JP2566886B2 - Method for producing porous sintered body having continuous pores - Google Patents

Method for producing porous sintered body having continuous pores

Info

Publication number
JP2566886B2
JP2566886B2 JP62097006A JP9700687A JP2566886B2 JP 2566886 B2 JP2566886 B2 JP 2566886B2 JP 62097006 A JP62097006 A JP 62097006A JP 9700687 A JP9700687 A JP 9700687A JP 2566886 B2 JP2566886 B2 JP 2566886B2
Authority
JP
Japan
Prior art keywords
sintered body
resin
porous sintered
slurry
inorganic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62097006A
Other languages
Japanese (ja)
Other versions
JPS63265880A (en
Inventor
純弘 森山
卓二 吉村
昌章 竹下
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Kanebo Ltd
Original Assignee
Koransha Co Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd, Kanebo Ltd filed Critical Koransha Co Ltd
Priority to JP62097006A priority Critical patent/JP2566886B2/en
Publication of JPS63265880A publication Critical patent/JPS63265880A/en
Application granted granted Critical
Publication of JP2566886B2 publication Critical patent/JP2566886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融金属フィルター、高温ガスフィルター、
熱輻射板、自動車排ガスフィルター、触媒担体、バイオ
リアクター等に好適な連通気孔を有する多孔質焼結体の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a molten metal filter, a high temperature gas filter,
The present invention relates to a method for producing a porous sintered body having continuous ventilation holes suitable for a heat radiation plate, an automobile exhaust gas filter, a catalyst carrier, a bioreactor and the like.

〔従来の技術〕[Conventional technology]

従来、圧力損失の少ない連通気孔を有する多孔質焼結
体は次に記す方法により製造されている。
Conventionally, a porous sintered body having continuous vents with little pressure loss is manufactured by the method described below.

(1) 発泡ウレタンフォーム等の有機質三次元網状構
造物の表面に無機粉体のスラリーを被覆した後、乾燥
し、これを焼成する方法。この方法は有機質三次元網状
構造物のセル数を適宜選定する事により、各種気孔径を
有する多孔質焼結体を製造する事が可能であり、気孔率
も90%と高い圧力損失の少ない多孔質焼結体を得る事が
出来る。しかし製造上、焼結体の骨格の中心部には有機
質骨格の形骸である空胴部の存在が避けられず、強度の
強い多孔質焼結体を得る事が出来ない欠点を有する。
(1) A method of coating the surface of an organic three-dimensional network structure such as foamed urethane foam with a slurry of inorganic powder, followed by drying and firing. This method makes it possible to produce porous sintered bodies with various pore diameters by appropriately selecting the number of cells of the organic three-dimensional network structure. A quality sintered body can be obtained. However, in manufacturing, there is an unavoidable existence of a cavity, which is a skeleton of an organic skeleton, in the center of the skeleton of the sintered body, and there is a drawback that a porous sintered body having a high strength cannot be obtained.

(2) 無機物粉体の棒状又は線状成型物を三次元的に
組み上げた成型体を焼成する方法。この方法による多孔
質焼結体は棒状無機物成型体が互いに点接触した構造を
有する為、その強度は極めて低くなる欠点を有する。更
にその製造上、実効気孔径を厳密に制御する事は不可能
であり、精密な分離精度が要求されるフィルターを作製
出来ない欠点を有する。
(2) A method of firing a molded body obtained by three-dimensionally assembling rod-shaped or linear molded products of inorganic powder. Since the porous sintered body obtained by this method has a structure in which rod-shaped inorganic molded bodies are in point contact with each other, the strength thereof is extremely low. Further, it is impossible to strictly control the effective pore diameter in the production thereof, and there is a drawback that a filter which requires precise separation accuracy cannot be produced.

(3) 球状セラミック成型物の充填体を焼成する方
法。この方法は球状の無機物成型体の粒子径を適宜選択
する事により所望の実効気孔径を有する多孔質焼結体を
製造する事が出来る。しかし、その気孔率は理論上、最
密充填体の気孔率である約25%を越える事が出来ず、そ
の為得られる多孔質焼結体の圧力損失が大きい問題点を
有する。
(3) A method of firing the filled body of the spherical ceramic molded product. According to this method, a porous sintered body having a desired effective pore size can be produced by appropriately selecting the particle size of the spherical inorganic molded body. However, the porosity cannot theoretically exceed about 25% which is the porosity of the close-packed body, so that there is a problem that the resulting porous sintered body has a large pressure loss.

(4) 球状有機物の充填体の空隙に、無機粉体のスラ
リーを充填し、乾燥後有機物を除去、焼成する方法(特
開昭50−75608号公報,特開昭60−251182号公報)。こ
の方法は球状有機物の粒子径を適宜選択する事による各
種の実効気孔径を有する多孔質焼結体を製造する事が出
来る。更に球状有機物の粒子径に分布を持たせる事によ
り気孔率が75%を越える圧力損失の低い多孔質焼結体の
製造も可能である。また、その骨格の構造上、強度が極
めて高い特長を有する優れた製造方法である。しかし、
その製造工程において、クラックが発生し易い欠点を有
する。即ち、無機物粉体のスラリーを充填し乾燥する工
程。更には有機物を有機溶剤にて溶解除去する工程や加
熱により有機物を熱分解し焼却除去する工程等にてその
無機物の骨格にクラックが発生し、安定に工業生産する
事が困難となる問題を有する。
(4) A method of filling the voids of a spherical organic substance filler with a slurry of inorganic powder, removing the organic substance after drying, and firing (Japanese Patent Application Laid-Open Nos. 50-75608 and 60-251182). This method can produce a porous sintered body having various effective pore diameters by appropriately selecting the particle diameter of the spherical organic substance. Furthermore, by giving a distribution to the particle size of the spherical organic substance, it is possible to manufacture a porous sintered body having a porosity of more than 75% and a low pressure loss. In addition, it is an excellent manufacturing method having a feature of extremely high strength due to its skeleton structure. But,
In the manufacturing process, it has a defect that cracks are easily generated. That is, a step of filling a slurry of inorganic powder and drying. Furthermore, there is a problem that cracks occur in the skeleton of the inorganic substance in the process of dissolving and removing the organic substance with an organic solvent or the process of thermally decomposing and incinerating the organic substance by heating, which makes stable industrial production difficult. .

更に特開昭60−251182号公報には、アルミナセメント
の様な自硬性無機バインダーを水性スラリーへの添加す
る方法が開示されている。しかしこの方法はバインダー
より導入される無機物が焼成後の多孔質焼結体に不純物
として残存する基本的な欠点を有する。
Further, JP-A-60-251182 discloses a method of adding a self-hardening inorganic binder such as alumina cement to an aqueous slurry. However, this method has a basic defect that the inorganic substance introduced from the binder remains as an impurity in the porous sintered body after firing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者らは上記の既在の方法の問題点に鑑み、鋭意
研究を続けた結果本発明を完成したものであってその目
的とするところは、圧力損失が小さく且つ強度の高い多
孔質焼結体を亀裂を発生すること無く安定に製造し得る
方法を提供するにある。
In view of the problems of the above existing methods, the present inventors have completed the present invention as a result of continued intensive research, and the object of the present invention is to provide a porous fired material having a small pressure loss and a high strength. It is an object of the present invention to provide a method capable of stably producing a bonded body without causing cracks.

〔問題点を解決する為の手段〕[Means for solving problems]

上述の目的は、樹脂粒子を結着し形成された樹脂粒子
成型体の空隙に無機物粉体のスラリーを充填して多孔質
焼結体を製造する方法において、無機物粉体のスラリー
中に硬化型樹脂を含有せしめることを特徴とする連通気
孔を有する多孔質焼結体の製造方法により達成される。
The above-mentioned object is a method of manufacturing a porous sintered body by filling the voids of a resin particle molded body formed by binding resin particles with a slurry of an inorganic powder, in a slurry of the inorganic powder, a hardening type This is achieved by a method for producing a porous sintered body having continuous air holes, which is characterized by containing a resin.

本発明に適用される樹脂粒子成型体を構成する樹脂粒
子としては例えばポリスチレン,ポリエチレン,ポリプ
ロピレン,ナイロン,ポリエステル,アクリル,フェノ
ール,エポキシ,エチレン−酢酸ビニル共重合体,スチ
レン−ブタジエンブロック重合体,スチレン−イソプレ
ンブロック重合体,ウレタン及びワックス等の有機樹脂
粒子及びそれらの発泡体等が上げられるが、これらのう
ち、安価で且つ、その除去工程が容易な発泡スチロール
が好適である。
Examples of the resin particles constituting the resin particle molded body applied to the present invention include polystyrene, polyethylene, polypropylene, nylon, polyester, acrylic, phenol, epoxy, ethylene-vinyl acetate copolymer, styrene-butadiene block polymer, styrene. -Isoprene block polymer, organic resin particles such as urethane and wax, and foamed products thereof can be used. Among them, styrene foam is preferable because it is inexpensive and the removal process is easy.

連通気孔を有する多孔質焼結体を得る為に、本発明に
おける樹脂粒子成型体は粒子同士が互いに接触している
必要がある。この樹脂粒子成型体は次の方法で作成され
る。即ち適宜の容器に樹脂粒子を充填し圧縮する方法。
適宜の容器にその表面に接着剤を塗布した樹脂粒子を充
填し、成型する方法。適宜の容器に樹脂粒子を充填し、
樹脂の溶剤を短時間注入し、樹脂粒子を互いに粘接着さ
せた後、溶剤を除去する方法等である。
In order to obtain a porous sintered body having continuous pores, the resin particle molded body of the present invention needs to have particles in contact with each other. This resin particle molded body is prepared by the following method. That is, a method in which resin particles are filled in an appropriate container and compressed.
A method in which an appropriate container is filled with resin particles whose surface is coated with an adhesive and is molded. Fill the appropriate container with resin particles,
For example, a method of injecting a resin solvent for a short period of time to cause resin particles to adhere and adhere to each other and then removing the solvent.

本発明における無機物粉体として、アルミナ,ジルコ
ニア,ジルコン,コージライト,ムライト,シリカ,チ
タン酸アルミニウム,チタニア等の酸化物や窒化珪素,
窒化硼素,窒化アルミニウム,炭化珪素,サイアロン等
の非酸化物粉体があげられる。更に反応焼結による窒化
珪素や炭化珪素の製造を目的として、金属珪素粉や炭素
粉等を挙げることができる。更にはニッケル、鉄、ステ
ンレス、銅、アルミニウム、鉛、亜鉛等の金属粉体があ
げられる。
Examples of the inorganic powder in the present invention include oxides such as alumina, zirconia, zircon, cordierite, mullite, silica, aluminum titanate, and titania, and silicon nitride,
Non-oxide powders such as boron nitride, aluminum nitride, silicon carbide and sialon can be used. Further, for the purpose of producing silicon nitride or silicon carbide by reaction sintering, metal silicon powder, carbon powder, etc. can be mentioned. Further, metal powders of nickel, iron, stainless steel, copper, aluminum, lead, zinc and the like can be mentioned.

本発明における無機物粉体のスラリーは少なくとも上
記の無機物粉体,硬化型樹脂及び分散媒体より成り、必
要に応じて無機物粉体を分散媒体に効率よく安定に分散
させる為の解膠剤,スラリーの作業性を好適にする為の
粘性調整剤,エチレングリコール,ポリエチレングリコ
ール等の乾燥速度調整剤,起泡性を低減する為の抑泡剤
や消泡剤,pH調整剤等を含有せしめる事が出来る。無機
物粉体のスラリーの調製は常法に従い、ボールミルやア
トライター等の分散装置を用いることにより作成され
る。
The slurry of the inorganic powder in the present invention comprises at least the above inorganic powder, a curable resin and a dispersion medium, and if necessary, the peptizer and the slurry for efficiently and stably dispersing the inorganic powder in the dispersion medium. It may contain a viscosity adjusting agent for making workability suitable, a drying rate adjusting agent such as ethylene glycol or polyethylene glycol, a defoaming agent or an antifoaming agent for reducing foaming property, a pH adjusting agent, etc. . The slurry of the inorganic powder is prepared by a conventional method using a dispersing device such as a ball mill or an attritor.

本発明において、無機物粉体のスラリーの固型分濃度
は、該スラリーを樹脂粒子成型体の空隙に充填する作業
性及び該スラリーを充填した樹脂粒子成型体の乾燥亀裂
の発生度合により、適宜決定される。無機物粉体のスラ
リーの濃度が低いと、スラリーの粘性が低く、充填作業
性は良好であるが、乾燥工程にて分散媒体の蒸発による
収縮が大きく、亀裂が発生し易くなる。一方無機物粉体
のスラリーの濃度が高いと、充填作業性は劣るが乾燥亀
裂は発生し難くなる。通常スラリーの濃度は40〜95重量
%が好適である。
In the present invention, the solid content concentration of the slurry of the inorganic powder is appropriately determined by the workability of filling the slurry into the voids of the resin particle molding and the degree of occurrence of dry cracks of the resin particle molding filled with the slurry. To be done. When the concentration of the slurry of the inorganic powder is low, the viscosity of the slurry is low and the filling workability is good, but the shrinkage due to the evaporation of the dispersion medium is large in the drying step, and cracks are likely to occur. On the other hand, when the concentration of the slurry of the inorganic powder is high, the filling workability is poor, but dry cracks are less likely to occur. Usually, the concentration of the slurry is preferably 40 to 95% by weight.

本発明における硬化難樹脂は無機物粉体を含有するス
ラリー中にあって、その硬化作用により、骨格強度を高
める。従って乾燥工程及び樹脂粒子の除去工程に於い
て、骨格に亀裂を発生させない。硬化型樹脂としては、
分散媒体の蒸発による乾燥により樹脂粒子同志が融着し
固化する、いわゆる樹脂エマルジョンや水溶性樹脂等の
乾燥硬化型樹脂,三次元状網目結合を形成する架橋反応
型樹脂等がある。具体的にはアクリル,酢酸ビニル等の
ビニル系樹脂や、エポキシ,フェノール,尿素,メラミ
ン,ウレタン等の可溶型又は分散型の樹脂等がある。こ
れらのうち、架橋型樹脂、特に解膠剤が有効に作用する
アルカリ性領域で架橋反応が起るエポキシ樹脂が好まし
い。
The hard-curable resin in the present invention is in a slurry containing an inorganic powder, and its curing action enhances skeletal strength. Therefore, the skeleton is not cracked in the drying process and the resin particle removing process. As a curable resin,
There are dry-curable resins such as so-called resin emulsions and water-soluble resins, in which resin particles are fused and solidified by drying due to evaporation of a dispersion medium, and cross-linking reaction-type resins that form three-dimensional network bonds. Specifically, there are vinyl resins such as acrylic and vinyl acetate, and soluble or dispersed resins such as epoxy, phenol, urea, melamine, and urethane. Of these, crosslinkable resins, particularly epoxy resins that undergo a crosslinking reaction in the alkaline region where the peptizer effectively acts, are preferred.

本発明において、硬化型樹脂の添加量は本発明の目的
を達成する範囲内で、必要最小限度にとどめるのがよ
い。即ち、硬化型樹脂は多孔質焼結体の製造工程にて焼
結除去され最終製品には残存しないものであり、過度の
添加は経済的に不利である。更に硬化型樹脂の添加量が
多くなると、脱脂工程での亀裂の発生が助長される傾向
があり、この点からも過度の添加は避けるのがよい。硬
化型樹脂の含有量は無機物粉体に対し、好ましくは1〜
35重量%、最も好ましくは5〜25重量%である。
In the present invention, the addition amount of the curable resin is preferably kept to the minimum necessary amount within the range where the object of the present invention is achieved. That is, the curable resin is removed by sintering in the manufacturing process of the porous sintered body and does not remain in the final product, and excessive addition is economically disadvantageous. Further, if the amount of the curable resin added is increased, the occurrence of cracks in the degreasing process tends to be promoted, and from this point too, it is preferable to avoid excessive addition. The content of the curable resin is preferably 1 to the inorganic powder.
35% by weight, most preferably 5 to 25% by weight.

本発明において無機物粉体を分散せしめるための分散
媒体としては、水、メチルアルコール、エチルアルコー
ル、トルエン、キシレン、メチルエチルケトン、メチル
イソブチルケトン等を挙げることができるが、樹脂粒子
成型体を構成する樹脂粒子を溶解しないものを適宜選定
して使用するのがよい。通常、分散媒体としてその取扱
いの容易性から水が使用されるが、窒化アルミニウム等
の如き耐水性に劣るものや、表面酸化を避ける必要があ
る無機物粉体の場合については、非水系溶媒を使用する
のがよい。
As the dispersion medium for dispersing the inorganic powder in the present invention, water, methyl alcohol, ethyl alcohol, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone and the like can be mentioned, but the resin particles constituting the resin particle molded body It is preferable to appropriately select and use one that does not dissolve. Usually, water is used as the dispersion medium because of its ease of handling, but in the case of poor water resistance such as aluminum nitride, or in the case of inorganic powders that need to avoid surface oxidation, use a non-aqueous solvent. Good to do.

本発明において、無機物粉体のスラリーを樹脂粒子成
型体の空隙に充填する方法として、単なる流し込み法,
加圧注入法,減圧注入法,振動注入法等をあげることが
出来る。無機物粉体はスラリーを充填した樹脂粒子成型
体は容器に保持したまま、容器より取り出し乾燥した
後、あるいは容器より取り出し乾燥する過程で硬化型樹
脂を硬化させて、骨格の強度を高める。硬化条件は用い
る硬化型水性樹脂の種類により適宜選択される。乾燥硬
化樹脂の場合は、風乾又は加熱乾燥法が用いられる。架
橋反応型樹脂の場合は、通常40〜95℃にて0.5〜10時間
処理する。硬化反応が発熱反応である場合には、その自
己発熱による温度上昇を利用出来るので有利である。硬
化反応により骨格強度を高めた成型体は次いで樹脂粒子
の除去を行う。その除去方法は樹脂粒子を溶解する溶剤
に含浸する方法や、焼成に先立つ脱脂工程で硬化型水性
樹脂と共に焼却する方法を採ることが出来る。
In the present invention, as a method for filling the voids of the resin particle molded body with the slurry of the inorganic powder, a simple pouring method,
The pressure injection method, the reduced pressure injection method, the vibration injection method, etc. can be mentioned. The inorganic powder enhances the strength of the skeleton by hardening the curable resin after the resin particle molding filled with the slurry is taken out from the container and dried while being held in the container, or in the process of being taken out from the container and dried. Curing conditions are appropriately selected depending on the type of curable aqueous resin used. In the case of dry-curing resin, air drying or heat drying method is used. In the case of a crosslinking reaction type resin, it is usually treated at 40 to 95 ° C for 0.5 to 10 hours. When the curing reaction is an exothermic reaction, it is advantageous because the temperature rise due to self-heating can be utilized. The resin particles are then removed from the molded body having the skeleton strength increased by the curing reaction. The removal method may be a method of impregnating the resin particles with a solvent that dissolves the resin particles, or a method of incinerating together with the curable water-based resin in a degreasing step prior to firing.

多孔質焼成体の脱脂及び焼成は常法により実施され
る。例えば酸化物粉体の場合、脱脂工程は比較的穏やか
な昇温速度で500〜600℃迄昇温する事により、含有する
有機物をガス化し焼却する。焼成工程は通常1200〜1800
℃にて高温処理する事により実施される。雰囲気は通常
大気雰囲気であるが、無機物粉体の種類等により上記脱
脂焼成条件及びその雰囲気は適宜選択される。
Degreasing and firing of the porous fired body are carried out by a conventional method. For example, in the case of oxide powder, the degreasing step gasifies and incinerates the contained organic matter by raising the temperature to 500 to 600 ° C. at a relatively moderate temperature raising rate. The firing process is usually 1200-1800
It is carried out by high temperature treatment at ℃. The atmosphere is usually an atmospheric atmosphere, but the degreasing firing conditions and the atmosphere thereof are appropriately selected depending on the type of inorganic powder and the like.

〔発明の効果〕〔The invention's effect〕

本発明方法により、圧力損失が小さく且つ強度の高い
多孔質焼結体を亀裂を発生することなく安定に製造する
ことができる。
According to the method of the present invention, it is possible to stably manufacture a porous sintered body having a small pressure loss and a high strength without generating cracks.

以下実施例を挙げて本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.

実施例1 粒径8mmに分級した発泡スチロールを50×100×100mm
寸法のメス型容器に振動充填した後、中央に注入口を有
するオス型にて40×100×100mm寸法に圧縮し固定する。
第1表に示す各種組成のアルミナスラリーを前記注入に
より振動注入した。ここでアルミナスラリーはボールミ
ルを用いて作成した。80℃にて100%相対温度の条件で
5時間熱処理を施した後、空冷して脱型した。脱型した
成型体を酢酸エチル中に5分間浸漬して発泡スチロール
を溶解した後、これを風乾して、グリーン体を得た。炭
化珪素質発熱体を有する電気炉中にグリーン体を設置
し、600℃にて2時間、次いで1550℃にて6時間、空気
雰囲気で熱処理する事により焼成した。
Example 1 Styrofoam classified into a particle size of 8 mm was 50 × 100 × 100 mm.
After oscillating and filling a female container of dimensions, compress it to a size of 40 x 100 x 100 mm and fix it with a male type having an injection port in the center.
The alumina slurries having various compositions shown in Table 1 were vibrationally injected by the above injection. Here, the alumina slurry was prepared using a ball mill. After heat treatment at 80 ° C. and 100% relative temperature for 5 hours, it was air-cooled and demolded. The demolded molded body was immersed in ethyl acetate for 5 minutes to dissolve the styrofoam, and this was air-dried to obtain a green body. The green body was placed in an electric furnace having a silicon carbide heating element and fired at 600 ° C. for 2 hours and then at 1550 ° C. for 6 hours in an air atmosphere for firing.

得られた結果を第1表に示す。ここで水性スラリー組
成は全て純分換算で示した。
The results obtained are shown in Table 1. Here, all the aqueous slurry compositions are shown in terms of pure content.

〔外観の評価基準〕 ○:亀裂が全く認められない。 [Appearance Evaluation Criteria] O: No cracks are recognized.

△:僅かに亀裂が認められる。Δ: A slight crack is recognized.

×:多数の亀裂が認められる。X: Many cracks are recognized.

〔圧縮強度の評価方法〕[Evaluation method of compressive strength]

30×50×50mm寸法の試験片を切り出し、ヘッドスピー
ド0.05mm/minの速度で圧縮破壊テストを実施し、計5点
の測定値の平均値を圧縮強度とした。
A test piece having a size of 30 × 50 × 50 mm was cut out, and a compression fracture test was performed at a head speed of 0.05 mm / min. The average value of a total of 5 measured values was taken as the compressive strength.

実施例2 粒径2mmの発泡スチロール粒子の表面に無溶剤型のエ
ポキシ樹脂をコーティングした後、内径50mm、長さ100m
mの円筒状アクリル樹脂容器に充填した。1kg/cm2の圧力
で長さ方向に加圧し、その状態で1日放置し、樹脂粒子
成型体を作成した。樹脂粒子成型体に下記に示す組成の
水性スラリーを注入して、50℃にて100%の相対湿度の
条件で12時間熱処理を施した後、空冷し脱型した。脱型
した成型体を室温にて乾燥して更に80℃にて10時間加熱
処理してグリーン体を得た。グリーン体を実施例1に示
す電気炉内に設置し、500℃迄昇温し、次いで500℃にて
2時間保持して脱脂処理を行った。更に1400℃にて5時
間保持して、焼成を行った。
Example 2 A solvent-free epoxy resin was coated on the surface of Styrofoam particles having a particle diameter of 2 mm, and then the inner diameter was 50 mm and the length was 100 m.
It was filled in a cylindrical acrylic resin container of m. A pressure of 1 kg / cm 2 was applied in the length direction, and the state was left for 1 day to prepare a resin particle molded body. An aqueous slurry having the composition shown below was poured into a resin particle molded body, heat-treated at 50 ° C. under a relative humidity of 100% for 12 hours, and then air-cooled and demolded. The demolded molded body was dried at room temperature and further heat-treated at 80 ° C. for 10 hours to obtain a green body. The green body was placed in the electric furnace shown in Example 1, heated to 500 ° C., and then held at 500 ° C. for 2 hours for degreasing treatment. Further, the temperature was maintained at 1400 ° C. for 5 hours for firing.

〔水性スラリー組成〕[Aqueous slurry composition]

酸化アルミニウム粉末 45 コージライト粉末 55 解膠剤 0.5 エチレングリコール 2 硬化型水性樹脂 20 消泡剤 1 (部) 水 39.2 固型分濃度 75 %重量% 硬化型樹脂/無機物粉体比 20 %重量% 第2表に示す各種樹脂を用いた。得られた結果を第2
表に示す。
Aluminum oxide powder 45 Cordierite powder 55 Peptizer 0.5 Ethylene glycol 2 Curable aqueous resin 20 Defoamer 1 (part) Water 39.2 Solid content concentration 75% wt% Curable resin / inorganic powder ratio 20% wt% Various resins shown in Table 2 were used. Second result obtained
Shown in the table.

ここでNo.13及びNo.14は水性スラリーをパラトルエン
スルフォン酸を添加して、そのpHが2〜2.5となる様に
調整した。
Here, in No. 13 and No. 14, paratoluenesulfonic acid was added to the aqueous slurry to adjust its pH to 2 to 2.5.

実施例3 以下に示す組成のスラリーを用い、実施例1に準じて
グリーン体を得た。ここで発泡スチロールは粒径5mmに
分級したものを使用した。
Example 3 A green body was obtained according to Example 1 using a slurry having the composition shown below. The styrofoam used here was classified to have a particle size of 5 mm.

〔スラリー組成〕[Slurry composition]

窒化珪素粉末 90 酸化マグネシウム粉末 3 酸化アルミニウム粉末 2 酸化イットクラム粉末 5 解膠剤 0.8 デナコールEX421 12.5 トリエチレンテトラミン 2.5 消泡剤 1 エチルアルコール 40 (部) 得られたグリーン体を実施例2に準じて脱脂処理を行
った。次いで得られた脱脂体を雰囲気炉中に設置し、10
気圧の窒素ガス下で1750℃にて4時間保持して焼成を行
った。得られた多孔質焼成体は割れ、ソリ等の発生は無
く良好な状態であった。
Silicon nitride powder 90 Magnesium oxide powder 3 Aluminum oxide powder 2 Itcrum oxide powder 5 Peptizer 0.8 Denacol EX421 12.5 Triethylenetetramine 2.5 Defoamer 1 Ethyl alcohol 40 (parts) The obtained green body was defatted according to Example 2. Processed. Then, the degreased body obtained was placed in an atmosphere furnace,
Firing was carried out by holding at 1750 ° C. for 4 hours under nitrogen gas at atmospheric pressure. The obtained porous fired body was in a good state with no cracks or warpage.

実施例4 以下に示す組成のスラリーを用い、実施例2に準じて
グリーン体を得た。
Example 4 A green body was obtained according to Example 2 using a slurry having the composition shown below.

〔スラリー組成〕[Slurry composition]

SUS316粉末 100 解膠剤 1 デナコールEX421 8.3 トリエチレンテトラミン 1.7 消泡剤 1 エチルアルコール 30 (部) グリーン体を実施例2に準じて脱脂処理を行った。次
いで得られた脱脂体を雰囲気炉中に設置し、1気圧の水
素ガス下で1260℃にて1時間保持して焼成を行った。得
られた多孔質焼成体は割れ、ソリ等の発生は無く良好な
状態であった。
SUS316 powder 100 Peptizer 1 Denacol EX421 8.3 Triethylenetetramine 1.7 Defoamer 1 Ethyl alcohol 30 (parts) The green body was degreased according to Example 2. Then, the obtained degreased body was placed in an atmosphere furnace and baked at 1260 ° C. for 1 hour under hydrogen gas at 1 atm for firing. The obtained porous fired body was in a good state with no cracks or warpage.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】樹脂粒子を結着し形成された樹脂粒子成型
体の空隙に無機物粉体のスラリーを充填して多孔質焼結
体を製造する方法において、無機物粉体のスラリー中に
硬化型樹脂を含有せしめることを特徴とする連通気孔を
有する多孔質焼結体の製造方法。
1. A method of manufacturing a porous sintered body by filling a void of a resin particle molded body formed by binding resin particles with a slurry of an inorganic powder, wherein a curing type is used in the slurry of the inorganic powder. A method for producing a porous sintered body having continuous air holes, characterized by containing a resin.
【請求項2】硬化型樹脂が無機物粉体に対して1〜35重
量%含有されたものである特許請求の範囲第(1)項に
記載の連通気孔を有する多孔質焼結体の製造方法。
2. A method for producing a porous sintered body having continuous pores according to claim 1, wherein the curable resin is contained in an amount of 1 to 35% by weight based on the inorganic powder. .
【請求項3】硬化型樹脂が無機物粉体に対して5〜25重
量%含有されたものである特許請求の範囲第(1)項に
記載の連通気孔を有する多孔質焼結体の製造方法。
3. A method for producing a porous sintered body having continuous ventilation holes according to claim 1, wherein the curable resin is contained in an amount of 5 to 25% by weight based on the inorganic powder. .
【請求項4】硬化型樹脂がエポキシ樹脂である特許請求
の範囲第(1)項乃至第(3)項の何れかに記載の連通
気孔を有する多孔質焼結体の製造方法。
4. The method for producing a porous sintered body having continuous ventilation holes according to any one of claims (1) to (3), wherein the curable resin is an epoxy resin.
JP62097006A 1987-04-20 1987-04-20 Method for producing porous sintered body having continuous pores Expired - Lifetime JP2566886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097006A JP2566886B2 (en) 1987-04-20 1987-04-20 Method for producing porous sintered body having continuous pores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097006A JP2566886B2 (en) 1987-04-20 1987-04-20 Method for producing porous sintered body having continuous pores

Publications (2)

Publication Number Publication Date
JPS63265880A JPS63265880A (en) 1988-11-02
JP2566886B2 true JP2566886B2 (en) 1996-12-25

Family

ID=14180166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097006A Expired - Lifetime JP2566886B2 (en) 1987-04-20 1987-04-20 Method for producing porous sintered body having continuous pores

Country Status (1)

Country Link
JP (1) JP2566886B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531000B2 (en) * 2006-02-23 2010-08-25 京セラ株式会社 Stoke and differential pressure casting machine using the same
JP2014051728A (en) * 2012-09-10 2014-03-20 Jsp Corp Metallic porous body and production method of the same

Also Published As

Publication number Publication date
JPS63265880A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
CN107200599B (en) Porous alumina ceramic and preparation method and application thereof
Tallon et al. Recent trends in shape forming from colloidal processing: A review
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
USRE32603E (en) Process for preparing a ceramic foam
US4812424A (en) Kiln furniture for the firing of ceramic articles
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
US5437832A (en) Process for preparing a ceramic porous body
CN1041178C (en) Method of preparing a durable air-permeable mold
US4530808A (en) Binder removal from thermoplastically formed SiC article
JP2566886B2 (en) Method for producing porous sintered body having continuous pores
JP4514847B2 (en) Method for producing ceramic porous body
JP2651170B2 (en) Ceramics porous body
JP2001270792A (en) Method for producing metal/ceramic complex and method for producing ceramic porous body
JPH0597537A (en) Production of ceramic porous material
US4970181A (en) Process for producing ceramic shapes
JPH1121182A (en) Production of porous ceramic
KR100434830B1 (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
JP2728838B2 (en) Method for producing porous sintered body
JPH0663684A (en) Production of ceramic core for casting
JPH04160078A (en) Production of ceramic porous body
JP2005336539A (en) Porous sintered compact and its production method
JPH02290211A (en) Ceramic filter and manufacture thereof
JPH0383875A (en) Production of porous ceramic structure
HU203860B (en) Process for producing casted shaped product produced with hole
JPH06227873A (en) Production of ceramics porous material