JPH04160078A - Production of ceramic porous body - Google Patents

Production of ceramic porous body

Info

Publication number
JPH04160078A
JPH04160078A JP28308090A JP28308090A JPH04160078A JP H04160078 A JPH04160078 A JP H04160078A JP 28308090 A JP28308090 A JP 28308090A JP 28308090 A JP28308090 A JP 28308090A JP H04160078 A JPH04160078 A JP H04160078A
Authority
JP
Japan
Prior art keywords
ceramic
resin
ceramic powder
emulsion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28308090A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ina
克芳 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP28308090A priority Critical patent/JPH04160078A/en
Publication of JPH04160078A publication Critical patent/JPH04160078A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high strength ceramic porous body having two or more kinds of different open pores at high porosity by filling a slurry prepd. by blending ceramic powder with a curable resin and an emulsion contg. a liq. org. substance as a pore forming material into the voids in a molded body of resin granules and carrying out firing. CONSTITUTION:A slurry prepd. by blending ceramic powder of 1mum particle diameter such as alumina powder with 1-35wt.%, preferably 5-25wt.% curable resin such as epoxy resin basing on the amt. of the ceramic powder and an emulsion of <=10mum average particle diameter contg. 100-300vol.% liq. org. substance basing on the amt. of the ceramic powder is filled into the voids in a molded body of spherical resin granules which burn out in a firing process to form large pores, e.g. foamed polystyrene granules. The molded body is then dried by heating, dewaxed and fired to obtain a ceramic porous body useful as an exhaust gas filter, a catalyst carrier, a bioreactor, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排ガスフィルター、触媒担体及びバイオリア
クターなどに好適な孔径の異なる2種類以上の連通気孔
を有するセラミックス多孔体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a ceramic porous body having two or more types of communicating pores with different pore sizes, which is suitable for exhaust gas filters, catalyst carriers, bioreactors, and the like.

(従来の技術) 異なる気孔径を有するセラミックス多孔体は、大気孔部
は物質移動の通路となり、微細気孔部は化学反応あるい
は生物反応に有利な環境を与えるため、例えば、触媒を
担持した排ガスフィルター、バイオリアクターなどに有
用である。
(Prior art) Ceramic porous bodies with different pore sizes have large pores that act as passages for mass transfer, and fine pores that provide an environment favorable for chemical or biological reactions. , useful in bioreactors, etc.

従来、圧力損失の小さな比較的大きな気孔を持つセラミ
ックス多孔体を製造する方法としては、ウレタンフオー
ムにセラミックススラリーを含浸させ、乾燥及び熱処理
してウレタンフオームを焼失しセラミックスを焼結させ
る方法、セラミックス粉体と可燃性物質との混合物を成
形し焼成する方法等が知られている。又、比表面積が極
めて大きな微細な気孔を作る為には粒度配合を持たせた
セラミックス原料を成形し焼結させる方法が知られてい
る。
Conventionally, methods for manufacturing porous ceramic bodies with relatively large pores with low pressure loss include methods in which urethane foam is impregnated with ceramic slurry, dried and heat treated to burn out the urethane foam and sinter the ceramics, and ceramic powder. A method is known in which a mixture of a combustible substance and a combustible substance is formed and fired. Furthermore, in order to create fine pores with an extremely large specific surface area, a method is known in which a ceramic raw material having a particle size composition is formed and sintered.

しかし、これらの方法の組み合わせでは100μm以上
の比較的大きな気孔径のセラミックス多孔体の骨格部に
10μm以下の微細気孔を有するセラミックス多孔体を
製造できるが、その製法上、骨格部の気孔が原料粒子間
の空隙によって決定されるためその制御が難しく、又、
得られるセラミックス多孔体の強度が小さい問題を有す
る。
However, by combining these methods, it is possible to produce a ceramic porous body having fine pores of 10 μm or less in the skeleton of a ceramic porous body with a relatively large pore size of 100 μm or more, but due to the manufacturing method, the pores in the skeleton are It is difficult to control because it is determined by the air gap between
The problem is that the strength of the resulting porous ceramic body is low.

従って、径の異なる2種類以上の制御された連通気孔を
有し、気孔率が高く、且つ、高強度を有するセラミック
ス多孔体が強く望まれている。
Therefore, there is a strong desire for a ceramic porous body that has two or more controlled communicating pores with different diameters, high porosity, and high strength.

(発明が解決しようとする課M) 本発明者は上述の既在のセラミックス多孔体の有する諸
問題点に鑑み鋭意研究を重ねた結果本発明を完成したも
のであって、その目的とするところは、異なる2種以上
の連通気孔を有し、高気孔率で且つ高強度のセラミック
ス多孔体を製造する方法を提供するにある。
(Problem M to be solved by the invention) The present inventor has completed the present invention as a result of intensive research in view of the problems of the existing ceramic porous bodies mentioned above. The object of the present invention is to provide a method for producing a ceramic porous body having two or more different types of communicating pores, high porosity, and high strength.

(課題を解決するための手段) 上述の目的は、球状樹脂粒子を結着して形成した樹脂粒
子成型体の空隙にセラミックス粉体及び硬化型樹脂を含
むセラミックス原料のスラリーを充填し連通気孔を有す
るセラミックス多孔体を製造するに際し、該セラミック
ス原料中に気孔形成材として液状有機物のエマルジョン
を配合したことを特徴とするセラミックス多孔体の製造
方法により達成される。
(Means for solving the problem) The above-mentioned object is to fill the voids of a resin particle molded body formed by bonding spherical resin particles with a slurry of a ceramic raw material containing ceramic powder and a curable resin to form communicating holes. This is achieved by a method for manufacturing a porous ceramic body characterized in that an emulsion of a liquid organic substance is blended as a pore-forming material into the ceramic raw material.

本発明に適用される球状樹脂粒子は焼成工程にて焼失さ
れ本発明品の大気孔部を形付ける作用をするものである
。具体的には、例えば、ポリスチレン、ポリエチレン、
ポリプロピレン、ナイロン、ポリエステル、アクリル、
フェノール、エポキシ、エチレン−酢酸ビニル共重合体
、スチレン−ブタジェンブロック重合体、ウレタン及び
ワックス等の有機樹脂粒子及びそれらの発泡体等が挙げ
られるが、これらのうち安価で且つその除去工程が容易
な発泡スチロールが好適である。
The spherical resin particles applied to the present invention are burned out in the firing process and function to shape the large pores of the product of the present invention. Specifically, for example, polystyrene, polyethylene,
polypropylene, nylon, polyester, acrylic,
Examples include organic resin particles such as phenol, epoxy, ethylene-vinyl acetate copolymer, styrene-butadiene block polymer, urethane and wax, and their foams, but among these, these are inexpensive and easy to remove. Styrofoam is suitable.

これら球状樹脂粒子は連通気孔とするため互いに接触し
ている必要がある。この樹脂粒子が互いに結着された成
型体は、例えば適宜容器に樹脂粒子を充填し圧縮する方
法、適宜容器にその表面に接着側を塗布した樹脂粒子を
充填し成型する方法、適宜容器に樹脂粒子を充填し樹脂
の溶剤を短時間注入し樹脂粒子を互いに粘接着させた後
溶剤を除去する方法等公知の方法から適宜の方法を選定
し適用することにより作製できる。
These spherical resin particles must be in contact with each other in order to form continuous pores. The molded body in which the resin particles are bonded to each other can be produced by, for example, filling a container with resin particles and compressing the resin particles, filling the container with resin particles whose surface is coated with adhesive and molding the container, or filling the container with resin particles and molding the resin particles. It can be produced by selecting and applying an appropriate method from known methods, such as a method in which particles are filled, a resin solvent is injected for a short period of time, the resin particles are adhered to each other, and then the solvent is removed.

本発明におけるスラリーは、セラミックス粉体、硬化作
用によりグリーン体強度を高める硬化型樹脂、エマルジ
ョン状態となっている液状有機物及び分散媒体を含有す
る。
The slurry in the present invention contains ceramic powder, a curable resin that increases the strength of the green body through a curing action, a liquid organic substance in an emulsion state, and a dispersion medium.

本発明に用いられるセラミックス粉体としては、例えば
アルミナ、ジルコニア、ジルコン、コージェライト、ム
ライト、チタニア、シリカ、チタン酸アルミニウム、マ
グネシア等の酸化物や、窒化珪素、窒化アルミニウム、
炭化珪素、サイアロン等の非酸化物粉体が挙げられる。
Examples of the ceramic powder used in the present invention include oxides such as alumina, zirconia, zircon, cordierite, mullite, titania, silica, aluminum titanate, and magnesia, silicon nitride, aluminum nitride,
Examples include non-oxide powders such as silicon carbide and sialon.

更に、反応焼結による窒化珪素、窒化アルミニウム及び
炭化珪素の製造を目的とじlて金属珪素粉、金属アルミ
ニウム粉及び#2素粉等を使用してもよい、そして本発
明に適用できるセラミックス粉体は、これらに限定され
るものでなく、耐熱性、耐熱衝撃性、耐腐食性、耐酸性
、耐酸化性等その用途に応じてセラミックス粉体の種類
及びその配合量を適宜選定することができる。セラミッ
クス粉体の粒子径は易焼結性及びスラリーの保存安定性
より好ましくは10μm以下、更に好ましくは2μm以
下、最も好ましくはlam以下である。
Furthermore, for the purpose of producing silicon nitride, aluminum nitride, and silicon carbide by reaction sintering, metal silicon powder, metal aluminum powder, #2 raw powder, etc. may be used, and ceramic powder applicable to the present invention. is not limited to these, and the type and amount of ceramic powder can be selected as appropriate depending on the application, such as heat resistance, thermal shock resistance, corrosion resistance, acid resistance, oxidation resistance, etc. . The particle size of the ceramic powder is preferably 10 μm or less, more preferably 2 μm or less, and most preferably lam or less in terms of ease of sintering and slurry storage stability.

本発明において用いられる硬化型樹脂は、セラミックス
粉体及び液状有機物のエマルジョンを含有するスラリー
中にあって、その硬化作用によりグリーン体強度を高め
るため用いられる。硬化型樹脂としては三次元網目結合
を形成する架橋反応型樹脂が好ましく、例えば、エポキ
シ、フェノール、尿素、メラミン等の可溶型または分散
型の樹脂を挙げることが出来る。これらのうち特に解膠
剤が有効に作用するアルカリ性領域で架橋反応を生起す
るエポキシ樹脂が好ましい。
The curable resin used in the present invention is present in a slurry containing ceramic powder and an emulsion of a liquid organic substance, and is used to increase the strength of the green body through its curing action. As the curable resin, a crosslinking reaction type resin that forms a three-dimensional network bond is preferable, and examples thereof include soluble or dispersible resins such as epoxy, phenol, urea, and melamine. Among these, epoxy resins that cause a crosslinking reaction in an alkaline region where a deflocculant acts effectively are particularly preferred.

本発明において硬化型樹脂の添加量は、本発明の目的を
達成する範囲内で必要最小限度に留めるのがよい、即ち
硬化型樹脂はセラミックス焼結体の製造工程にて燃焼除
去され、最終製品には残存しないものであり、過度の添
加は経済的に不利である。更に硬化型樹脂の添加量が多
くなると脱脂工程での亀裂が多発する傾向があり、この
点からも過度に添加しない方がよい、硬化型樹脂の含有
量は無機物粉体に対し好ましくは1〜35重量%、更に
好ましくは5〜25重量%である1本発明における液状
有機物のエマルジョンは気孔形成剤として作用し微細な
連通気孔を有するセラミックス多孔体を形成せしめるう
えで重要な役割を果すものである。
In the present invention, the amount of the curable resin added is preferably kept to the minimum necessary amount within the scope of achieving the purpose of the present invention. In other words, the curable resin is burned and removed during the manufacturing process of the ceramic sintered body, and the final product is does not remain, and excessive addition is economically disadvantageous. Furthermore, if the amount of curable resin added increases, cracks tend to occur frequently during the degreasing process, so from this point of view as well, it is better not to add too much.The content of curable resin is preferably 1 to 10% relative to the inorganic powder. The emulsion of the liquid organic substance in the present invention, which is 35% by weight, more preferably 5 to 25% by weight, acts as a pore-forming agent and plays an important role in forming a ceramic porous body having fine continuous pores. be.

液状有機物としては例えば流動パラフィン、液状イソプ
ロピレン等の常温で液状の高分子化合物を−げることが
出来る。更に、スチレン、メタクリレート、アジリレー
ト等の高分子重合体を有機溶媒で溶解した液状物等が挙
げられるが、勿論これらに限定されるものではない、連
通気孔を形成せしめるには常温で液状であるものが好ま
しい。
Examples of liquid organic substances include liquid paraffin, liquid isopropylene, and other polymer compounds that are liquid at room temperature. Further examples include, but are not limited to, liquid materials in which high-molecular polymers such as styrene, methacrylate, and azirylate are dissolved in organic solvents, and materials that are liquid at room temperature to form communicating pores may be used. is preferred.

そしてセラミックス多孔体の連通気孔は、硬化型樹脂の
硬化前あるいは硬化中にエマルジョンの分散状態が破壊
され液状樹脂の分散粒子が互いに遊離状態から連通状態
に変化し、その連続有機物相が焼成工程中で焼却除去さ
れることにより形成される。
The continuous pores in the ceramic porous body are caused by the dispersion state of the emulsion being destroyed before or during the curing of the curable resin, and the dispersed particles of the liquid resin changing from a free state to a connected state, and the continuous organic phase is formed during the firing process. It is formed by being removed by incineration.

エマルジョンは公知の方法から適宜の方法を選定し製造
すればよい9例えば、乳化剤を含む分散媒をホモミキサ
ー等の高速剪断混合装置にて撹拌しながら液状有機物を
順次滴下する方法、乳化剤と液状有機物の混合物を高速
剪断混合vMWにて撹拌しながら分散媒を順次滴下する
方法に代表される強制乳化法が一般的である。用いる乳
化剤はアニオン系、カチオン系、ノニオン系のいずれの
乳化剤でもよいが、セラミックス粉体の分散安定性や不
純物金属の残留を避ける為にアルカリ金属塩を除くアニ
オン系及びノニオン系が好ましい、エマルジョンの含有
量は最終製品の気孔率を決定する重要な因子であるが、
含有量が少な過ぎると得られる気孔が連通気孔ではなく
閉気孔となる。−方、含有量が多過ぎると得られるセラ
ミックス体の強度が小さくなる。エマルジョンの含有量
は通常セラミックス粉体に対し液状有機物が好ましくは
20〜400体積%、更に好ましくは100〜300体
積%である。エマルジョンの粒子径は最終製品の気孔径
を決定する重要な因子である。エマルジョンの保存安定
性をも考慮して、その平均粒子径は50μm以下、好ま
しくは10μm以下である。エマルジョンの粒子径は用
いる乳化剤の種類や量及び剪断速度により適宜制御でき
る。
Emulsions can be produced by selecting an appropriate method from known methods.9 For example, a method in which a dispersion medium containing an emulsifier is stirred with a high-speed shear mixing device such as a homomixer and a liquid organic substance is sequentially added dropwise, an emulsifier and a liquid organic substance A common method is a forced emulsification method, typified by a method in which a dispersion medium is sequentially added dropwise to a mixture of the above while stirring the mixture using a high-speed shear mixing vMW. The emulsifier used may be an anionic, cationic, or nonionic emulsifier, but anionic and nonionic emulsifiers excluding alkali metal salts are preferred in order to improve the dispersion stability of the ceramic powder and avoid residual metal impurities. Although the content is an important factor determining the porosity of the final product,
If the content is too low, the resulting pores will not be continuous pores but closed pores. - On the other hand, if the content is too large, the strength of the resulting ceramic body will be reduced. The content of the liquid organic substance in the emulsion is preferably 20 to 400% by volume, more preferably 100 to 300% by volume based on the ceramic powder. The particle size of the emulsion is an important factor determining the pore size of the final product. Considering the storage stability of the emulsion, the average particle diameter is 50 μm or less, preferably 10 μm or less. The particle size of the emulsion can be appropriately controlled by the type and amount of the emulsifier used and the shear rate.

本発明においてスラリーの分散媒体としては、通常水を
用いる。
In the present invention, water is usually used as a dispersion medium for the slurry.

本発明におけるスラリーは、上記セラミックス粉体、硬
化作用によりグリーン体強度を高める硬化型樹脂及びエ
マルジョン状態となっている液状有機物を主成分とする
混合相であるが、これら以外に消泡剤、セラミックス粉
体を分散媒体に効果よく安定に分散させる為の解膠剤、
スラリーの作業性を好適にする為の粘性調製側、乾燥速
度調製剤等を適宜含有せしめてもよい。
The slurry in the present invention is a mixed phase mainly composed of the ceramic powder, a hardening resin that increases the strength of the green body through hardening action, and a liquid organic substance in an emulsion state. A deflocculant for effectively and stably dispersing powder in a dispersion medium.
In order to make the workability of the slurry suitable, viscosity adjusting agents, drying speed adjusting agents, etc. may be included as appropriate.

スラリーは常法に従い調製すればよい0例えば先ず、分
散溶媒中にセラミックス粉体をボールミル、アトライタ
ー等で予め均一に混合した後、得られたセラミックス粉
体の分散物に液状樹脂エマルジョンと硬化型樹脂を添加
し均一混合する等常法に従い調製することができる。ス
ラリーの固型分濃度は20〜60体積%が好ましく、ま
た粘度はセラミックス粉体の沈降による分離や取り扱い
作業性から好ましくは100〜2000cps、更に好
ましくは500〜1000cpsである。
The slurry can be prepared according to a conventional method. For example, first, ceramic powder is uniformly mixed in a dispersion solvent using a ball mill, attritor, etc., and then the resulting ceramic powder dispersion is mixed with a liquid resin emulsion and a hardening mold. It can be prepared according to a conventional method such as adding a resin and mixing uniformly. The solid content concentration of the slurry is preferably 20 to 60% by volume, and the viscosity is preferably 100 to 2000 cps, more preferably 500 to 1000 cps, from the viewpoint of separation by sedimentation of ceramic powder and ease of handling.

上述のように調製されたスラリーは、予め作製した球状
樹脂成形体容器の空隙に充填される。充填は単なる流し
込み法、加圧注入法、減圧注入法、振動注入性等適宜な
方法により行えばよい、常温で静置、又は加熱処理等に
より硬化型樹脂を硬化せしめるとハンドリング可能なグ
リーン体が得られる。グリーン体は次いで風乾あるいは
加熱乾燥法等により分散溶媒を除去する。引き続いて脱
脂工程において球状樹脂粒子、液状有機物、硬化型樹脂
を除去した後、焼成する。脱脂は比較的緩やかな昇温速
度例えば10〜b 500℃〜600℃まで昇温することにより行ない、混
在する有機物を分解し焼却除去するのが好ましい、焼成
は1200℃〜1800’ll:で実施するのが好適で
あり、通常大気雰囲気で行なうが、セラミックス原料粉
体のmM等によりII業ガス雰囲気など適宜選択すると
良い。
The slurry prepared as described above is filled into the voids of a spherical resin molded container prepared in advance. Filling can be done by any suitable method such as simple pouring, pressurized injection, reduced pressure injection, vibration injection, etc. If the hardening resin is left to stand at room temperature or cured by heat treatment, a handleable green body is created. can get. The dispersion solvent is then removed from the green body by air drying or heat drying. Subsequently, in a degreasing step, spherical resin particles, liquid organic matter, and curable resin are removed, followed by firing. Degreasing is preferably carried out by raising the temperature at a relatively slow rate of temperature e.g. It is preferable to do this, and it is usually carried out in an air atmosphere, but it is preferable to select an atmosphere such as a II gas atmosphere depending on the mM of the ceramic raw material powder.

(発明の効果) 本発明のセラミックス多孔体は、径の興なる2種以上の
連通気孔を有し且つ高気孔率である。大気孔径部は圧力
損失が低くて大きな流量が得られる特長を有し、物質移
動が容易である。一方、微細気孔部は大きな比表面積を
有するため化学的に極めて活性であり触媒担持能及び生
物反応性に優れている。fこれらの両特長を併有する本
発明のセラミックス多孔体は排ガスフィルター及びバイ
オリアクター等に特に好適である。
(Effects of the Invention) The porous ceramic body of the present invention has two or more types of communicating pores of different diameters and has a high porosity. The atmospheric pore diameter part has the advantage of low pressure loss and large flow rate, and facilitates mass transfer. On the other hand, since the micropores have a large specific surface area, they are extremely chemically active and have excellent catalyst supporting ability and biological reactivity. f The ceramic porous body of the present invention having both of these features is particularly suitable for exhaust gas filters, bioreactors, and the like.

実施例I 先ず、粒径3mmに分級した発泡スチロールを50X1
00X100mm寸法のポリプロピレン製メス型容器に
振動充填した後、中央に注入入口を有するオス型にて4
0X100XI00mm寸法に圧縮し固定して発泡スチ
ロール成型体を用意した。尚、ここで発泡スチロールの
占有体積は70%、空隙部は30%であった。
Example I First, Styrofoam classified to a particle size of 3 mm was placed in a 50×1
After vibrating and filling a polypropylene female container with dimensions of 00 x 100 mm, a male container with an injection port in the center was used to fill the container.
A polystyrene foam molded body was prepared by compressing and fixing it to a size of 0x100x100 mm. Here, the occupied volume of the styrene foam was 70%, and the void area was 30%.

以下に示す純分組成のセラミックス粉体の分散物と液状
有機物のエマルシヨンを作製した。
A dispersion of ceramic powder and an emulsion of a liquid organic substance having the pure composition shown below were prepared.

セラミックス  の 酸化アルミニウム    80重量% 水           19重量% 解膠剤          1重置% ゛    のエマルジョン 流動パラフィン     45重置% 水           50重置% 乳化剤          5重量% セラミックス粉体分散物は所定の配合量をボールミルに
て24時間混合分散して得た。酸化アルミニウムは0.
5重量%のマグネシウムを含有する平均粒径2μmのも
のを用い、解膠側は花王製ボイズ530を用いた。液状
有機物のエマルジョンは、乳化剤をあらかじめ添加した
70℃の水をホモミキサーにて3000cpsの速度で
撹拌しながら毎分20ccのスピードで液状有機物を順
次滴下して得た。乳化剤は花王製ノニオン系乳化則エマ
ルゲン220、エマルケン9工0及びトウィーン20の
1:1:1重量比の混合物を用いた。
Ceramic aluminum oxide 80% by weight Water 19% deflocculant 1% emulsion liquid paraffin 45% water 50% emulsifier 5% by weight Ceramic powder dispersion is prepared in a ball mill in the specified amount. The mixture was mixed and dispersed for 24 hours. Aluminum oxide is 0.
A particle containing 5% by weight of magnesium and having an average particle diameter of 2 μm was used, and on the peptizing side, Boise 530 manufactured by Kao was used. The emulsion of the liquid organic substance was obtained by sequentially adding the liquid organic substance dropwise at a rate of 20 cc/min while stirring water at 70° C. to which an emulsifier had been added in advance at a rate of 3000 cps using a homomixer. The emulsifier used was a mixture of Kao's nonionic Emulsifying Rule Emulgen 220, Emulken 9-0, and Tween 20 in a weight ratio of 1:1:1.

液状樹脂の平均粒子径は15μであった。The average particle size of the liquid resin was 15μ.

得られたセラミックス粉体の分散物及び液状有機物のエ
マルジョンならびに第1表に示す樹脂をそれぞれ固型分
比で63:23:14となる様に混合して、スラリーを
作製した。尚ここで、水溶性エポキシにはナガセ化成工
業製デナコールEX−421を用いた。エポキシ樹脂量
としては水溶性エポキシと水溶性アミンの合算量を固型
分換夏した。更にメラミン、フェノールを用いた系はス
ラリーにパラトルエンスルホン酸を添加してそのpHが
2〜2.5となるように調製した。
A slurry was prepared by mixing the obtained ceramic powder dispersion, liquid organic substance emulsion, and resin shown in Table 1 at a solid content ratio of 63:23:14. Here, Denacol EX-421 manufactured by Nagase Chemical Industries, Ltd. was used as the water-soluble epoxy. As the amount of epoxy resin, the total amount of water-soluble epoxy and water-soluble amine was calculated by converting the solid content. Further, in the system using melamine and phenol, para-toluenesulfonic acid was added to the slurry to adjust the pH to 2 to 2.5.

上述のごとく作製したスラリーを予め用意した発泡スチ
ロール成型体の上部注入口より注入し、80℃にて12
時間の加熱処理硬化後グリーン体を脱型、乾燥した。焼
成は、大気雰囲気電気炉を用い400℃までは0.5℃
/分それ以降は10℃/分の速度で昇温し1500℃に
て1時間保持した後、冷却した。
The slurry prepared as described above was injected from the upper injection port of the styrofoam molded body prepared in advance, and heated at 80°C for 12 hours.
After curing by heat treatment for several hours, the green body was removed from the mold and dried. Firing is performed using an atmospheric electric furnace at 0.5°C up to 400°C.
After that, the temperature was raised at a rate of 10° C./min, held at 1500° C. for 1 hour, and then cooled.

グリーン体の外観評価は以下の基準で行なった。The appearance of the green body was evaluated based on the following criteria.

O:亀裂の発注がなくハンドリングに十分な強度を持つ Δ:亀裂の発生がないもののハンドリングに若干支障が
ある ×:亀裂が発生しハンドリングにも支障があ焼成体の外
観評価は以下の基準で行なった。
O: No cracks and sufficient strength for handling Δ: No cracks but some difficulty in handling ×: Cracks have occurred and handling is difficult The appearance evaluation of fired products is based on the following criteria. I did it.

O;亀裂の発生がなく焼成できた Δ:亀裂が若干発生した 第1表から硬化性を有しないポリビニルアルコールでは
満足なセラミンクス体の製造ができず、熱硬化型樹脂を
バインダーとして用いてセラミンクス体の製造が可能で
あることがわかる。
O: Firing was completed without any cracks Δ: Some cracks were generated As shown in Table 1, a satisfactory ceramic body could not be manufactured using polyvinyl alcohol, which does not have hardening properties, and a ceramic body was produced using a thermosetting resin as a binder. It can be seen that it is possible to manufacture

実施例2 硬化型樹脂として固型エポキシ樹脂及び水溶性アミンを
用い、更に液状有機物のエマルジョン作製に際しノニオ
ン系及びアニオン系乳化剤の種類を適宜選定する以外は
すべて実施例1と同様にして、第2表に示すように各種
有機物のエマルジョンを調製しセラミックス多孔体を製
造した。結果ここで微細気孔部開気効率は水銀圧入法に
て測定し、閉気孔率はセラミックス体の見掛は密度とセ
ラミックスの真比重より算出した。大気孔部気孔率は、
セラミックス体の重量、微細気孔部の開気孔率及び閉気
孔率より算出した。
Example 2 A second example was carried out in the same manner as in Example 1, except that a solid epoxy resin and a water-soluble amine were used as the curable resin, and the types of nonionic and anionic emulsifiers were appropriately selected when preparing the emulsion of the liquid organic substance. Emulsions of various organic substances were prepared as shown in the table, and porous ceramic bodies were manufactured. Results Here, the micropore opening efficiency was measured by mercury intrusion method, and the closed porosity was calculated from the apparent density of the ceramic body and the true specific gravity of the ceramic. The atmospheric porosity is
It was calculated from the weight of the ceramic body, the open porosity and the closed porosity of the micropores.

第2表から液状有機物エマルシヨンを用いることにより
連通気孔が形成できることが明らかである。
It is clear from Table 2 that continuous pores can be formed by using a liquid organic emulsion.

実施例3 下記第3表に記載するように液状有機物の量を変化させ
る以外は実施例1と同様にしてセラミックス体を製造し
た。但し、焼成温度を1650℃ここで曲げ強度は、作
製したセラミンクス多孔体を10x30x80mmに切
り出し、JTS規格(R1601)に準拠してスパン6
0mm、クロスヘツドスピード0.5 m m / m
 i nで3点曲げ試験を行ない測定した値である。
Example 3 Ceramic bodies were produced in the same manner as in Example 1 except that the amount of liquid organic matter was changed as shown in Table 3 below. However, the firing temperature was 1650°C, and the bending strength was determined by cutting the prepared ceramic porous body into 10 x 30 x 80 mm, and measuring span 6 in accordance with the JTS standard (R1601).
0mm, crosshead speed 0.5mm/m
This is a value measured by conducting a three-point bending test at in.

第3表から明らかなように液状有機物が少な過ぎる場合
微細気孔部が連通気孔となり難くなり、逆に多すぎると
強度が小さくなる傾向がある。
As is clear from Table 3, if the liquid organic substance is too small, it becomes difficult for the micropores to become continuous pores, and if it is too large, the strength tends to decrease.

Claims (1)

【特許請求の範囲】[Claims] 球状樹脂粒子を結着して形成した樹脂粒子成型体の空隙
にセラミックス粉体及び硬化型樹脂を含むセラミックス
原料のスラリーを充填し連通気孔を有するセラミックス
多孔体を製造するに際し、該セラミックス原料中に気孔
形成材として液状有機物のエマルジヨンを配合したこと
を特徴とするセラミックス多孔体の製造方法。
When manufacturing a ceramic porous body having communicating pores by filling the voids of a resin particle molded body formed by bonding spherical resin particles with a slurry of a ceramic raw material containing ceramic powder and a curable resin, in the ceramic raw material A method for producing a porous ceramic body, characterized in that an emulsion of a liquid organic substance is blended as a pore-forming material.
JP28308090A 1990-10-19 1990-10-19 Production of ceramic porous body Pending JPH04160078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28308090A JPH04160078A (en) 1990-10-19 1990-10-19 Production of ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28308090A JPH04160078A (en) 1990-10-19 1990-10-19 Production of ceramic porous body

Publications (1)

Publication Number Publication Date
JPH04160078A true JPH04160078A (en) 1992-06-03

Family

ID=17660954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28308090A Pending JPH04160078A (en) 1990-10-19 1990-10-19 Production of ceramic porous body

Country Status (1)

Country Link
JP (1) JPH04160078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316870A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of zirconia sintered compact
US7294328B2 (en) 2001-05-31 2007-11-13 Sumitomo Chemical Company, Limited Method for producing α-alumina formed body
JP2010100514A (en) * 2008-07-22 2010-05-06 Covalent Materials Corp Ceramic particle and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316870A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of zirconia sintered compact
US7294328B2 (en) 2001-05-31 2007-11-13 Sumitomo Chemical Company, Limited Method for producing α-alumina formed body
JP2010100514A (en) * 2008-07-22 2010-05-06 Covalent Materials Corp Ceramic particle and method of manufacturing the same
JP2014178332A (en) * 2008-07-22 2014-09-25 Covalent Materials Corp Ceramic particle for chromatography filler and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4011291A (en) Apparatus and method of manufacture of articles containing controlled amounts of binder
US4255197A (en) Process for obtaining refractory materials with controlled characteristics of porosity and density
JP2928486B2 (en) Forming method
JP4176278B2 (en) Ceramic porous body and method for producing the same
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
JP3417943B2 (en) Porous body
US5762841A (en) Ceramic porous body having a continuous particle size distribution
EP3315478B1 (en) Precursor material for additive manufacturing of ceramic parts and methods of producing the same
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
US5563106A (en) Porous Articles
JP3058174B2 (en) Porous ceramics, dried body for producing the same, and methods for producing them
JP4514847B2 (en) Method for producing ceramic porous body
JPH04160078A (en) Production of ceramic porous body
JP2651170B2 (en) Ceramics porous body
Persson Surface and colloid chemistry in ceramic casting operations
US4970181A (en) Process for producing ceramic shapes
JPH10130076A (en) Production of porous ceramic
JP2005239471A (en) Manufacturing method for ceramic porous body, and ceramic porous body
JPH0597537A (en) Production of ceramic porous material
JP2000344585A (en) Production of ceramic porous body
JP2728838B2 (en) Method for producing porous sintered body
JP2566886B2 (en) Method for producing porous sintered body having continuous pores
JPH04149079A (en) Production of ceramics porous body
JP2506502B2 (en) Method for manufacturing ceramic porous body
JPS59156954A (en) Manufacture of porous ceramics