JPH04149079A - Production of ceramics porous body - Google Patents

Production of ceramics porous body

Info

Publication number
JPH04149079A
JPH04149079A JP27193690A JP27193690A JPH04149079A JP H04149079 A JPH04149079 A JP H04149079A JP 27193690 A JP27193690 A JP 27193690A JP 27193690 A JP27193690 A JP 27193690A JP H04149079 A JPH04149079 A JP H04149079A
Authority
JP
Japan
Prior art keywords
component
emulsion
slurry
inorganic powder
liquid organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27193690A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ina
克芳 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP27193690A priority Critical patent/JPH04149079A/en
Publication of JPH04149079A publication Critical patent/JPH04149079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To produce a ceramics porous body which has communicated fine pores and is enhanced in porosity by blending emulsion of liquid organic substance with a raw material for ceramics incorporating inorganic powder and curing type resin, and shaping this slurry and burning the shaped body. CONSTITUTION:Emulsion (C) of liquid organic substance (e.g. liquid paraffin) (a) having <=50mum mean particle diameter is obtained by forcedly emulsifying the component (a) into a dispersion solvent (b) in the presence of an emulsifying agent (c). Slurry is obtained by blending the emulsion component C and (D) a dispersion medium (e.g. water) with a raw material for ceramics incorporating both (A) inorganic powder (e.g. aluminum oxide) having <=10mum particle diameter and (B) 1-35wt.% curing type resin (e.g. epoxy resin causing cross-linking reaction in an alkaline region) based on the component A. Then, this slurry is shaped into a prescribed shape and a green body is obtained by curing the component B. Successively this green body is dried to remove the component D and the dispersion solvent (b) and heated at 500-600 deg.C at 10-200 deg.C/hr temp. rise rate to remove the component (a) and the component B, and thereafter burned at 1200-1800 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フィルター、軽量耐火物、バイオリアクター
などに好適な高気孔率で且つ微細な連通気孔を有するセ
ラミックス多孔体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a ceramic porous body having a high porosity and fine continuous pores suitable for filters, lightweight refractories, bioreactors, etc.

(従来の技術) 連通気孔を有するセラミックス多孔体はフィルター、軽
量耐火物、バイオリアクター等に有用であり、既に数多
く実用化されている。
(Prior Art) Ceramic porous bodies having communicating pores are useful for filters, lightweight refractories, bioreactors, etc., and many have already been put into practical use.

これらセラミックス多孔体を製造する方法としては、ウ
レタンフオームにセラミックススラリーを含浸させ、乾
燥及び熱処理してウレタンフオームを焼失すると同時に
セラミックスを焼結させる方法、セラミックス粉末と可
燃性物質との混合物を成形した後該成形体を焼成する方
法等が知られている。
Methods for manufacturing these porous ceramic bodies include impregnating urethane foam with ceramic slurry, drying and heat treating to burn out the urethane foam and sintering the ceramic at the same time, and molding a mixture of ceramic powder and combustible material. A method of subsequently firing the molded body is known.

しかし、これらの方法では10μm以上の比較的大きな
気孔径のセラミックス多孔体は製造できるが、それ以下
の微細な気孔を有する多孔体を製造することが困難であ
る。
However, although these methods can produce porous ceramic bodies with relatively large pores of 10 μm or more, it is difficult to produce porous bodies with smaller pores.

一方、微細な気孔を作る為には粒度配合を持たせたセラ
ミックス原料粒子を用い原料粒子間の空隙を焼成後も残
存させる方法が知られている。しかし、この方法は気孔
が原料粒子間の空隙によって決定され、その制御が難し
く、又、気孔率は高々40%程度であり高い気孔率のも
のを得る事は出来ない。
On the other hand, in order to create fine pores, a method is known in which ceramic raw material particles having a particle size composition are used and voids between the raw material particles remain even after firing. However, in this method, the pores are determined by the voids between the raw material particles, which is difficult to control, and the porosity is about 40% at most, making it impossible to obtain a material with a high porosity.

微細な気孔のセラミックス多孔体を製造する他の方法と
してセラミックス趙微粉末を用いてα−オレフィンオリ
ゴマー或は流動パラフィンを助削として添加する方法が
提案されている(例えば特開平1172283)、Lか
し、この方法ではセラミックス原料として超微粉末を用
いるため高価となり、更に加圧成形する必要があるため
、複雑な形状に成形し難い等の欠点があり実用的な方法
ではない。
As another method for producing a ceramic porous body with fine pores, a method has been proposed in which ceramic Zhao fine powder is used and α-olefin oligomer or liquid paraffin is added as an additive (for example, Japanese Patent Application Laid-open No. 1172283), L. However, since this method uses ultrafine powder as a ceramic raw material, it is expensive, and it also requires pressure molding, making it difficult to mold into complicated shapes, and is not a practical method.

(発明が解決しようとする課題) 本発明は上述のような既存のセラミックス多孔体の製造
方法が有する欠点を克服すべく研究を重ねた結果達成さ
れたものであって、その目的とするところは、高気孔率
で且つ微細な連通気孔を有するセラミックス多孔体を製
造する方法を提供するにある。
(Problems to be Solved by the Invention) The present invention has been achieved as a result of repeated research to overcome the drawbacks of the existing methods of manufacturing porous ceramic bodies as described above, and its purpose is to Another object of the present invention is to provide a method for producing a porous ceramic body having high porosity and fine continuous pores.

(課題を解決するための手段) 上述の目的は無機粉体及び硬化型樹脂を含むセラミック
ス原料を使用して連通気孔を有するセラミックス多孔体
を製造するに際し、気孔形成材として液状有機物のエマ
ルジョンを用いることを特徴とするセラミックス多孔体
の製造方法により達成される。
(Means for Solving the Problems) The above object is to use an emulsion of a liquid organic substance as a pore-forming material when manufacturing a ceramic porous body having continuous pores using a ceramic raw material containing an inorganic powder and a hardening resin. This is achieved by a method for producing a ceramic porous body characterized by the following.

本発明におけるスラリーは、無機物粉体、硬化作用によ
りグリーン体強度を高める硬化型樹脂、エマルジョン状
態となっている液体有機物の分散体及び分散媒体を用い
て調製する。
The slurry in the present invention is prepared using an inorganic powder, a curable resin that increases the strength of the green body through a curing action, a dispersion of a liquid organic substance in an emulsion state, and a dispersion medium.

本発明に用いられる無機物粉体としては、例えばアルミ
ナ、ジルコニア、ジルコン、コージェライト、ムライ[
・、チタニア、シリカ、チタン酸アルミニウム、マグネ
シア等の酸化物、窒化珪素、窒化アルミニウム、炭化珪
素、サイアロン等の非酸化物粉体等が挙げられる。更に
、反応焼結による窒化珪素、窒化アルミニウム及び炭化
珪素の製造を目的として金属珪素粉、金属アルミニウム
粉及び炭素粉等を使用してもよい。そして本発明に適用
できる無機粉体はこれらに限定されるものでなく、耐熱
性、耐熱衝撃性、耐腐食性、耐酸性、耐酸化性等その目
的用途に応じて無機物粉体の種類及びその配合量を適宜
選定することができる。
Inorganic powders used in the present invention include, for example, alumina, zirconia, zircon, cordierite, murai [
・Oxides such as titania, silica, aluminum titanate, and magnesia; non-oxide powders such as silicon nitride, aluminum nitride, silicon carbide, and sialon; and the like. Furthermore, metal silicon powder, metal aluminum powder, carbon powder, etc. may be used for the purpose of producing silicon nitride, aluminum nitride, and silicon carbide by reaction sintering. The inorganic powder that can be applied to the present invention is not limited to these, but the type of inorganic powder and its properties are determined depending on the intended use, such as heat resistance, thermal shock resistance, corrosion resistance, acid resistance, and oxidation resistance. The blending amount can be selected as appropriate.

無機物粉体の粒子径は焼結性及びスラリーの安定性より
好ましくは10μm以下、更に好ましくは2μm以下、
最も好ましくは1μm以下である。
The particle size of the inorganic powder is preferably 10 μm or less, more preferably 2 μm or less, in view of sinterability and slurry stability.
Most preferably it is 1 μm or less.

本発明において硬化型樹脂は、無機物粉体及び液状有機
物のエマルジョンを含存するスラリー中にあって、その
硬化作用によりグリーン体強度を高めるため用いられる
。硬化型樹脂としては三次元網目結合を形成する架橋反
応型樹脂が好ましく、例えば、エポキシ、フェノール、
尿素、メラミン等の可溶型または分散型の樹脂を挙げる
ことが出来る。これらのうち解膠剤が特にを効に作用す
るアルカリ性領域で架橋反応を生起するエポキシ樹脂が
好ましい。
In the present invention, the curable resin is present in a slurry containing an inorganic powder and a liquid organic emulsion, and is used to increase the strength of the green body through its curing action. The curable resin is preferably a crosslinking resin that forms a three-dimensional network bond, such as epoxy, phenol,
Examples include soluble or dispersible resins such as urea and melamine. Among these, epoxy resins that cause a crosslinking reaction in the alkaline region where the deflocculant acts particularly effectively are preferred.

本発明において硬化型樹脂の添加量は、本発明の目的を
達成する範囲内で必要最小限度に留めるのがよい、即ち
硬化型樹脂はセラミックス焼結体の製造工程にて燃焼除
去され、最終製品には残存しないものであり、過度の添
加は経済的に不利である。更に硬化型樹脂の添加量が多
くなると脱脂工程での亀裂が多発する傾向があり、この
点からも過度に添加しない方がよい、硬化型樹脂の含有
量は無機物粉体に対し好ましくは1〜35重量%、更に
好ましくは5〜25重量%程度である。
In the present invention, the amount of the curable resin added is preferably kept to the minimum necessary amount within the scope of achieving the purpose of the present invention. In other words, the curable resin is burned and removed during the manufacturing process of the ceramic sintered body, and the final product is does not remain, and excessive addition is economically disadvantageous. Furthermore, if the amount of curable resin added increases, cracks tend to occur frequently during the degreasing process, so from this point of view as well, it is better not to add too much.The content of curable resin is preferably 1 to 10% relative to the inorganic powder. It is about 35% by weight, more preferably about 5 to 25% by weight.

本発明における液状有機物のエマルジョンは気孔形成側
として作用し微細な連通気孔を有するセラミックス多孔
体を形成せしめるうえで重要な役割を果すものである。
The emulsion of liquid organic material in the present invention acts as a pore-forming side and plays an important role in forming a ceramic porous body having fine interconnected pores.

液状有機物としては例えば流動パラフィン、液状イソプ
ロピレン等の常温で液状の高分子化合物が挙げられる。
Examples of liquid organic substances include polymer compounds that are liquid at room temperature, such as liquid paraffin and liquid isopropylene.

更に、スチレン、メタクリレート、アクリレート等の高
分子重合体を有機溶媒で溶解した液状物等が挙げられる
が、勿論これらに限定されるものではない。連通気孔を
形成せしめるには常温で液状であるものが好ましい。そ
して、セラミックスの連通気孔は、硬化型樹脂の硬化前
あるいは硬化中にエマルジョンの分散状態が破壊され液
状有機物の分散粒子が互いに遊離状態から連通状態に変
化し、その連続有機物相が焼成工程中で焼却除去される
ことにより形成される。
Further examples include liquid materials in which high molecular weight polymers such as styrene, methacrylate, and acrylate are dissolved in organic solvents, but are not limited thereto. In order to form continuous pores, it is preferable to use a material that is liquid at room temperature. The continuous pores in ceramics are caused by the dispersion of the emulsion being destroyed before or during the curing of the curable resin, and the dispersed particles of the liquid organic substance changing from a free state to a communicating state, and the continuous organic phase is removed during the firing process. Formed by being removed by incineration.

エマルジョンは公知の方法から適宜な方法を選定し製造
すればよい0例えば、乳化剤を含む分散溶媒をホモミキ
サー等の高速剪断混合装置にて撹拌しながら液状有機物
を順次滴下する方法、乳化荊と液状有機物の混合物を高
速剪断混合装置にて撹拌しながら分散媒を順次滴下する
方法に代表される強制乳化法が一般的である。用いる乳
化剤はアニオン系、カチオン系、ノニオン系のいずれの
乳化剤でも良いが、無機物粉体の分散安定性や不純物金
属の残留を避ける為にアルカリ金属塩を除くアニオン系
及びノニオン系が好ましい。エマルジョンの含有量は最
終製品の気孔率を決定する重要な因子であるが、含有量
が少ないと得られる気孔が連通気孔ではなく閉気孔とな
る。一方、含有量が多いと得られるセラミックス体の強
度が小さくなる。エマルジョンの含有量は通常無機物粉
体に対し液状有機物が20〜400体積%、好ましくは
100〜300体積%である。エマルジョンの粒子径は
最終製品の気孔径を決定する重要な因子である。エマル
ジョンの保存安定性をも考慮して、その平均粒子径は5
0μm以下、好ましくは10μm以下である。エマルジ
ョンの粒子径は用いる乳化剤の種類や量及び剪断速度に
にり適宜制御できる。
Emulsions can be manufactured by selecting an appropriate method from known methods. For example, a method in which a liquid organic substance is sequentially added dropwise while stirring a dispersion solvent containing an emulsifier using a high-speed shear mixing device such as a homomixer, A common method is a forced emulsification method, typified by a method in which a dispersion medium is sequentially added dropwise to an organic mixture while stirring it with a high-speed shear mixer. The emulsifier used may be an anionic, cationic or nonionic emulsifier, but anionic or nonionic emulsifiers excluding alkali metal salts are preferred in order to maintain dispersion stability of the inorganic powder and avoid residual metal impurities. The emulsion content is an important factor in determining the porosity of the final product, but if the emulsion content is low, the resulting pores will be closed pores instead of open pores. On the other hand, if the content is high, the strength of the ceramic body obtained will be low. The content of the emulsion is usually 20 to 400% by volume, preferably 100 to 300% by volume of the liquid organic substance based on the inorganic powder. The particle size of the emulsion is an important factor determining the pore size of the final product. Considering the storage stability of the emulsion, the average particle size is 5.
It is 0 μm or less, preferably 10 μm or less. The particle size of the emulsion can be appropriately controlled depending on the type and amount of the emulsifier used and the shear rate.

本発明においてスラリーの分散体としては、通常水を用
いる。
In the present invention, water is usually used as the slurry dispersion.

本発明におけるスラリーは、上記無機物粉体、グリーン
体強度を高める硬化型樹脂及びエマルジョン状態となっ
ている液状を機動を主成分とする混合相て′あるが、こ
れら以外に消泡剤、無機物粉体を分散媒体に効果よく安
定に分散させる為の解膠剤、スラリーの作業性を好適に
する為の粘性調製剤、乾燥速度調製側等を適宜含有せし
めてもよをボールミル、アトライター等で前もって均一
に混合した後、得られた無機物粉体の分散物に液状樹脂
のエマルジョンと硬化型樹脂を添加し均一混合する等常
法に従い調製することができる。スラリーの固型分濃度
は20−60体積%が好ましく、また粘度は無機物粉体
の沈降による分離や取り扱い作業性から好ましくは10
0〜2000cps、更に好ましくは500〜1000
cpsである。
The slurry in the present invention has a mixed phase mainly composed of the above-mentioned inorganic powder, a hardening resin that increases the strength of the green body, and a liquid in an emulsion state. A deflocculant to effectively and stably disperse the slurry in the dispersion medium, a viscosity adjuster to improve the workability of the slurry, a drying speed adjuster, etc. can be appropriately added to the slurry using a ball mill, attritor, etc. It can be prepared according to a conventional method, such as by uniformly mixing in advance, then adding a liquid resin emulsion and a curable resin to the obtained inorganic powder dispersion and uniformly mixing. The solid content concentration of the slurry is preferably 20-60% by volume, and the viscosity is preferably 10% from the viewpoint of separation due to sedimentation of inorganic powder and ease of handling.
0 to 2000 cps, more preferably 500 to 1000
cps.

上述のように調製されたスラリーは、ドクターブレード
法や注型法等の適宜方法により所定形状に賦型し、常温
静置または加熱処理により、硬化型樹脂を硬化せしめ、
ハンドリング可能なグリーン体とする。グリーン体は次
いで風乾あるいは加熱乾燥等により分散溶媒を除去する
。引き続いて、脱脂工程において該グリーン体の液状有
機物、硬化型樹脂を除去した後焼成する。脱脂は比較的
緩やかな昇温速度例えば10〜b 500℃〜600℃まで昇温することにより行い、混在
する有機物を分解し焼却除去するのが好ましい、焼成は
1200℃〜1800℃で実施するのが好適であり、通
常大気雰囲気で行うが、セラミックス原料粉体の種類等
により窒素ガス雰囲気等を適宜選択すると良い。
The slurry prepared as described above is shaped into a predetermined shape by an appropriate method such as a doctor blade method or a casting method, and the curable resin is cured by standing at room temperature or by heat treatment.
The body should be green and easy to handle. The dispersion solvent is then removed from the green body by air drying or heat drying. Subsequently, in a degreasing step, the liquid organic matter and curable resin of the green body are removed, and then the green body is fired. Degreasing is preferably carried out by raising the temperature at a relatively slow rate of temperature e.g. is preferable and is usually carried out in an air atmosphere, but a nitrogen gas atmosphere or the like may be selected as appropriate depending on the type of ceramic raw material powder.

(発明の効果) 本発明のセラミックス多孔体は、微細な連通気孔を有し
且つ高気孔率であり、濾過フィルター、軽量耐火物、バ
イオリアクター、触媒担体等に好適である。
(Effects of the Invention) The ceramic porous body of the present invention has fine continuous pores and high porosity, and is suitable for filters, lightweight refractories, bioreactors, catalyst carriers, and the like.

実施例1 以下に示す純分組成の無機物粉体の分散物と液状有機物
のエマルジョンを調製した。
Example 1 A dispersion of an inorganic powder and an emulsion of a liquid organic substance having the pure composition shown below were prepared.

無の 酸化アルミニウム    80重量% 水           19重量% 解膠剤          1重量% のエマルジョン 流動パラフィン     45重量% 水           50重量% 乳化剤          5重量% 無機物粉体分敷物は所定の配合量をボールミルに24時
間混合分散して得た。酸化アルミニウムは0.5重量%
のマグネシアを含有する平均粒径2μmのものを用い、
解膠剤は花王製ボイズ530を用いた。液状有機物のエ
マルジョンは、乳化剤をあらかじめ添加した70℃の水
をホモミキサーにて3000cpsの速度で撹拌しなが
ら毎分20CCの速度で液状有機物を順次滴下して調製
した。乳化剤は花王製ノニオン系乳止剤エマルゲン22
0、エマルゲン910及びエマゾールの1:l:1重量
比の混合物を用いた。液状樹脂の粒子径は15μmであ
った。
Plain aluminum oxide 80% by weight Water 19% by weight Deflocculant 1% by weight Emulsion liquid paraffin 45% by weight Water 50% by weight Emulsifier 5% by weight The inorganic powder mixture was prepared by mixing and dispersing the specified amount in a ball mill for 24 hours. I got it. Aluminum oxide is 0.5% by weight
using particles with an average particle size of 2 μm containing magnesia,
As the deflocculant, Boyze 530 manufactured by Kao was used. The emulsion of the liquid organic substance was prepared by sequentially adding the liquid organic substance dropwise at a rate of 20 CC/min while stirring water at 70° C. to which an emulsifier had been added in advance at a rate of 3000 cps using a homomixer. The emulsifier is Kao's nonionic emulsifier Emulgen 22.
A mixture of Emulgen 910, Emulgen 910 and Emazol in a 1:l:1 weight ratio was used. The particle size of the liquid resin was 15 μm.

得られた無機物粉体の分散物及び液状有機物のエマルジ
ョン並びに第1表に示す樹脂をそれぞれ固型分比で63
:23:14となる様に混合して、スラリーを調製した
。ここで、水溶性エポキシにはナガセ化成工業製デナコ
ールEX−421を用いた。エポキシ樹脂量としては水
溶性エポキシと水溶性アミンの合算量を固型分換算した
。更にメラミン、フェノールを用いた系はスラリーにパ
ラトルエンスルホン酸を添加してそのpHが2〜2.5
となるように調整した。次に得られたスラリーをポリプ
ロピレン製容器に注型し、80℃にて12時間の加熱処
理後硬化後グリーン体を脱型、乾燥した。焼成は、大気
雰囲気電気炉を用い400℃までは0.5℃/分それ以
降は10℃/分の速度で昇温し1600℃にて1時間保
持した後、冷却した。結果を第1表に示す。
The obtained inorganic powder dispersion, liquid organic emulsion, and resin shown in Table 1 were each mixed in a solid content ratio of 63
:23:14 to prepare a slurry. Here, Denacol EX-421 manufactured by Nagase Chemical Industries, Ltd. was used as the water-soluble epoxy. As the amount of epoxy resin, the total amount of water-soluble epoxy and water-soluble amine was converted into solid content. Furthermore, for systems using melamine and phenol, para-toluenesulfonic acid is added to the slurry to adjust its pH to 2 to 2.5.
It was adjusted so that Next, the obtained slurry was poured into a polypropylene container, heat-treated at 80° C. for 12 hours, and after hardening, the green body was removed from the mold and dried. Firing was carried out using an atmospheric electric furnace, and the temperature was raised at a rate of 0.5°C/min up to 400°C and 10°C/min thereafter, held at 1600°C for 1 hour, and then cooled. The results are shown in Table 1.

グリーン体の外観評価は以下の基準で行った。。The appearance of the green body was evaluated based on the following criteria. .

○:亀裂の発生がなくハンドリングに十分な強度を持つ △:亀裂の発生がないもののハンドリングに若干支障が
ある ×;亀裂が発生しハンドリングにも支障がある 焼成体の外観評価は以下の基準で行った。
○: No cracks and sufficient strength for handling. △: No cracks, but some difficulty in handling. went.

○:亀裂の発生がなく焼成できた △:亀裂が若干発生した 第1表から硬化恒を有しないポリビニルアルコールでは
満足なセラミックス体の製造ができず、熱硬化型樹脂を
バインダーとして用いてセラミックス体の製造が可能で
あることがわかる。
○: Firing was completed with no cracks. △: Some cracks were generated. As shown in Table 1, it was not possible to produce a satisfactory ceramic body using polyvinyl alcohol, which does not have a hardening property. It can be seen that it is possible to manufacture

実施例2 硬化型樹脂として液状エマルジョン及び液状アミンの水
性エマルジョンを用い、更に液状有機物のエマルジョン
調製に際しノニオン系及びアニオン系乳化剤の種類を適
宜選定する以外はすべて実施例1と同様にして、第2表
に示すように各種有機物のエマルジョンを調製しセラミ
ックス体を製ここで閉気孔率は、アルキメデス法にて測
定し閉気孔率はセラミックス体の見掛は密度とセラミッ
クスの真比重より算出した。
Example 2 The second example was carried out in the same manner as in Example 1, except that a liquid emulsion and an aqueous emulsion of liquid amine were used as the curable resin, and the types of nonionic and anionic emulsifiers were appropriately selected when preparing the emulsion of the liquid organic substance. As shown in the table, emulsions of various organic substances were prepared to produce ceramic bodies.The closed porosity was measured by the Archimedes method, and the closed porosity was calculated from the apparent density of the ceramic body and the true specific gravity of the ceramic.

第2表から液状有機物エマルジョンを用いることにより
連通気孔が形成できることが明らかである。
It is clear from Table 2 that continuous pores can be formed by using a liquid organic emulsion.

実施例3 下記第3表に記載するように液状有機物の量を変化させ
る以外は実施例1と同様にしてセラミックス体を製造し
た。但し焼成温度は1650℃にここで曲げ強度は、J
IS規格(R1601)に準して3点曲げ試験を行なっ
た。
Example 3 Ceramic bodies were produced in the same manner as in Example 1 except that the amount of liquid organic matter was changed as shown in Table 3 below. However, the firing temperature is 1650℃ and the bending strength is J
A three-point bending test was conducted according to the IS standard (R1601).

第3表から明らかなように液状有機物が少なくなると連
通気孔となり難くなり、逆に多すぎると、強度が低下す
る傾向がある。
As is clear from Table 3, when the amount of liquid organic matter is small, it becomes difficult to form continuous pores, and when it is too large, the strength tends to decrease.

Claims (1)

【特許請求の範囲】[Claims] 無機粉体及び硬化型樹脂を含むセラミックス原料を使用
して連通気孔を有するセラミックス多孔体を製造するに
際し、気孔形成材として液状有機物のエマルジョンを用
いることを特徴とするセラミックス多孔体の製造方法。
A method for producing a porous ceramic body, which comprises using an emulsion of a liquid organic substance as a pore-forming material when producing a porous ceramic body having continuous pores using a ceramic raw material containing an inorganic powder and a curable resin.
JP27193690A 1990-10-09 1990-10-09 Production of ceramics porous body Pending JPH04149079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27193690A JPH04149079A (en) 1990-10-09 1990-10-09 Production of ceramics porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27193690A JPH04149079A (en) 1990-10-09 1990-10-09 Production of ceramics porous body

Publications (1)

Publication Number Publication Date
JPH04149079A true JPH04149079A (en) 1992-05-22

Family

ID=17506906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27193690A Pending JPH04149079A (en) 1990-10-09 1990-10-09 Production of ceramics porous body

Country Status (1)

Country Link
JP (1) JPH04149079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325376B1 (en) * 1999-09-08 2002-03-06 박호군 Method of preparation of porous aluminum powder or short aluminum fiber with organic binder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325376B1 (en) * 1999-09-08 2002-03-06 박호군 Method of preparation of porous aluminum powder or short aluminum fiber with organic binder

Similar Documents

Publication Publication Date Title
US8129300B2 (en) Porous, fired ceramic foam
US4255197A (en) Process for obtaining refractory materials with controlled characteristics of porosity and density
JP2928486B2 (en) Forming method
JPS63270368A (en) Production of porous ceramic
JP3417943B2 (en) Porous body
EP3315478B1 (en) Precursor material for additive manufacturing of ceramic parts and methods of producing the same
US6171532B1 (en) Method of stabilizing sintered foam and of producing open-cell sintered foam parts
US5563106A (en) Porous Articles
WO2003004132A1 (en) Method for manufacturing porous ceramic filter
JP4514847B2 (en) Method for producing ceramic porous body
EP0410601B1 (en) Composite ceramic material
JP4445286B2 (en) Ceramic porous body
JPH04149079A (en) Production of ceramics porous body
JP2651170B2 (en) Ceramics porous body
US4970181A (en) Process for producing ceramic shapes
Persson Surface and colloid chemistry in ceramic casting operations
JPH10130076A (en) Production of porous ceramic
JPH1121182A (en) Production of porous ceramic
JPH04160078A (en) Production of ceramic porous body
JP2728838B2 (en) Method for producing porous sintered body
JPH0597537A (en) Production of ceramic porous material
JP2566886B2 (en) Method for producing porous sintered body having continuous pores
JP2851100B2 (en) Method for producing low-density silicon carbide porous body
KR20240100306A (en) Slurry for manufacturing a ceramic porous body and a method for manufacturing a ceramic porous body using the same
JPH04160076A (en) Sintered body having foamed structure and its production