt: Theoretical density of used ceramics (kg / m 3 ) [Pore size] For optical microscope I observed it. [Acoustic Impedance] A test piece was cut into a size of 6 × 6 × 15 mm, a silver electrode was applied to the opposite surface, and baked at 800 ° C. 1 to this in silicone oil at 120 ℃
Polarization treatment was performed at 2 kv / mm for 1 hour to produce a porous piezoelectric ceramic element. The resonance frequency was measured using this element, and the acoustic impedance was calculated based on the following formula. Acoustic impedance = 2 × l × fr × ρ l: Length of vibration propagation direction (m) fr: Resonance frequency (Hz) ρ: Bulk density of sintered body (kg / m 3 ) [Bending strength] 6 × 8 The test piece was cut into a dimension of × 50 mm, and the three-point bending strength was measured under the conditions of a crosshead speed of 0.5 mm / min and a span of 40 mm.

【0028】[0028]

【表1】 1※:比較例 ウレタンフォ−ムを利用し、作製した多
孔質圧電性セラミックス素子 2※:比較例 棒状の圧電性セラミックスを三次元的に
組み上げて作製した多孔質圧電性セラミックス素子 3※:比較例 球状の圧電性セラミックス成型物を充填
し、作製した多孔質圧電性セラミックス素子
[Table 1] 1 *: Comparative example Porous piezoelectric ceramic element manufactured using urethane foam 2 *: Comparative example Porous piezoelectric ceramic element manufactured by three-dimensionally assembling rod-shaped piezoelectric ceramics 3 *: Comparison Example Porous piezoelectric ceramic element prepared by filling spherical piezoelectric ceramics

【0029】表1の結果より、球状気孔とすることによ
り、同一空隙率であってもその強度を高く維持できるこ
とが判る。更に、その音響インピーダンスは1.7×1
6kg/m2S を示し、生体や水の音響インピーダンスとほ
ぼ同等レベルに達している。
From the results shown in Table 1, it can be seen that the spherical pores can maintain the high strength even with the same porosity. Furthermore, its acoustic impedance is 1.7 × 1.
It shows 0 6 kg / m 2 S, which is almost the same level as the acoustic impedance of living organisms and water.

【0030】実施例2 使用する発泡スチロールの粒径を変化させる以外はすべ
て実施例1に準じて、多孔質圧電性セラミックス素子を
作製した。結果を表2に示す。
Example 2 A porous piezoelectric ceramics element was produced in the same manner as in Example 1 except that the particle size of the expanded polystyrene used was changed. The results are shown in Table 2.

【表2】 ※印は比較例 表2の結果より、気孔径の適正範囲は、0.05〜5m
mである。尚、No.5の素子は、空隙率をあげた素子の作
製が困難であった。
[Table 2] * Indicates comparative example From the results in Table 2, the proper range of pore size is 0.05-5m
m. In addition, it was difficult to manufacture the element of No. 5 with an increased porosity.

【0031】実施例3 発泡スチロール球の粒径を0.15mmとし、空隙率を
制御するため、充填する発泡スチロール球の量を変化さ
せる以外はすべて実施例1に準じて、多孔質圧電性セラ
ミックス素子を作製した。結果を表3に示す。
Example 3 A porous piezoelectric ceramics element was prepared in the same manner as in Example 1 except that the particle diameter of the expanded polystyrene balls was set to 0.15 mm and the amount of expanded polystyrene balls to be filled was changed in order to control the porosity. It was made. The results are shown in Table 3.

【表3】 ※印は比較例 表3の結果より、空隙率の適正範囲は、50〜85%で
あることが判る。
[Table 3] From the results of Table 3, it is understood that the appropriate range of the porosity is 50 to 85%.

【0032】比較例 市販の粒径1mmである未発泡のスチレン製球状ビーズ
を気孔形成材として使用する以外は全て実施例1に準じ
て多孔質圧電性セラミックス素子を作製した。その結
果、スチレンが分解する150〜400℃の温度領域で
の昇温速度を0.1℃/minとできる限り遅くし、脱
脂を試みたにもかかわらず、でき上がった素子には多数
の亀裂が存在していた。又、その曲げ強度を測定したと
ころ2kg/cm2 であった。
Comparative Example A porous piezoelectric ceramic element was manufactured in accordance with Example 1 except that unexpanded styrene spherical beads having a particle size of 1 mm which were commercially available were used as the pore-forming material. As a result, the temperature increase rate in the temperature range of 150 to 400 ° C. where styrene decomposes was set as low as 0.1 ° C./min as much as possible, and despite the attempt of degreasing, many cracks were formed in the finished element. Existed. The flexural strength was measured and found to be 2 kg / cm 2 .

【0033】[0033]

【発明の効果】本発明により、音響インピ−ダンスが生
体や水の音響インピ−ダンスと同等レベルまで低減さ
れ、しかも実用に耐える機械的強度を持った多孔質圧電
性セラミックス素子が提供できる。又、この素子は、本
発明の製造方法により製造することたできる。
According to the present invention, it is possible to provide a porous piezoelectric ceramics element whose acoustic impedance is reduced to a level equivalent to that of living body and water, and which has mechanical strength enough to be practically used. Further, this element can be manufactured by the manufacturing method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気孔径0.05〜5mmの球状気孔を有
し、且つ空隙率が50〜85%の多孔質圧電性セラミッ
クス素子。
1. A porous piezoelectric ceramic element having spherical pores with a pore diameter of 0.05 to 5 mm and having a porosity of 50 to 85%.
【請求項2】 気孔形成材である発泡したポリスチロー
ル球と、硬化型樹脂を含有する圧電性セラミックス粉体
の水性スラリーを混合し、その後前記混合物を硬化せし
め、次いで焼成することを特徴とする多孔質圧電性セラ
ミックス素子の製造方法。
2. A method of mixing foamed polystyrene balls as a pore-forming material and an aqueous slurry of piezoelectric ceramic powder containing a curable resin, curing the mixture, and then firing the mixture. A method for manufacturing a porous piezoelectric ceramic element.
JP6045223A 1994-02-17 1994-02-17 Porous piezoelectric ceramic element and its production Pending JPH07232974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6045223A JPH07232974A (en) 1994-02-17 1994-02-17 Porous piezoelectric ceramic element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6045223A JPH07232974A (en) 1994-02-17 1994-02-17 Porous piezoelectric ceramic element and its production

Publications (1)

Publication Number Publication Date
JPH07232974A true JPH07232974A (en) 1995-09-05

Family

ID=12713276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6045223A Pending JPH07232974A (en) 1994-02-17 1994-02-17 Porous piezoelectric ceramic element and its production

Country Status (1)

Country Link
JP (1) JPH07232974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043927A2 (en) * 1997-03-31 1998-10-08 Porvair Corporation Porous ceramic articles and method for the manufacture thereof
JP2005159040A (en) * 2003-11-26 2005-06-16 Kyocera Corp Piezoelectric element and fuel injection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167282A (en) * 1987-12-22 1989-06-30 Kanebo Ltd Porous material of ceramic
JPH04367578A (en) * 1991-06-12 1992-12-18 Mitsubishi Materials Corp Porous sintered compact and its production
JPH069281A (en) * 1991-12-16 1994-01-18 Oki Electric Ind Co Ltd Production of formed material of porous pzt ceramic and production of underwater sound receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167282A (en) * 1987-12-22 1989-06-30 Kanebo Ltd Porous material of ceramic
JPH04367578A (en) * 1991-06-12 1992-12-18 Mitsubishi Materials Corp Porous sintered compact and its production
JPH069281A (en) * 1991-12-16 1994-01-18 Oki Electric Ind Co Ltd Production of formed material of porous pzt ceramic and production of underwater sound receiver

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043927A2 (en) * 1997-03-31 1998-10-08 Porvair Corporation Porous ceramic articles and method for the manufacture thereof
WO1998043927A3 (en) * 1997-03-31 1999-01-28 Porvair Corp Porous ceramic articles and method for the manufacture thereof
US6210612B1 (en) 1997-03-31 2001-04-03 Pouvair Corporation Method for the manufacture of porous ceramic articles
US6235665B1 (en) 1997-03-31 2001-05-22 Porvair Corporation Porous ceramic articles
US6773825B2 (en) 1997-03-31 2004-08-10 Porvair Corporation Porous articles and method for the manufacture thereof
JP2005159040A (en) * 2003-11-26 2005-06-16 Kyocera Corp Piezoelectric element and fuel injection system

Similar Documents

Publication Publication Date Title
Tallon et al. Recent trends in shape forming from colloidal processing: A review
US6004500A (en) Methods for producing novel ceramic composites
US6797083B2 (en) Method of training nitinol wire
US20050260093A1 (en) Methods for preparation of metallic and ceramic foam products and products made
KR100770310B1 (en) Method for producing ceramic sintered body having the shape of curved surface
Bandyopadhyay et al. Piezoelectric ceramics and composites via rapid prototyping techniques
JPH08119771A (en) Piezoelectric composite material
JPH07232974A (en) Porous piezoelectric ceramic element and its production
KR101494501B1 (en) Manufacturing method of functional porous ceramics material using direct forming method and functional porous ceramics material
JP2015199634A (en) Manufacturing method of silicate polymer molded body and silicate polymer molded body
JPH1121182A (en) Production of porous ceramic
JP2010132487A (en) Method for producing ceramic porous body
JPH02154982A (en) Tool for heat treatment and manufacture thereof
JP2566886B2 (en) Method for producing porous sintered body having continuous pores
JP2009084123A (en) Method for producing ceramic porous material, ceramic porous material and structure produced by using the same
JPH05319952A (en) Communicating porous body
JPH11322467A (en) Production of porous ceramics
JP3362956B2 (en) Manufacturing method of artificial lightweight aggregate
JP6196956B2 (en) Method for producing silicate polymer molded body and silicate polymer molded body
JPH05163082A (en) Production of porous sintered compact
JPH11322459A (en) Production of porous ceramics
JPH1171190A (en) Production of silicon carbide-silicon composite material
JPH02281769A (en) Manufacture of porous piezoelectric material
JP3727504B2 (en) Manufacturing method of inorganic board
JPS62226874A (en) Porous ceramic burnt body and manufacture