JP2004083371A - Process for producing ceramic porous body - Google Patents

Process for producing ceramic porous body Download PDF

Info

Publication number
JP2004083371A
JP2004083371A JP2002249688A JP2002249688A JP2004083371A JP 2004083371 A JP2004083371 A JP 2004083371A JP 2002249688 A JP2002249688 A JP 2002249688A JP 2002249688 A JP2002249688 A JP 2002249688A JP 2004083371 A JP2004083371 A JP 2004083371A
Authority
JP
Japan
Prior art keywords
ceramic
particles
slurry
porous body
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002249688A
Other languages
Japanese (ja)
Other versions
JP3876311B2 (en
Inventor
Fushu To
湯 楓秋
Hiroshi Fudoji
不動寺 浩
Tetsuo Uchikoshi
打越 哲郎
Yoshio Sakka
目 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002249688A priority Critical patent/JP3876311B2/en
Publication of JP2004083371A publication Critical patent/JP2004083371A/en
Application granted granted Critical
Publication of JP3876311B2 publication Critical patent/JP3876311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce a uniform ceramic porous body in which mutually independent pores having a uniform diameter are three-dimensionally regularly arranged. <P>SOLUTION: The surface of each spherical polymer particle (1) is uniformly modified with ceramic fine particles (2) by heteroaggregation in a slurry having a prescribed pH, and thereafter, the slurry is formed, and fired. When the slurry is fired, the polymer particles are burnt and removed, and the ceramic fine particles are joined with one another. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この出願の発明は、セラミックス多孔体の製造方法に関するものである。さらに詳しくは、この出願の発明は、径の揃った互いに独立する気孔が3次元的に規則的に配列した均一なセラミックス多孔体を製造することのできるセラミックス多孔体の製造方法に関するものである。
【0002】
【従来の技術】
セラミックス多孔体は、排ガスのフィルター、触媒担体、バイオリアクター、通気性断熱材などに幅広く利用されている。特に、気孔が、均一なサイズで、3次元的に規則正しく配列したセラミックス多孔体は、フォトニック結晶への利用が期待されている。
【0003】
このようなセラミックス多孔体を製造する方法として、球状樹脂粒子を結着して形成した樹脂粒子成形体の空隙に、セラミックス粉体、硬化型樹脂、さらに1種以上の澱粉粉末を配合したセラミックス原料のスラリーを充填した後、配合した澱粉粉末の最小糊化温度以上に加熱し、グリーン体を作製し、乾燥後焼成する方法が知られている(特開平5−97537号公報、第2−4頁)。
【0004】
また、界面活性剤の分子集合体、界面活性剤分子と所定の有機分子を共存させた集合体及び異種の界面活性剤の分子集合体から選択した集合体を鋳型として用い、この鋳型である分子集合体とセラミック材料若しくはその前躯体を混合し、無機−有機構造を有するセラミックス多孔体の前躯体を作製し、次いでそのセラミックス多孔体の前躯体中の界面活性剤を光酸化により除去し、ナノメートルスケールの細孔を有するセラミックス多孔体を低温で製造する方法も知られている(特開2001−80976号公報、第2−3頁、図1)。
【0005】
【発明が解決しようとする課題】
しかしながら、前者の方法では、球状樹脂粒子をたとえば充填圧縮や接着などにより結着させ、連通気孔が形成されるようにするばかりでなく、セラミックス原料に配合した澱粉粉末の糊化によりバインダーとして機能させ、グリーン体を固化させるとともに、澱粉粉末を気孔形成剤としても機能させ、微細な連通気孔が形成されるようにしている。したがって、前者の方法により得られるセラミックス多孔体は径の異なる二種類以上の連通気孔を有し、径の揃った互いに独立する気孔が3次元的に規則的に配列した均一なものとはならない。
【0006】
後者の特許文献には、径の揃った互いに独立する気孔が3次元的に規則的に配列した均一なセラミックス多孔体を製造するための技術手段は開示も示唆もされていない。そのようなセラミックス多孔体を得るためには、セラミックス材料若しくはその前躯体の原料粉末の粒径を均一にするだけでは不十分であり、たとえば、鋳型としての分子集合体とセラミックス若しくはその前躯体の微粒子をそれぞれ凝集させることなく分散させるとともに、セラミックス若しくはその前躯体の微粒子を分子集合体の表面に均一に付着させることが必要である。
【0007】
この出願の発明は、このような事情に鑑みてなされたものであり、径の揃った互いに独立する気孔が3次元的に規則的に配列した均一なセラミックス多孔体を製造することのできるセラミックス多孔体の製造方法を提供することを解決すべき課題としている。
【0008】
【課題を解決するための手段】
この出願の発明は、以上の課題を解決するものとして、所定のpHのスラリー中で球状のポリマー粒子の表面にセラミックス微粒子をヘテロ凝集により均一に修飾し、その後、スラリーを成形、焼成し、焼成時に前記ポリマー粒子を燃焼除去するとともに、セラミックス微粒子どうしを結合させ、径の揃った互いに独立する気孔が3次元的に規則的に配列した均一なセラミックス多孔体を製造することを特徴とするセラミックス多孔体の製造方法(請求項1)を提供する。
【0009】
またこの出願の発明は、球状のポリマー粒子が分散したスラリーとセラミックス微粒子が分散したスラリーを、一方の粒子表面が正に、他方の粒子表面が負に帯電する同一のpHで別々に調製し、その後両スラリーを混合して球状のポリマー粒子の表面にセラミックス微粒子をヘテロ凝集させること(請求項2)を一態様として提供する。
【0010】
以下、実施例を示しつつ、この出願の発明のセラミックス多孔体の製造方法についてさらに詳しく説明する。
【0011】
【発明の実施の形態】
この出願の発明のセラミックス多孔体の製造方法では、図1に示したように、所定のpHのスラリー中で球状のポリマー粒子(1)の表面にセラミックス微粒子(2)をヘテロ凝集により均一に修飾し(図1<b>)、その後、スラリーを成形(図1<c>)、焼成し(図1<d>)、焼成時に球状のポリマー粒子(1)を燃焼除去するとともに、セラミックス微粒子(2)どうしを結合させる。つまり、この出願の発明のセラミックス多孔体の製造方法では、核となる球状のポリマー粒子(1)、その表面に修飾させるセラミックス微粒子(2)のそれぞれの表面をスラリー中において相互間で極性を異ならせて帯電させ、両者に働く静電気力を利用して、同種の粒子については均一に分散させ、異種である球状のポリマー粒子(1)とセラミックス微粒子(2)の間では、ヘテロ凝集により、球状のポリマー粒子(1)の表面にセラミックス微粒子(2)を均一に修飾させ、これらの均一分散及び均一修飾を同時に実現させる。その結果、上記スラリーを成形、焼成すると、球状のポリマー粒子(1)が燃焼除去され、セラミックス微粒子(2)どうしが結合して、径の揃った互いに独立する気孔が(3)が3次元的に規則的に配列した均一なセラミックス多孔体(4)が得られる(図1<d>)。
【0012】
具体的には、図1<a>に示したように、球状のポリマー粒子(1)の分散したスラリーとセラミックス微粒子(2)が分散したスラリーを、一方の粒子表面が正に、他方の粒子表面が負に帯電する同一のpHで別々に調製する。一般には、球状のポリマー粒子(1)の表面は負に、セラミックス微粒子(2)の表面は正に帯電させるが、使用するポリマー及びセラミックスの種類によってはその逆に帯電させてもよい。このようにスラリーを別々に調製すると、粒子間の静電反発力により粒子はスラリー中でより均一に分散する。スラリーのpHは、使用する粒子の表面電位、すなわち、ゼータ電位、の絶対値ができるだけ大きくなるように設定することが、静電気力の大きさを大きくする上で好ましい。そのためには、高分子電解質などのいわゆる分散剤をスラリーに添加することが一案として考えられる。ただし、球状のポリマー粒子(1)の分散したスラリーとセラミックス微粒子(2)が分散したスラリーは、その後混合することからゼータ電位の絶対値が変化することのないように、上記のとおり、両スラリーのpHは同一にしておく。pHが異なると、スラリー混合時にヘテロ凝集が均一に起こらず、その結果、最終的に均一なセラミックス多孔体が得られなくなる。
【0013】
このようにして別々に調製し、粒子がより均一に分散したスラリーを混合する。混合スラリー中では異種粒子間に静電引力が作用し、球状のポリマー粒子(1)の表面にセラミックス微粒子(2)が均一に修飾する。
【0014】
この出願の発明のセラミックス多孔体の製造方法では、成形方法については特に制限はなく、鋳込成形法、加圧鋳込成形法、減圧鋳込成形法、遠心沈降法、電気泳動法など各種の方法を適宜採用することができる。焼成方法についても同様であり、焼成条件は、セラミックス微粒子(2)の種類などに応じて適宜設定することができる。
【0015】
【実施例】
(実施例1)
粒径350nmのPMMA(ポリメチルメタアクリレート)粒子と粒径34nmのγ−アルミナ粒子の、水を分散媒とする水系スラリーを、PMMA粒子表面が負に、γ−アルミナ粒子表面が正に帯電し、ゼータ電位の絶対値が最大となるpH8で調製した。図2は、粒径350nmのPMMA粒子と粒径34nmのγ−アルミナ粒子のゼータ電位とpHの関係を示したグラフである。
【0016】
両スラリーとも10分間超音波照射後1時間攪拌し、各粒子を分散させた。その後、アルミナスラリーをPMMAスラリー中にゆっくり添加、混合した。ヘテロ凝集が速やかに起こり、PMMA粒子表面にアルミナ粒子が修飾した。そして、混合スラリーを減圧鋳込成形法により固化成形し、室温で乾燥後、500℃、4時間の仮焼、850℃、2時間の本焼、の2段階の焼成によりアルミナ多孔体が作製された。図3は、得られたアルミナ多孔体の破面を示した図面に代わるSEM写真である。この図3から確認されるように、得られたアルミナ多孔体では、径の揃った互いに独立する気孔が3次元的に規則的に配列している。気孔率は74.0%である。
(実施例2)
粒径800nmのPMMA粒子と粒径150nmのα−アルミナ粒子の水を分散媒とする水系スラリーをpH8で調製した。図4は、粒径800nmのPMMA粒子と粒径150nmのα−アルミナ粒子のゼータ電位とpHの関係を示したグラフである。この図4からも確認されるように、α−アルミナ粒子表面は、PMMA粒子表面と同様に負に帯電するため、α−アルミナ粒子表面に正の電荷を付与する目的でカチオン性分散剤であるPEI(ポリエチレンイミン)をスラリーに添加した。その結果、図4に示したように、α−アルミナ粒子表面は正に帯電した。
【0017】
その後は実施例1と同様のプロセスを経て固化成形し、室温で乾燥後、500℃、4時間の仮焼、1100℃、2時間の本焼、の2段階の焼成によりアルミナ多孔体が作製された。図5は、得られたアルミナ多孔体の破面を示した図面に代わるSEM写真である。この図5から確認されるように、得られたアルミナ多孔体では、径の揃った互いに独立する気孔が3次元的に規則的に配列している。気孔率は75.4%である。
【0018】
もちろん、この出願の発明は、以上の実施形態によって限定されるものではない。ポリマー粒子及びセラミックス微粒子の種類、粒径、成形方法、焼結方法などの細部については様々な態様が可能であることはいうまでもない。
【0019】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、径の揃った互いに独立する気孔が3次元的に規則的に配列した均一なセラミックス多孔体が製造される。
【図面の簡単な説明】
【図1】<a><b><c><d>は、それぞれ、この出願の発明のセラミックス多孔体の製造方法の一工程を示した工程図である。
【図2】粒径350nmのPMMA粒子と粒径34nmのγ−アルミナ粒子のゼータ電位とpHの関係を示したグラフである。
【図3】実施例1で得られたアルミナ多孔体の破面を示した図面に代わるSEM写真である。
【図4】粒径800nmのPMMA粒子と粒径150nmのα−アルミナ粒子のゼータ電位とpHの関係を示したグラフである。
【図5】実施例2で得られたアルミナ多孔体の破面を示した図面に代わるSEM写真である。
【符号の説明】
1  球状のポリマー粒子
2  セラミックス微粒子
3  気孔
4  セラミックス多孔体
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for producing a porous ceramic body. More specifically, the invention of this application relates to a method for manufacturing a ceramic porous body capable of manufacturing a uniform ceramic porous body in which mutually independent pores having a uniform diameter are regularly arranged three-dimensionally.
[0002]
[Prior art]
Ceramic porous bodies are widely used in exhaust gas filters, catalyst carriers, bioreactors, gas-insulating materials, and the like. In particular, a ceramic porous body having pores of uniform size and regularly arranged three-dimensionally is expected to be used for a photonic crystal.
[0003]
As a method for producing such a ceramic porous body, a ceramic raw material in which ceramic powder, a curable resin, and one or more types of starch powder are blended into voids of a resin particle molded body formed by binding spherical resin particles. And then heating the blended starch powder to a temperature above the minimum gelatinization temperature to produce a green body, followed by drying and baking (Japanese Patent Application Laid-Open No. 5-97537, No. 2-4). page).
[0004]
In addition, a molecular assembly of a surfactant, an aggregate in which a surfactant molecule and a predetermined organic molecule coexist, and an aggregate selected from a molecular assembly of a different surfactant are used as a template, and the molecular The aggregate is mixed with a ceramic material or a precursor thereof to produce a precursor of a ceramic porous body having an inorganic-organic structure, and then a surfactant in the precursor of the ceramic porous body is removed by photo-oxidation, and the nano-structure is removed. There is also known a method of producing a ceramic porous body having pores of a metric scale at a low temperature (JP-A-2001-80976, page 2-3, FIG. 1).
[0005]
[Problems to be solved by the invention]
However, in the former method, the spherical resin particles are bound not only by filling and compressing or bonding, for example, so that continuous pores are formed, but also by functioning as a binder by gelatinizing starch powder mixed with the ceramic raw material. In addition, while solidifying the green body, the starch powder also functions as a pore-forming agent so that fine continuous pores are formed. Therefore, the ceramic porous body obtained by the former method has two or more continuous air holes having different diameters, and is not a uniform one in which mutually independent pores having a uniform diameter are regularly arranged three-dimensionally.
[0006]
The latter patent document neither discloses nor suggests any technical means for producing a uniform ceramic porous body in which mutually independent pores having a uniform diameter are regularly arranged three-dimensionally. In order to obtain such a porous ceramic body, it is not enough to make the particle diameter of the raw material powder of the ceramic material or its precursor uniform. It is necessary to disperse the fine particles without aggregating them, and to uniformly adhere the fine particles of the ceramic or its precursor to the surface of the molecular assembly.
[0007]
The invention of this application has been made in view of such circumstances, and a ceramic porous material capable of producing a uniform ceramic porous body in which mutually independent pores having uniform diameters are regularly arranged three-dimensionally. An object of the present invention is to provide a method for producing a body.
[0008]
[Means for Solving the Problems]
The invention of this application solves the above problems by uniformly modifying ceramic fine particles on the surface of spherical polymer particles in a slurry having a predetermined pH by hetero-aggregation, then forming the slurry, firing and firing. A ceramic porous body characterized in that the polymer particles are sometimes burned off and the ceramic fine particles are combined with each other to produce a uniform ceramic porous body in which mutually independent pores having a uniform diameter are regularly arranged three-dimensionally. A method for producing a body (claim 1) is provided.
[0009]
The invention of this application also separately prepares a slurry in which spherical polymer particles are dispersed and a slurry in which ceramic fine particles are dispersed, at the same pH where one particle surface is positive and the other particle surface is negatively charged, Thereafter, the two slurries are mixed to hetero-aggregate the ceramic fine particles on the surface of the spherical polymer particles (claim 2).
[0010]
Hereinafter, the method for producing a ceramic porous body of the present invention will be described in more detail with reference to examples.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing a ceramic porous body of the invention of this application, as shown in FIG. 1, ceramic particles (2) are uniformly modified by hetero-aggregation on the surface of spherical polymer particles (1) in a slurry having a predetermined pH. Then, the slurry is formed (FIG. 1 <c>), fired (FIG. 1 <d>), the spherical polymer particles (1) are burned off during firing, and the ceramic fine particles (FIG. 2) Join each other. In other words, according to the method for producing a porous ceramic body of the invention of the present application, the surfaces of the spherical polymer particles (1) serving as a nucleus and the ceramic fine particles (2) whose surface is to be modified have different polarities in a slurry. The particles of the same kind are uniformly dispersed by utilizing the electrostatic force acting on both, and the heterogeneous spherical polymer particles (1) and the ceramic fine particles (2) are spherically dispersed by hetero-aggregation. The surface of the polymer particles (1) is uniformly modified with the ceramic fine particles (2), and their uniform dispersion and uniform modification are simultaneously realized. As a result, when the slurry is formed and baked, the spherical polymer particles (1) are burned off and the ceramic fine particles (2) are bonded to each other, and mutually independent pores having a uniform diameter are formed in a three-dimensional manner. Thus, a uniform ceramic porous body (4) regularly arranged is obtained (FIG. 1 <d>).
[0012]
Specifically, as shown in FIG. 1 <a>, a slurry in which spherical polymer particles (1) are dispersed and a slurry in which ceramic fine particles (2) are dispersed are prepared such that one particle surface is positive and the other particle is positive. Prepare separately at the same pH where the surface is negatively charged. Generally, the surface of the spherical polymer particles (1) is negatively charged, and the surface of the ceramic fine particles (2) is positively charged. However, depending on the type of the polymer and the ceramic used, the opposite may be used. When the slurries are separately prepared in this manner, the particles are more uniformly dispersed in the slurry due to the electrostatic repulsion between the particles. It is preferable to set the pH of the slurry so that the absolute value of the surface potential of the particles used, that is, the zeta potential, is as large as possible in order to increase the magnitude of the electrostatic force. To this end, adding a so-called dispersant such as a polymer electrolyte to the slurry may be considered as a proposal. However, the slurry in which the spherical polymer particles (1) are dispersed and the slurry in which the ceramic fine particles (2) are dispersed are mixed as described above so that the absolute value of the zeta potential does not change due to subsequent mixing. Are kept the same. If the pH is different, hetero-aggregation does not occur uniformly during slurry mixing, and as a result, a uniform ceramic porous body cannot be finally obtained.
[0013]
In this way, the slurry prepared separately and having the particles more uniformly dispersed is mixed. In the mixed slurry, electrostatic attraction acts between different kinds of particles, and the surface of the spherical polymer particles (1) is uniformly modified with the ceramic fine particles (2).
[0014]
In the method for producing a porous ceramic body of the present invention, there is no particular limitation on the molding method, and various methods such as a casting method, a pressure casting method, a reduced pressure casting method, a centrifugal sedimentation method, and an electrophoresis method are used. The method can be appropriately adopted. The same applies to the firing method, and the firing conditions can be appropriately set according to the type of the ceramic fine particles (2) and the like.
[0015]
【Example】
(Example 1)
An aqueous slurry of PMMA (polymethyl methacrylate) particles having a particle diameter of 350 nm and γ-alumina particles having a particle diameter of 34 nm, in which water is a dispersion medium, is charged negatively on the PMMA particle surface and positively on the γ-alumina particle surface. , PH 8 at which the absolute value of the zeta potential was maximized. FIG. 2 is a graph showing the relationship between the zeta potential and pH of PMMA particles having a particle size of 350 nm and γ-alumina particles having a particle size of 34 nm.
[0016]
Both slurries were stirred for 10 minutes after ultrasonic irradiation for 1 hour to disperse each particle. Thereafter, the alumina slurry was slowly added to and mixed with the PMMA slurry. Heterocoagulation occurred quickly, and the surface of the PMMA particles was modified with alumina particles. The mixed slurry is solidified and formed by vacuum casting, dried at room temperature, and calcined at 500 ° C. for 4 hours and calcined at 850 ° C. for 2 hours to produce an alumina porous body by two-stage firing. Was. FIG. 3 is an SEM photograph instead of a drawing showing a fracture surface of the obtained alumina porous body. As can be seen from FIG. 3, in the obtained alumina porous body, mutually independent pores having a uniform diameter are regularly arranged three-dimensionally. The porosity is 74.0%.
(Example 2)
An aqueous slurry was prepared at pH 8 using water of PMMA particles having a particle diameter of 800 nm and α-alumina particles having a particle diameter of 150 nm as a dispersion medium. FIG. 4 is a graph showing the relationship between zeta potential and pH of PMMA particles having a particle size of 800 nm and α-alumina particles having a particle size of 150 nm. As can be seen from FIG. 4, the surface of the α-alumina particles is negatively charged similarly to the surface of the PMMA particles. PEI (polyethyleneimine) was added to the slurry. As a result, as shown in FIG. 4, the surface of the α-alumina particles was positively charged.
[0017]
After that, it was solidified and formed through the same process as in Example 1, dried at room temperature, and calcined at 500 ° C for 4 hours, fired at 1100 ° C for 2 hours, and fired for 2 hours to produce an alumina porous body. Was. FIG. 5 is a SEM photograph instead of a drawing showing a fracture surface of the obtained porous alumina body. As can be seen from FIG. 5, in the obtained alumina porous body, mutually independent pores having a uniform diameter are regularly arranged three-dimensionally. The porosity is 75.4%.
[0018]
Of course, the invention of this application is not limited by the above embodiments. It goes without saying that various aspects are possible for details such as the type and particle size of the polymer particles and ceramic fine particles, the molding method, and the sintering method.
[0019]
【The invention's effect】
As described in detail above, according to the invention of this application, a uniform ceramic porous body in which mutually independent pores having a uniform diameter are regularly arranged three-dimensionally is manufactured.
[Brief description of the drawings]
FIGS. 1A, 1B, 1C, and 1D are process diagrams showing one process of a method for manufacturing a porous ceramic body according to the present invention.
FIG. 2 is a graph showing the relationship between zeta potential and pH of PMMA particles having a particle size of 350 nm and γ-alumina particles having a particle size of 34 nm.
FIG. 3 is a SEM photograph instead of a drawing showing a fracture surface of the alumina porous body obtained in Example 1.
FIG. 4 is a graph showing the relationship between zeta potential and pH of PMMA particles having a particle size of 800 nm and α-alumina particles having a particle size of 150 nm.
FIG. 5 is a SEM photograph instead of a drawing showing a fracture surface of the porous alumina obtained in Example 2.
[Explanation of symbols]
1 Spherical polymer particles 2 Ceramic fine particles 3 Pores 4 Ceramic porous body

Claims (2)

所定のpHのスラリー中で球状のポリマー粒子の表面にセラミックス微粒子をヘテロ凝集により均一に修飾し、その後、スラリーを成形、焼成し、焼成時に前記ポリマー粒子を燃焼除去するとともに、セラミックス微粒子どうしを結合させ、径の揃った互いに独立する気孔が3次元的に規則的に配列した均一なセラミックス多孔体を製造することを特徴とするセラミックス多孔体の製造方法。Ceramic particles are uniformly modified on the surface of the spherical polymer particles by hetero-aggregation in a slurry having a predetermined pH, and then the slurry is formed and fired, and the polymer particles are burnt and removed at the time of firing, and the ceramic particles are joined together. A method for producing a uniform ceramic porous body in which independent pores having a uniform diameter are regularly arranged in a three-dimensional manner. 球状のポリマー粒子が分散したスラリーとセラミックス微粒子が分散したスラリーを、一方の粒子表面が正に、他方の粒子表面が負に帯電する同一のpHで別々に調製し、その後両スラリーを混合して球状のポリマー粒子の表面にセラミックス微粒子をヘテロ凝集させる請求項1記載のセラミックス多孔体の製造方法。A slurry in which spherical polymer particles are dispersed and a slurry in which ceramic fine particles are dispersed are separately prepared at the same pH where one particle surface is positive and the other particle surface is negatively charged, and then both slurries are mixed. 2. The method for producing a ceramic porous body according to claim 1, wherein the ceramic fine particles are hetero-aggregated on the surface of the spherical polymer particles.
JP2002249688A 2002-08-28 2002-08-28 Method for producing ceramic porous body Expired - Lifetime JP3876311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249688A JP3876311B2 (en) 2002-08-28 2002-08-28 Method for producing ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249688A JP3876311B2 (en) 2002-08-28 2002-08-28 Method for producing ceramic porous body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006168739A Division JP4478777B2 (en) 2006-06-19 2006-06-19 Ceramic porous body

Publications (2)

Publication Number Publication Date
JP2004083371A true JP2004083371A (en) 2004-03-18
JP3876311B2 JP3876311B2 (en) 2007-01-31

Family

ID=32056732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249688A Expired - Lifetime JP3876311B2 (en) 2002-08-28 2002-08-28 Method for producing ceramic porous body

Country Status (1)

Country Link
JP (1) JP3876311B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068397A1 (en) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. Pore-forming material for porous body, method for producing pore-forming material for porous body, method for producing porous body, porous body and honeycomb structure
JP2005263590A (en) * 2004-03-19 2005-09-29 National Institute Of Advanced Industrial & Technology Water based wet forming of ceramic nanoparticle and method of manufacturing highly controlled porous ceramic
JP2006027935A (en) * 2004-07-14 2006-02-02 National Institute Of Advanced Industrial & Technology Forming method with ceramic nanoparticle by template method and its sintered compact
JP2006120409A (en) * 2004-10-20 2006-05-11 Nissan Motor Co Ltd Proton conductive composite type electrolyte membrane and its manufacturing method
JP2007048581A (en) * 2005-08-10 2007-02-22 Nissan Motor Co Ltd Conductor, energy device using same and fuel battery cell
JP2007115647A (en) * 2005-02-25 2007-05-10 Nissan Motor Co Ltd Proton conductive composite type electrolyte membrane and its manufacturing method
JP2009061580A (en) * 2007-08-09 2009-03-26 National Institute For Materials Science Nano flake-like metal composite material, and manufacturing method of the same and surface enhanced raman scattering active substrate
JP2010099817A (en) * 2008-10-27 2010-05-06 National Institute For Materials Science Functional metal composite substrate and method for manufacturing the same
JP2019029384A (en) * 2017-07-25 2019-02-21 新光電気工業株式会社 Ceramic mixture, porous body and manufacturing method thereof, electrostatic chuck and manufacturing method thereof, and substrate fixing device
JPWO2018083830A1 (en) * 2016-11-02 2019-06-24 株式会社村田製作所 Ceramic electronic component and method of manufacturing ceramic electronic component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367578A (en) * 1991-06-12 1992-12-18 Mitsubishi Materials Corp Porous sintered compact and its production
JPH067670A (en) * 1990-06-20 1994-01-18 Japan Synthetic Rubber Co Ltd Composite particle, hollow particle and method for production thereof
JPH06142491A (en) * 1992-11-12 1994-05-24 Japan Synthetic Rubber Co Ltd Composite particle, hollow particle and their production
JPH0776702A (en) * 1993-09-07 1995-03-20 Japan Synthetic Rubber Co Ltd Production of composite grain
JPH10130073A (en) * 1996-07-24 1998-05-19 Shiga Pref Gov Porous lightweight ceramic base
JPH10182264A (en) * 1996-02-21 1998-07-07 Mikuni:Kk Ceramic granule

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067670A (en) * 1990-06-20 1994-01-18 Japan Synthetic Rubber Co Ltd Composite particle, hollow particle and method for production thereof
JPH04367578A (en) * 1991-06-12 1992-12-18 Mitsubishi Materials Corp Porous sintered compact and its production
JPH06142491A (en) * 1992-11-12 1994-05-24 Japan Synthetic Rubber Co Ltd Composite particle, hollow particle and their production
JPH0776702A (en) * 1993-09-07 1995-03-20 Japan Synthetic Rubber Co Ltd Production of composite grain
JPH10182264A (en) * 1996-02-21 1998-07-07 Mikuni:Kk Ceramic granule
JPH10130073A (en) * 1996-07-24 1998-05-19 Shiga Pref Gov Porous lightweight ceramic base

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005068397A1 (en) * 2004-01-13 2007-12-27 イビデン株式会社 Porous material for porous material, method for producing porous material for porous material, method for producing porous material, porous material and honeycomb structure
WO2005068397A1 (en) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. Pore-forming material for porous body, method for producing pore-forming material for porous body, method for producing porous body, porous body and honeycomb structure
US7473465B2 (en) 2004-01-13 2009-01-06 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
US7396586B2 (en) 2004-01-13 2008-07-08 Ibiden Co., Ltd. Pore forming material for porous body, manufacturing method of pore forming material for porous body, manufacturing method of porous body, porous body, and honeycomb structural body
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
JP4524425B2 (en) * 2004-03-19 2010-08-18 独立行政法人産業技術総合研究所 Ceramic nanoparticle-coated organic resin sphere particles, molded body thereof, porous ceramics, and production method thereof
JP2005263590A (en) * 2004-03-19 2005-09-29 National Institute Of Advanced Industrial & Technology Water based wet forming of ceramic nanoparticle and method of manufacturing highly controlled porous ceramic
JP2006027935A (en) * 2004-07-14 2006-02-02 National Institute Of Advanced Industrial & Technology Forming method with ceramic nanoparticle by template method and its sintered compact
JP4552029B2 (en) * 2004-07-14 2010-09-29 独立行政法人産業技術総合研究所 Method for forming ceramic nanoparticles by template method and sintered body thereof
JP2006120409A (en) * 2004-10-20 2006-05-11 Nissan Motor Co Ltd Proton conductive composite type electrolyte membrane and its manufacturing method
JP2007115647A (en) * 2005-02-25 2007-05-10 Nissan Motor Co Ltd Proton conductive composite type electrolyte membrane and its manufacturing method
JP2007048581A (en) * 2005-08-10 2007-02-22 Nissan Motor Co Ltd Conductor, energy device using same and fuel battery cell
JP2009061580A (en) * 2007-08-09 2009-03-26 National Institute For Materials Science Nano flake-like metal composite material, and manufacturing method of the same and surface enhanced raman scattering active substrate
JP2010099817A (en) * 2008-10-27 2010-05-06 National Institute For Materials Science Functional metal composite substrate and method for manufacturing the same
JPWO2018083830A1 (en) * 2016-11-02 2019-06-24 株式会社村田製作所 Ceramic electronic component and method of manufacturing ceramic electronic component
JP2019029384A (en) * 2017-07-25 2019-02-21 新光電気工業株式会社 Ceramic mixture, porous body and manufacturing method thereof, electrostatic chuck and manufacturing method thereof, and substrate fixing device
US11735458B2 (en) 2017-07-25 2023-08-22 Shinko Electric Industries Co., Ltd. Ceramic mixture paste, porous body, electrostatic chuck, and substrate fixing device

Also Published As

Publication number Publication date
JP3876311B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
Stuecker et al. Control of the viscous behavior of highly concentrated mullite suspensions for robocasting
US9376347B2 (en) Porous ceramic article and method of manufacturing the same
US20180154549A1 (en) Porous ceramic article and method of manufacturing the same
EP2999680B1 (en) Porous ceramic article
JP5890548B2 (en) Cordierite-forming batch composition and cordierite body produced therefrom
JP2004083371A (en) Process for producing ceramic porous body
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
WO2009070250A1 (en) Cement compositions for applying to honeycomb bodies
JP6230544B2 (en) Low temperature curable compositions for ceramic bodies
WO2006033392A1 (en) Method for producing cordierite-based honeycomb structure
EP1284943A1 (en) Extrusion of ceramic compositions and ceramic composition therefor
WO2018095277A1 (en) Preparation method of plate-shaped corundum ceramic film support
JP2008043852A (en) Ceramics filter
CN116104612B (en) Thin-wall narrow-micropore distribution cordierite diesel particulate filter and preparation method thereof
JP4478777B2 (en) Ceramic porous body
JPH1121182A (en) Production of porous ceramic
JP2000344585A (en) Production of ceramic porous body
JP2005263590A (en) Water based wet forming of ceramic nanoparticle and method of manufacturing highly controlled porous ceramic
JP4552029B2 (en) Method for forming ceramic nanoparticles by template method and sintered body thereof
JPH0597537A (en) Production of ceramic porous material
US7922965B2 (en) Slip casting nano-particle powders for making transparent ceramics
KR101774334B1 (en) Method for manufacturing porous composite ceramics and porous composite ceramics manufactured by the same
KR101356382B1 (en) Method for fabrication cordierite/zirconia ceramic honeycomb
KR100530104B1 (en) Method for manufacturing ceramic porous bodies reutilizing solid-state wastes
KR20050059367A (en) Porous ceramic filter and method of producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

R150 Certificate of patent or registration of utility model

Ref document number: 3876311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term