JPH06142491A - Composite particle, hollow particle and their production - Google Patents

Composite particle, hollow particle and their production

Info

Publication number
JPH06142491A
JPH06142491A JP30259292A JP30259292A JPH06142491A JP H06142491 A JPH06142491 A JP H06142491A JP 30259292 A JP30259292 A JP 30259292A JP 30259292 A JP30259292 A JP 30259292A JP H06142491 A JPH06142491 A JP H06142491A
Authority
JP
Japan
Prior art keywords
particles
polymer
core
particle
spherical polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30259292A
Other languages
Japanese (ja)
Other versions
JP3265653B2 (en
Inventor
Kouji Shiho
浩司 志保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17910835&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06142491(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP30259292A priority Critical patent/JP3265653B2/en
Publication of JPH06142491A publication Critical patent/JPH06142491A/en
Application granted granted Critical
Publication of JP3265653B2 publication Critical patent/JP3265653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To provide a spherical polymer-metal compd. composite particle having excellent heat resistance, toughness, light resistance, wear resistance, etc., and bioadaptability and affinity to an antigen and antibody of particle surfaces by consisting core of a polymer and shell of a titanium compd. and/or silicon compd. CONSTITUTION:The core of the spherical polymer-metal compd. composite particle consists of a polymer and the shell of that consists of a titanium compd. and/or silicon compd. The composite particle constituted in such a manner has the high strength and the high heat resistance and is able to develop a high function. These particles are adequately used for cosmetics, electronic materials, semiconductor materials, paints. polishing agents, spacers, coating materials, optical materials, catalysts, fillers, drugs, diagnostic drugs, toners, resin modifiers, ink, adsorbents, UV resistant materials, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合粒子、中空粒子と
それらの製造方法に関し、さらに詳しくは高強度、かつ
高耐熱性であり、高機能を発現することができ、化粧
品、電子材料、半導体材料、研磨剤、コーティング剤、
塗料、スペーサー、光学材料、触媒、充填剤、医薬、診
断薬、トナー、樹脂改質剤、インク、吸着剤、耐紫外線
材料等に好適に使用される複合粒子とその製造方法、並
びに隠蔽率、吸着率、比表面積等が大きく、光学材料、
マイクロカプセル材料、隠蔽材料、カラム充填剤、触
媒、化粧品、耐紫外線材料等に好適に使用される中空粒
子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to composite particles, hollow particles and a method for producing them, and more specifically, it has high strength and high heat resistance and is capable of exhibiting high functions. Semiconductor materials, polishing agents, coating agents,
Paint particles, spacers, optical materials, catalysts, fillers, medicines, diagnostic agents, toners, resin modifiers, inks, adsorbents, composite particles preferably used for UV resistant materials and the like, and a method for producing the same, and a hiding rate, Large adsorption rate, specific surface area, etc.
The present invention relates to hollow particles suitably used for microcapsule materials, concealing materials, column fillers, catalysts, cosmetics, UV-resistant materials and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】標準粒子、診断薬用担体粒子、滑剤等に
は、粒子径分布の狭い重合体粒子等が用いられている。
しかし、該重合体粒子は、強度が劣るため、例えば標準
粒子および滑剤に用いる場合、シェアのかかる、あるい
は高温となる条件では、しばしば粒子が変形若しくは崩
壊してしまう。その結果、重合体粒子の本来有する特性
が生かされず、その使用範囲は非常に限られたものとな
っている。これらの欠点を改善するために、重合体粒
子、例えば架橋性単量体等を共重合させて高架橋体にす
る等の方法が提案されているが、当該方法により得られ
る重合体粒子も未だ満足すべき性能を発揮するまでに至
ってはいない。
Polymer particles having a narrow particle size distribution are used as standard particles, carrier particles for diagnostic agents, lubricants and the like.
However, since the polymer particles are poor in strength, when used as standard particles and lubricants, for example, the particles are often deformed or disintegrated under the condition of high shear or high temperature. As a result, the inherent properties of the polymer particles are not utilized and the range of use thereof is extremely limited. In order to improve these drawbacks, a method of polymer particles, for example, a method of copolymerizing a crosslinkable monomer or the like into a highly crosslinked product has been proposed, but the polymer particles obtained by the method are still satisfactory. It has not yet reached the desired performance.

【0003】また、上記重合体粒子は、診断薬用、医薬
用等にも応用されているが、抗原や抗体との親和性、生
体適合性等に限界があるため、その応用範囲が限られて
いる。
Further, the polymer particles have been applied to diagnostic agents, pharmaceutical agents, etc., but their application range is limited due to their limited affinity with antigens and antibodies, biocompatibility, etc. There is.

【0004】一方、電子材料、磁性材料、光学材料、耐
熱性材料等のセラミック用途には、数多くの種類の金属
化合物粒子が使用されており、また、用途の多様化、性
能の多様化に応ずるため、種々の複合粒子が提案されて
いる。例えば酸化鉄粒子にケイ素化合物を被覆した複合
粒子を熱処理して針状の磁性体を製造する際の形崩れや
磁性体間の焼結を防止させようとするもの、鉄粉に銅を
被覆した複合粒子を用いて粉末冶金材料としての強度を
上げようとするもの、あるいは酸化鉄粒子にアンチモン
およびアルミニウム酸化物を被覆した複合粒子を用いて
耐熱性を上げようとするもの等が報告されている。しか
し、これらのほとんどが金属化合物同士の複合粒子であ
ることから用途の多様化に充分対応できないため、さら
に種々の機能を発現させ得る複合粒子の開発が特に電子
材料、光学材料等の分野で要求されている。
On the other hand, many kinds of metal compound particles are used for ceramics such as electronic materials, magnetic materials, optical materials, heat resistant materials, etc., and in response to diversification of applications and diversification of performance. Therefore, various composite particles have been proposed. For example, iron oxide particles coated with a silicon compound are subjected to heat treatment to prevent the shape of the needle-shaped magnetic material from being deformed or sintering between magnetic materials, and iron powder coated with copper. It has been reported that the composite particles are used to increase the strength as a powder metallurgy material, or the composite particles in which iron oxide particles are coated with antimony and aluminum oxide are used to increase the heat resistance. . However, since most of these are composite particles of metal compounds, it is not possible to sufficiently cope with the diversification of applications. Therefore, the development of composite particles capable of expressing various functions is required especially in the fields of electronic materials, optical materials, etc. Has been done.

【0005】また、近年、セラミック系粒子のなかでも
特に中空金属化合物粒子が有用なものとして注目されて
おり、その製法としては、例えばエアロゾル法により基
本粒子を製造し加熱、乾燥する方法、金属化合物水性ゾ
ルを噴霧、乾燥し焼成する方法、w/o型またはo/w
/o型エマルジョンを調製し加熱して水および油を除去
する方法等が提案されている。しかし、これらの製法に
より得られた中空粒子はいずれも、強度が著しく劣り、
また、その粒子径分布が広がる傾向にある。
In recent years, among the ceramic particles, hollow metal compound particles have attracted attention as being particularly useful. As a method for producing the same, for example, a method of producing basic particles by an aerosol method, heating and drying, a metal compound is used. Method of spraying, drying and firing an aqueous sol, w / o type or o / w
A method of preparing an / o type emulsion and heating it to remove water and oil has been proposed. However, the hollow particles obtained by these production methods are all significantly inferior in strength,
Also, the particle size distribution tends to widen.

【0006】[0006]

【発明が解決しようとする課題】前述のとおり、粒子径
分布の狭い重合体粒子は、標準粒子、医薬、診断薬等の
高付加価値分野に使用されて優れた性能を示すにもかか
わらず、高分子であるがゆえに、耐熱性、強靱性、耐光
性、耐摩耗性等において劣り、また生体適合性、粒子表
面の抗原、抗体に対する親和性にも限界がある。従っ
て、これらの欠点を是正する、例えば当該粒子表面を金
属化合物で被覆した複合粒子の開発が望まれている。ま
た、その他の重合体粒子の用途、例えば隠蔽材料、滑
剤、カラム充填剤等の分野においても、従来の重合体粒
子とは異なる性能を有する金属化合物粒子の開発が望ま
れている。
As described above, the polymer particles having a narrow particle size distribution have excellent performance when used in high value-added fields such as standard particles, pharmaceuticals and diagnostic agents. Since it is a polymer, it is inferior in heat resistance, toughness, light resistance, abrasion resistance, and the like, and also has biocompatibility and affinity for particle surface antigens and antibodies. Therefore, there is a demand for the development of composite particles in which these defects are corrected, for example, the surface of the particles is coated with a metal compound. Further, also in applications of other polymer particles, for example, in the fields of hiding materials, lubricants, column fillers, etc., development of metal compound particles having performance different from that of conventional polymer particles is desired.

【0007】一方、光学材料、電子材料等多くの分野に
応用可能なセラミックについて、紫外線遮蔽性、吸着
性、増粘性等を有する組成とそれらの性質を有しない組
成とからなる複合粒子の開発が望まれていた。また、近
年、触媒、マイクロカプセル、化粧品等の分野で使用さ
れてきている中空金属化合物粒子に紫外線遮蔽性、吸着
性等を付与することも望まれている。
On the other hand, for ceramics applicable to many fields such as optical materials and electronic materials, the development of composite particles composed of a composition having an ultraviolet shielding property, an adsorptive property, a thickening property and the like, and a composition not having these properties has been developed. Was wanted. Further, it has been desired to impart ultraviolet ray shielding property, adsorptivity, etc. to the hollow metal compound particles which have been used in the fields of catalysts, microcapsules, cosmetics, etc. in recent years.

【0008】[0008]

【課題を解決するための手段】本発明は、第一に、
(a)コアが重合体、(b)シェルがチタニウム化合物
および/またはシリコン化合物からなることを特徴とす
る球状重合体−金属化合物複合粒子を提供するものであ
る。
The present invention is, first of all, to
The present invention provides a spherical polymer-metal compound composite particle, wherein (a) the core is a polymer and (b) the shell is a titanium compound and / or a silicon compound.

【0009】本発明は、第二に、チタニウムアルコキシ
ドおよび/またはシリコンアルコキシドのアルコール溶
液中またはアルコール/水混合溶液中に球状重合体粒子
を均一に分散せしめ、加水分解反応により該球状重合体
粒子の表面に均一なチタニウム化合物および/またはシ
リコン化合物被覆層を設け、さらに必要に応じ、加熱処
理することにより球状重合体−金属化合物複合粒子を得
ることを特徴とする上記複合粒子の製造方法を提供する
ものである。
Secondly, according to the present invention, spherical polymer particles are uniformly dispersed in an alcohol solution of titanium alkoxide and / or a silicon alkoxide or an alcohol / water mixed solution, and the spherical polymer particles are hydrolyzed to give a solution. A spherical polymer-metal compound composite particle is obtained by providing a uniform titanium compound and / or silicon compound coating layer on the surface and further heat-treating, if necessary, to provide a method for producing the composite particle. It is a thing.

【0010】本発明は、第三に、チタニウム化合物およ
び/またはシリコン化合物からなり、内部に空孔を有す
ることを特徴とする球状中空粒子を提供するものであ
る。
Thirdly, the present invention provides a spherical hollow particle comprising a titanium compound and / or a silicon compound and having pores inside.

【0011】本発明は、第四に、上記複合粒子を加熱す
ることによりコアの重合体を分解し、粒子内部に空孔を
持たせ、さらに必要に応じ還元処理することを特徴とす
る上記中空粒子の製造方法を提供するものである。
Fourthly, the present invention is characterized in that the polymer of the core is decomposed by heating the above-mentioned composite particles, pores are provided inside the particles, and further reduction treatment is carried out if necessary. A method for producing particles is provided.

【0012】〔球状重合体−金属化合物複合粒子〕以下
に球状重合体−金属化合物複合粒子について説明する。
[Spherical Polymer-Metal Compound Composite Particles] The spherical polymer-metal compound composite particles will be described below.

【0013】該複合粒子のコアとなる球状重合体粒子と
しては、耐熱性に特に優れたものにする場合、コアの球
状重合体粒子の重合時に、必要に応じて、架橋性単量体
を使用し、架橋させることが好ましい。該球状重合体粒
子を形成する重合体の具体例としては、スチレン、α−
メチルスチレン、ハロゲン化スチレン、ジビニルベンゼ
ン等の不飽和芳香族類;酢酸ビニル、プロピオン酸ビニ
ル等の不飽和エステル類;アクリロニトリル等の不飽和
ニトリル類;メチルアクリレート、エチルアクリレー
ト、エチルメタクリレート、ブチルアクリレート、2−
エチルヘキシルアクリレート、2−エチルヘキシルメタ
クリレート、ラウリルアクリレート、ラウリルメタクリ
レート、エチレングリコールジアクリレート、エチレン
グリコールジメタクリレート等の不飽和カルボン酸アル
キルエステル;その他に、ブタジエン、イソプレン、ア
クリル酸、メタクリル酸、アクリルアミド、メタクリル
アミド、グリシジルアクリレート、グリシジルメタクリ
レート、N−メチロールアクリルアミド、N−メチロー
ルメタクリルアミド、2−ヒドロキシエチルアクリレー
ト、アクリルアクリレート、アリルメタクリレート等が
挙げられる。これらは、単独で、または二種以上を混合
して使用してもよい。
As the spherical polymer particles serving as the core of the composite particles, in order to have particularly excellent heat resistance, a crosslinkable monomer is used, if necessary, during the polymerization of the spherical polymer particles of the core. However, it is preferable to crosslink. Specific examples of the polymer forming the spherical polymer particles include styrene and α-
Unsaturated aromatics such as methylstyrene, halogenated styrene and divinylbenzene; unsaturated esters such as vinyl acetate and vinyl propionate; unsaturated nitriles such as acrylonitrile; methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, 2-
Unsaturated carboxylic acid alkyl esters such as ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, ethylene glycol diacrylate, and ethylene glycol dimethacrylate; other than these, butadiene, isoprene, acrylic acid, methacrylic acid, acrylamide, methacrylamide, Examples thereof include glycidyl acrylate, glycidyl methacrylate, N-methylol acrylamide, N-methylol methacrylamide, 2-hydroxyethyl acrylate, acrylic acrylate, and allyl methacrylate. You may use these individually or in mixture of 2 or more types.

【0014】球状重合体粒子の製造は、例えば上記単量
体の乳化重合、懸濁重合、分散重合等により得ることが
できる。また、予め形成した重合体バルクを粉砕するこ
とによっても得ることができる。以上により得られる球
状重合体粒子の粒子径は、通常、0.05〜50μm、
好ましくは0.05〜20μm、さらに好ましくは0.
1〜10μmである。
The spherical polymer particles can be produced by, for example, emulsion polymerization, suspension polymerization, dispersion polymerization or the like of the above monomers. It can also be obtained by crushing a preformed polymer bulk. The particle size of the spherical polymer particles obtained as described above is usually 0.05 to 50 μm,
It is preferably 0.05 to 20 μm, more preferably 0.
It is 1 to 10 μm.

【0015】一方、上記複合粒子のシェルを形成するの
は、チタニウム化合物および/またはシリコン化合物で
ある。チタニウム化合物は、とくに紫外線遮蔽性に優れ
たものにする場合、TiO、TiO2等の酸化物が好ま
しい。シリコン化合物は、とくに吸着性、増粘性等に優
れたものにする場合、SiO2 が好ましい。
On the other hand, it is the titanium compound and / or the silicon compound that form the shell of the composite particles. The titanium compound is preferably an oxide such as TiO or TiO 2 when it is desired to have an excellent ultraviolet shielding property. As the silicon compound, SiO 2 is preferable in order to make the compound particularly excellent in adsorptivity and thickening property.

【0016】〔球状重合体−金属化合物複合粒子の製造
方法〕以下に、本発明の重合体−金属化合物複合粒子の
製造方法について説明する。上記複合粒子の製造は、ア
ルコール溶液中またはアルコール/水混合溶液中で、チ
タニウムアルコキシドおよび/またはシリコンアルコキ
シドから選ばれる金属アルコキシドを加水分解すること
により得られる金属化合物をコアとなる球状重合体粒子
の表面に均一に被覆せしめ、必要に応じ加熱処理を施こ
すことによりなされる。
[Method for Producing Spherical Polymer-Metal Compound Composite Particles] The method for producing the polymer-metal compound composite particles of the present invention will be described below. The production of the composite particles is carried out in a alcohol solution or an alcohol / water mixed solution by hydrolyzing a metal alkoxide selected from titanium alkoxide and / or silicon alkoxide to obtain a spherical polymer particle having a core of a metal compound. The surface is uniformly coated and, if necessary, subjected to heat treatment.

【0017】上記金属アルコキシドとしては、例えばT
i(OCH34、Ti(OC25 4、Ti(iso−
OC374、Ti(OC494等のチタニウムアルコ
キシド、Si(OCH34、Si(OC25)、Si
(iso−OC374、Si(t−OC494等のシ
リコンアルコキシドが挙げられる。これらの金属アルコ
キシドは単独で、または二種以上を混合して使用するこ
とができる。
Examples of the metal alkoxide include T
i (OCH3)Four, Ti (OC2HFive) Four, Ti (iso-
OC3H7)Four, Ti (OCFourH9)FourTitanium Arco etc.
Xide, Si (OCH3)Four, Si (OC2HFive), Si
(Iso-OC3H7)Four, Si (t-OCFourH9)FourEtc.
Examples include recon alkoxide. These metal arco
The oxidants may be used alone or in combination of two or more.
You can

【0018】上記金属アルコキシドの使用量は0.01
ミリモル/反応混合液1l以上、さらに好ましくは0.
1ミリモル/反応混合液1l以上、とくに好ましくは1
ミリモル/反応混合液1l以上であり、上限は一般に
1,000ミリモル/反応混合液1l以下である。な
お、上記反応混合液とは、金属アルコキシドとアルコー
ル溶液またはアルコール/水混合溶液との混合液のこと
をいう。
The amount of the above metal alkoxide used is 0.01.
Mmol / reaction mixture 1 liter or more, more preferably 0.1.
1 mmol / l or more of reaction mixture, particularly preferably 1
Mmol / reaction mixture 1 liter or more, and the upper limit is generally 1,000 mmol / reaction mixture 1 liter or less. The reaction mixture means a mixture of a metal alkoxide and an alcohol solution or an alcohol / water mixed solution.

【0019】金属アルコキシドは、室温でまたは加熱に
より容易に加水分解して、例えばTi(OH)4、Ti
2、Si(OH)4、SiO2のような水酸化物または
酸化物となり、これらがコアとなる球状重合体粒子の表
面に均一に被覆される。
Metal alkoxides are easily hydrolyzed at room temperature or by heating, for example Ti (OH) 4 , Ti.
A hydroxide or oxide such as O 2 , Si (OH) 4 and SiO 2 is formed, and these are uniformly coated on the surface of the spherical polymer particle serving as the core.

【0020】上記複合粒子の製造において溶媒として使
用されるアルコールとしては、例えばメタノール、エタ
ノール、1−プロパノール、2−プロパノール、1−ブ
タノール、2−ブタノール、t−ブタノール等の飽和ア
ルコールが挙げられる。これらのアルコールは単独で、
または二種以上混合しても使用できる。また、アルコー
ルと水との使用割合については、アルコール1l当り水
が1l以下であることが好ましい。
Examples of the alcohol used as a solvent in the production of the above composite particles include saturated alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and t-butanol. These alcohols alone
Alternatively, two or more kinds can be mixed and used. Regarding the usage ratio of alcohol and water, it is preferable that the amount of water is 1 liter or less per liter of alcohol.

【0021】球状重合体粒子の使用量は、0.001g
/反応混合液1l以上、さらに好ましくは0.01g/
反応混合液1l以上、とくに好ましくは0.05g/反
応混合液1l以上であり、上限は一般に1000g/反
応混合液1l以下である。
The amount of spherical polymer particles used is 0.001 g.
/ Reaction mixture 1 l or more, more preferably 0.01 g /
The reaction mixture is 1 liter or more, particularly preferably 0.05 g / reaction mixture 1 liter or more, and the upper limit is generally 1000 g / reaction mixture 1 liter or less.

【0022】上記複合粒子の製造方法において重要なの
はアルコール溶液中に、コアとなる球状重合体粒子を均
一に分散させることである。例えば分散状態が悪く、コ
ア粒子となる球状重合体粒子が凝集し、数個〜数百個の
かたまりとなっていれば、その上から金属化合物が被覆
されてしまい、均一な複合粒子が生成されない。また、
生成される複合粒子同士が溶液中で会合、凝集してしま
い、再分散できない場合もある。
What is important in the method for producing the composite particles is to uniformly disperse the spherical polymer particles as the core in the alcohol solution. For example, if the dispersion state is poor and the spherical polymer particles that become the core particles aggregate and form a few to several hundreds of agglomerates, the metal compound will be coated from above and uniform composite particles will not be generated. . Also,
In some cases, the produced composite particles are associated with each other and aggregated in the solution, and cannot be redispersed.

【0023】これらの欠点を改良する為に、アルコール
溶液中にアルコール可溶性高分子および/または界面活
性剤を分散性改良剤として添加することが好ましい。こ
れらの分散性改良剤の使用量は、コアとなる球状重合体
粒子100重量部に対し、好ましくは1重量部以上、さ
らに好ましくは3〜300重量部、特に好ましくは5〜
250重量部である。
In order to improve these drawbacks, it is preferable to add an alcohol-soluble polymer and / or a surfactant as a dispersibility improving agent to the alcohol solution. The amount of these dispersibility improvers used is preferably 1 part by weight or more, more preferably 3 to 300 parts by weight, and particularly preferably 5 to 100 parts by weight of the spherical polymer particles to be the core.
It is 250 parts by weight.

【0024】アルコール可溶性高分子または界面活性剤
として好ましいものは、ポリビニルピロリドン、ポリビ
ニルアルコール、ポリカルボン酸ソーダ、ヘキサメタリ
ン酸ソーダ、ナフタレンスルホン酸ソーダ、ドデシルベ
ンゼンスルホン酸ソーダ、ドデシル硫酸ソーダ等であ
る。さらに好ましくは、ポリビニルピロリドン、ドデシ
ル硫酸ソーダ等である。これらは単独で、または二種以
上を混合して使用してもよい。
Preferred as the alcohol-soluble polymer or surfactant are polyvinylpyrrolidone, polyvinyl alcohol, sodium polycarboxylate, sodium hexametaphosphate, sodium naphthalenesulfonate, sodium dodecylbenzenesulfonate, sodium dodecylsulfate and the like. More preferred are polyvinylpyrrolidone and sodium dodecyl sulfate. You may use these individually or in mixture of 2 or more types.

【0025】球状重合体−金属化合物複合粒子の生成の
メカニズムは、原則として二種類ある。一つは加水分解
された金属イオンまたは加水分解により生成した錯体が
コアの球状重合体粒子の表面に吸着し、被覆層を形成し
ていくというメカニズムである。もう一つは、非常に小
さな金属化合物微粒子が初期に形成され、ヘテロ凝集に
よって、該金属化合物微粒子がコアである球状重合体粒
子の表面に吸着し、その粒子表面で金属化合物層が成長
していくというメカニズムである。この後者のメカニズ
ムでは、コアである球状重合体粒子の表面に吸着する金
属化合物微粒子の数と粒径により被覆層の厚みをコント
ロールできる。
In principle, there are two types of mechanisms for forming spherical polymer-metal compound composite particles. One is a mechanism in which a hydrolyzed metal ion or a complex formed by hydrolysis is adsorbed on the surface of the core spherical polymer particles to form a coating layer. The other is that very small metal compound fine particles are initially formed, and by heteroaggregation, the metal compound fine particles are adsorbed on the surface of the spherical polymer particle as the core, and the metal compound layer grows on the particle surface. It is a mechanism to go. With this latter mechanism, the thickness of the coating layer can be controlled by the number and particle size of the metal compound fine particles adsorbed on the surface of the spherical polymer particles as the core.

【0026】上記ヘテロ凝集を起こさせるには、コアで
ある球状重合体粒子に電荷を持たせる必要は必ずしもな
いが、プラスまたはマイナスの電荷を持たせることが好
ましい。
In order to cause the above-mentioned heteroaggregation, it is not always necessary to give the spherical polymer particles as the core a charge, but it is preferable to give a positive or negative charge.

【0027】例えば、金属塩の加水分解反応が金属化合
物微粒子の等電点以上のpHで起こる場合、コアとして正
電荷を有する球状重合体粒子を使用すれば効率よく吸着
させることができる。また、金属塩の加水分解反応が金
属化合物微粒子の等電点以下のpHで起こる場合、コアと
して負電荷を有する球状重合体粒子を使用すれば効率よ
く吸着させることができる。
For example, when the hydrolysis reaction of the metal salt occurs at a pH higher than the isoelectric point of the metal compound fine particles, spherical polymer particles having a positive charge can be used as the core for efficient adsorption. Further, when the hydrolysis reaction of the metal salt occurs at a pH lower than the isoelectric point of the metal compound fine particles, the spherical polymer particles having a negative charge can be used for the efficient adsorption.

【0028】シェル組成がチタニウムおよび/またはシ
リコンの水酸化物である場合、加熱処理することによ
り、酸化物に変換できる。例えばシェルがTi(OH)
4および/またはSi(OH)4の場合には、不活性ガス
雰囲気下もしくは酵素存在下に、好ましくは50℃以
上、さらに好ましくは100℃以上、コアの重合体粒子
の分解温度以下に加熱することにより、TiO2および
/またはSiO2に変換できる。
When the shell composition is a hydroxide of titanium and / or silicon, it can be converted into an oxide by heat treatment. For example, the shell is Ti (OH)
In the case of 4 and / or Si (OH) 4 , heating is performed in an inert gas atmosphere or in the presence of an enzyme, preferably at 50 ° C. or higher, more preferably at 100 ° C. or higher, and below the decomposition temperature of the core polymer particles. By doing so, it can be converted into TiO 2 and / or SiO 2 .

【0029】さらに、上記TiO2および/またはSi
2の場合は水素ガス雰囲気下に好ましくは100℃以
上、さらに好ましくは200℃以上、コアの重合体粒子
の分解温度以下で部分還元することにより、TiOおよ
び/またはSiOに変換することができる。
Further, the above TiO 2 and / or Si
In the case of O 2 , it can be converted to TiO and / or SiO by partial reduction in a hydrogen gas atmosphere, preferably at 100 ° C. or higher, more preferably at 200 ° C. or higher, and below the decomposition temperature of the core polymer particles. .

【0030】以上により得られる球状重合体−金属化合
物複合粒子の粒子径は0.07〜50μm、さらに好ま
しくは0.1〜50μm、特に好ましくは0.1〜10
μmであり、該複合粒子の粒子径に対するコアとなる球
状重合体粒子の粒径の比は好ましくは0.4〜0.9
9、さらに好ましくは0.5〜0.99、特に好ましく
は0.6〜0.99である。
The spherical polymer-metal compound composite particles obtained as described above have a particle diameter of 0.07 to 50 μm, more preferably 0.1 to 50 μm, and particularly preferably 0.1 to 10.
μm, and the ratio of the particle size of the core spherical polymer particles to the particle size of the composite particles is preferably 0.4 to 0.9.
9, more preferably 0.5 to 0.99, and particularly preferably 0.6 to 0.99.

【0031】〔中空粒子の製造方法〕以下にチタニウム
化合物および/またはシリコン化合物からなり、内部に
空孔を有する球状中空粒子の製造方法について述べる。
中空粒子の製造は、前記で得られる球状重合体−金属化
合物複合粒子を、空気または酸素の存在下、コアの重合
体の種類により異なるが好ましくは100℃以上、さら
に好ましくは450℃以上に加熱して、コアの重合体を
分解しガス化させて粒子内部から飛散させ粒子内部に空
孔を形成することによりなされる。さらに、必要に応じ
還元処理して種々の組成の中空粒子を得ることもでき
る。
[Method for Producing Hollow Particles] A method for producing spherical hollow particles made of a titanium compound and / or a silicon compound and having pores inside will be described below.
In the production of hollow particles, the spherical polymer-metal compound composite particles obtained above are heated to 100 ° C or higher, more preferably 450 ° C or higher, depending on the type of the core polymer in the presence of air or oxygen. Then, the polymer of the core is decomposed and gasified to be scattered from the inside of the particles to form pores inside the particles. Further, if necessary, reduction treatment can be performed to obtain hollow particles having various compositions.

【0032】すなわち、球状中空粒子のシェル組成がT
iO2、SiO2等である場合、例えば上記中空粒子を水
素ガス雰囲気下に好ましくは100℃以上、さらに好ま
しくは200℃以上で部分還元することにより、Ti
O、SiO等に変換することができる。
That is, the shell composition of the spherical hollow particles is T
In the case of iO 2 , SiO 2 or the like, for example, the hollow particles are partially reduced in a hydrogen gas atmosphere at preferably 100 ° C. or higher, more preferably 200 ° C. or higher to obtain Ti.
It can be converted to O, SiO, or the like.

【0033】上記中空粒子の製造方法において、コアの
球状重合体粒子には特に制約はないが、完全に分解し、
ガス化させやすくするためには、架橋していないことが
好ましい。これにより、低温で短時間に空孔を形成させ
ることができる。例えばコアの球状重合体粒子が架橋さ
れている場合、800℃以上、さらに好ましくは110
0℃以上で加熱する必要がある。従って、コアの重合体
の単量体成分としては、加熱により分解する点で、スチ
レン、アクリロニトリル、酢酸ビニル等の単量体を主成
分とし、架橋されていないものが好ましい。
In the above method for producing hollow particles, the spherical polymer particles of the core are not particularly limited, but they are completely decomposed,
In order to facilitate gasification, it is preferably not crosslinked. As a result, it is possible to form pores at a low temperature in a short time. For example, when the spherical polymer particles of the core are crosslinked, the temperature is 800 ° C or higher, more preferably 110 ° C or higher.
It is necessary to heat above 0 ° C. Therefore, as the monomer component of the polymer of the core, it is preferable to use a monomer such as styrene, acrylonitrile or vinyl acetate as a main component and not be crosslinked, from the viewpoint of being decomposed by heating.

【0034】なお、加熱温度が1200℃以上の場合
は、中空粒子の表面にクラックが入りやすくなり、ま
た、昇温率および冷却率が急激である場合、シェルが崩
壊しやすくなる。このため、昇温率としては30℃/分
以下、冷却率としては20℃/分以下が好ましい。
When the heating temperature is 1200 ° C. or higher, cracks are easily formed on the surface of the hollow particles, and when the heating rate and the cooling rate are rapid, the shell tends to collapse. Therefore, the rate of temperature rise is preferably 30 ° C./min or less, and the rate of cooling is preferably 20 ° C./min or less.

【0035】上記製造方法により、単分散で均一なシェ
ル層を有する中空粒子を得ることができ、しかも粒子
径、空孔径を自由にコントロールすることができる。
By the above production method, hollow particles having a monodisperse and uniform shell layer can be obtained, and the particle diameter and the pore diameter can be freely controlled.

【0036】以上により得られる中空粒子の粒子径は通
常、0.04〜50μm、好ましくは0.04〜40μ
m、さらに好ましくは0.1〜10μm、特に好ましく
は0.2〜1μmである。また、粒子外径に対する内径
の比は、通常、0.3〜0.99、好ましくは0.5〜
0.99、特に好ましくは0.6〜0.99である。
The particle size of the hollow particles obtained as described above is usually 0.04 to 50 μm, preferably 0.04 to 40 μm.
m, more preferably 0.1 to 10 μm, and particularly preferably 0.2 to 1 μm. The ratio of the inner diameter to the outer diameter of the particles is usually 0.3 to 0.99, and preferably 0.5 to 0.99.
0.99, particularly preferably 0.6 to 0.99.

【0037】[0037]

【実施例】以下に実施例により本発明を詳細に説明する
が、本発明はこれらにより限定されるものではない。
The present invention is described in detail below with reference to examples, but the present invention is not limited to these.

【0038】 合成例(コアとなる球状重合体粒子の製造) 例−1 1l重合用4つ口フラスコに蒸留水574g、過硫酸カ
リウム1.0gおよびドデシル硫酸ナトリウム0.30
gを入れ、10分間攪拌し、それらを完全溶解させた。
次いで、スチレンを100g添加し、N2ガスをパージ
しながら5分間攪拌した。その後フラスコをウォーター
バスに入れ80℃で4時間反応させ、次いで室温まで冷
却した。冷却後、濾紙を使用し、凝集物を除去した。得
られたスチレン重合体からなる球状重合体粒子分散液の
全固形分は14.7重量%であった。この球状重合体粒
子の平均粒子径は、0.42μmであった。この球状重
合体粒子分散液の濃度を5g/lとなるように蒸留水を
加え調製した。
Synthesis Example (Production of Spherical Polymer Particles Used as Core) Example-1 574 g of distilled water, 1.0 g of potassium persulfate and 0.30 sodium dodecyl sulfate were placed in a 4-neck flask for 1 l polymerization.
g was added and stirred for 10 minutes to completely dissolve them.
Next, 100 g of styrene was added, and the mixture was stirred for 5 minutes while purging with N 2 gas. After that, the flask was put in a water bath and reacted at 80 ° C. for 4 hours, and then cooled to room temperature. After cooling, filter paper was used to remove agglomerates. The total solid content of the obtained spherical polymer particle dispersion liquid comprising the styrene polymer was 14.7% by weight. The average particle size of the spherical polymer particles was 0.42 μm. Distilled water was added so that the concentration of the spherical polymer particle dispersion liquid would be 5 g / l.

【0039】例−2 1l重合用4つ口フラスコに蒸留水576g、Trit
on X−100(ロームアンドハース社製、非イオン
性界面活性剤)0.5gおよび2,2′−アゾビス(2
−メチルプロピオニトリル)(AIBN.アルドリッチ
社製)1.0gを入れ10分間攪拌し、完全にTrit
on X−100、AIBNを溶解させた。次いで、ス
チレン100gを添加し、N2ガスをパージしながら5
分間攪拌した。その後、このフラスコをウォーターバス
に入れ70℃で12時間反応させ、次いで室温まで冷却
した。冷却後、濾紙を使用し、凝集物を除去した。得ら
れたスチレン重合体粒子からなる球状重合体粒子分散液
の全固形分は14.2重量%であった。この球状重合体
粒子の平均粒子径は、0.17μmであった。この球状
重合体粒子分散液の濃度を5g/lとなるように蒸留水
を加え調製した。
Example-2 576 g of distilled water and Trit in a four-necked flask for 1 l polymerization.
on X-100 (Rohm and Haas Company, nonionic surfactant) 0.5 g and 2,2'-azobis (2
-Methylpropionitrile) (AIBN. Aldrich) 1.0 g was added and stirred for 10 minutes to completely complete Trit.
on X-100, AIBN was dissolved. Next, 100 g of styrene was added, and while purging with N 2 gas, 5
Stir for minutes. Then, this flask was put in a water bath and reacted at 70 ° C. for 12 hours, and then cooled to room temperature. After cooling, filter paper was used to remove agglomerates. The total solid content of the obtained spherical polymer particle dispersion liquid comprising styrene polymer particles was 14.2% by weight. The average particle size of the spherical polymer particles was 0.17 μm. Distilled water was added so that the concentration of the spherical polymer particle dispersion liquid would be 5 g / l.

【0040】例−3 1l重合用4つ口フラスコに例−2で得られた球状重合
体粒子分散液70g、蒸留水929gおよび過硫酸ナト
リウム1.0gを入れ10分間攪拌し、過硫酸ナトリウ
ムを溶解させた。次いでスチレン90gおよびジビニル
ベンゼン10gを添加し、N2ガスをパージしながら5
分間攪拌した。その後フラスコをウォーターバスに入れ
70℃で12時間反応させ、次いで室温まで冷却した。
冷却後、濾紙を使用し、凝集物を除去した。得られたス
チレン/ジビニルベンゼン共重合体からなる球状重合体
粒子分散液の全固形分は9.6重量%、この球状重合体
粒子の平均粒子径は、0.35μmであった。この球状
重合体粒子分散液の濃度を5g/lとなるように蒸留水
を加え調製した。
Example-3 70 g of the spherical polymer particle dispersion obtained in Example-2, 929 g of distilled water and 1.0 g of sodium persulfate were placed in a 1-liter four-necked flask for polymerization and stirred for 10 minutes to remove sodium persulfate. Dissolved. Next, 90 g of styrene and 10 g of divinylbenzene were added, and while purging with N 2 gas, 5
Stir for minutes. After that, the flask was put in a water bath and reacted at 70 ° C. for 12 hours, and then cooled to room temperature.
After cooling, filter paper was used to remove agglomerates. The total solid content of the obtained spherical polymer particle dispersion liquid comprising the styrene / divinylbenzene copolymer was 9.6% by weight, and the average particle diameter of the spherical polymer particles was 0.35 μm. Distilled water was added so that the concentration of the spherical polymer particle dispersion liquid would be 5 g / l.

【0041】例−4 日本合成ゴム(株)社製、STADEX SC−310
−S(球状スチレン重合体粒子)を使用した。平均粒子
径は3.1μmであった。この球状重合体粒子分散液の
濃度を5g/lとなるように蒸留水を加えて調製した。
Example-4 STADEX SC-310 manufactured by Nippon Synthetic Rubber Co., Ltd.
-S (spherical styrene polymer particles) was used. The average particle size was 3.1 μm. It was prepared by adding distilled water so that the concentration of the spherical polymer particle dispersion was 5 g / l.

【0042】例−5 ジビニルベンゼン、アゾ系重合開始剤[V−59、和光
純薬(株)製]、t−ブチルハイドロキノン、ラウリル
硫酸ナトリウムおよび水を重量比で100:10:0.
5:0.5:2の割合で混合・攪拌して乳化し、粒径が
0.3〜20μmである重合性単量体の水分散液を得
た。平均粒径3μmのポリスチレン単分散液(固形分1
8.1重量%)14.3部を水113.3部に添加し分
散させ、さらにこのシード粒子の水分散体にポリビニル
アルコールの5重量%水溶液60部を加えて、83℃に
昇温した。このシード粒子の水分散体に上記重合性単量
体の水分散液およびポリビニルアルコールの1重量%水
溶液を6時間かけて滴下し平均粒径20μmの単分散重
合体粒子を得た。この球状重合体粒子分散液の濃度を5
g/lとなるように蒸留水を加えて調製した。
Example 5 Divinylbenzene, an azo polymerization initiator [V-59, manufactured by Wako Pure Chemical Industries, Ltd.], t-butylhydroquinone, sodium lauryl sulfate and water in a weight ratio of 100: 10: 0.
The mixture was mixed and stirred at a ratio of 5: 0.5: 2 to emulsify to obtain an aqueous dispersion of a polymerizable monomer having a particle size of 0.3 to 20 μm. Polystyrene monodisperse liquid with an average particle size of 3 μm (solid content 1
8.1% by weight) was added to 113.3 parts of water to disperse the mixture, and 60 parts of a 5% by weight aqueous solution of polyvinyl alcohol was added to the aqueous dispersion of the seed particles, and the temperature was raised to 83 ° C. . An aqueous dispersion of the polymerizable monomer and a 1% by weight aqueous solution of polyvinyl alcohol were added dropwise to the aqueous dispersion of the seed particles over 6 hours to obtain monodisperse polymer particles having an average particle diameter of 20 μm. The concentration of this spherical polymer particle dispersion is 5
It was prepared by adding distilled water so as to be g / l.

【0043】実施例1 例−1で得られた球状重合体粒子分散液(濃度5g/
l)60ml、ポリビニルピロリドン(Mw、36万)
0.6g、チタン酸テトラ−n−ブチル(モノマー)1
0gおよび水/エタノール2lをセパラブルフラスコに
入れた。この反応混合液を、ホモジナイザーでよく攪拌
した後、80℃で4時間加熱し加水分解させた。その
後、室温まで冷却し、遠心分離により複合粒子を沈降さ
せ、上澄溶液を分離後、蒸留水を加え、ホモジナイザー
で完全に粒子を分散させた後、複合粒子を分離するとい
う洗浄工程を5回繰り返した。その後、得られた複合粒
子を常温で乾燥した。得られた複合粒子を電子顕微鏡に
て観察したところ、平均粒子径は0.46μm、粒子径
に対するコアの粒径の比が0.91の完全に粒子表面が
均一な層で被覆された球状の複合粒子であった。この複
合粒子を赤外吸収スペクトル、X線回折、熱重量分析、
元素分析、電気泳動装置等にて分析したところ、コアが
ポリスチレン重合体、シェルがTiO2からなる複合粒
子であることが確認された。この複合粒子の電子顕微鏡
写真を図1に示す。
Example 1 Spherical polymer particle dispersion liquid obtained in Example 1 (concentration 5 g /
l) 60 ml, polyvinylpyrrolidone (Mw, 360,000)
0.6 g, tetra-n-butyl titanate (monomer) 1
0 g and 2 l of water / ethanol were placed in a separable flask. The reaction mixture was stirred well with a homogenizer and then heated at 80 ° C. for 4 hours for hydrolysis. Then, the mixture is cooled to room temperature, the composite particles are settled by centrifugation, the supernatant solution is separated, distilled water is added, the particles are completely dispersed by a homogenizer, and then the washing step of separating the composite particles is performed five times. I repeated. Then, the obtained composite particles were dried at room temperature. When the obtained composite particles were observed with an electron microscope, the average particle size was 0.46 μm, and the particle size ratio of the core to the particle size was 0.91. It was a composite particle. Infrared absorption spectrum, X-ray diffraction, thermogravimetric analysis,
When analyzed by elemental analysis and an electrophoresis apparatus, it was confirmed that the core was a polystyrene polymer and the shell was a composite particle composed of TiO 2 . An electron micrograph of this composite particle is shown in FIG.

【0044】なお、実施例1の反応系は以下の成分割合
となる。 例−1のスチレン重合体 1.5g/反応混合液1l、 チタン酸テトラ−n−ブチル(モノマー) 5g/反応混合液1l、 ポリビニルピロリドン(Mw、36万) 0.3g/反応混合液1l、 水/エタノール 3(体積%)。
The reaction system of Example 1 has the following component ratios. Styrene polymer of Example-1 1.5 g / reaction mixture 1 l, tetra-n-butyl titanate (monomer) 5 g / reaction mixture 1 l, polyvinylpyrrolidone (Mw, 360,000) 0.3 g / reaction mixture 1 l, Water / ethanol 3 (% by volume).

【0045】実施例2〜15 基本的には実施例1と同様の方法であるが、加水分解さ
せる時に使用する成分および製造条件を表1〜3に示す
ように変えたものを実施例2〜15とした。結果として
得られた複合粒子の形状、組成等について実施例1と併
せて表1〜3に示す。
Examples 2 to 15 Basically the same method as in Example 1, except that the components used during hydrolysis and the production conditions were changed as shown in Tables 1 to 3. It was set to 15. The shapes and compositions of the resulting composite particles are shown in Tables 1 to 3 together with Example 1.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】実施例16 実施例4で得られたコアがスチレン/ジビニルベンゼン
共重合体、シェルがTiOの複合粒子5gを水素ガス雰
囲気下で室温から300℃まで10℃/分の条件で昇温
し、300℃で3時間ホールドした。その後10℃/分
の割合で室温まで冷却した。得られた複合粒子の平均粒
子径は0.42μm、粒子外径に対するコア粒子径の比
が0.86であった。この複合粒子を実施例1と同様に
して分析したところ、コアがスチレン/ジビニルベンゼ
ン共重合体であり、シェルがTiOであった。
Example 16 5 g of composite particles having a core of styrene / divinylbenzene copolymer and a shell of TiO 2 obtained in Example 4 were heated from room temperature to 300 ° C. under the condition of 10 ° C./min in a hydrogen gas atmosphere. Then, it was held at 300 ° C. for 3 hours. Then, it was cooled to room temperature at a rate of 10 ° C./min. The average particle size of the obtained composite particles was 0.42 μm, and the ratio of the core particle size to the particle outer diameter was 0.86. When the composite particles were analyzed in the same manner as in Example 1, the core was a styrene / divinylbenzene copolymer and the shell was TiO 2.

【0050】実施例17〜21 基本的には実施例16と同様の方法であるが、使用する
複合粒子および焼成条件を表4に示すように変えたもの
を実施例17〜21とした。結果として得られた複合粒
子の形状、組成等について、実施例16と併せて表4に
示した。
Examples 17 to 21 Basically the same method as in Example 16, except that the composite particles used and the firing conditions were changed as shown in Table 4 were Examples 17 to 21. The shape, composition, etc. of the resulting composite particles are shown in Table 4 together with Example 16.

【0051】[0051]

【表4】 [Table 4]

【0052】実施例22 実施例1で得られたコアがスチレン重合体、シェルがT
iO2の複合粒子5gを空気雰囲気下で室温から600
℃まで10℃/分の条件で昇温し、600℃で3時間ホ
ールドした。その後10℃/分の割合で室温まで冷却し
た。得られた中空粒子を電子顕微鏡にて観察したとこ
ろ、平均粒子径は0.42μm、粒子外径に対する内部
空孔径の比は0.86であった。この中空粒子を赤外吸
収スペクトル、X線回折、元素分析、電気泳動装置等に
て分析したところ、コアが空孔、シェルがTiO2から
なる中空粒子であることが確認された。この複合粒子の
電子顕微鏡写真を図2に示す。
Example 22 The core obtained in Example 1 was a styrene polymer, and the shell was T.
5 g of composite particles of iO 2 was heated from room temperature to 600 in an air atmosphere.
The temperature was raised to 10 ° C./min and held at 600 ° C. for 3 hours. Then, it was cooled to room temperature at a rate of 10 ° C./min. When the obtained hollow particles were observed with an electron microscope, the average particle diameter was 0.42 μm, and the ratio of the inner pore diameter to the particle outer diameter was 0.86. When the hollow particles were analyzed by infrared absorption spectrum, X-ray diffraction, elemental analysis, electrophoresis, etc., it was confirmed that the hollow particles were hollow particles having a core of TiO 2 and a shell of TiO 2 . An electron micrograph of this composite particle is shown in FIG.

【0053】実施例23〜31 基本的には実施例22と同様の方法であるが、使用する
複合粒子および製造条件を表5および表6に示すように
変えたものを実施例23〜31とした。結果として得ら
れた中空粒子の形状、組成等について、実施例22と併
せて表5および表6に示す。
Examples 23 to 31 Basically, the same method as in Example 22 was used, except that the composite particles used and the production conditions were changed as shown in Tables 5 and 6 to obtain Examples 23 to 31. did. The shape, composition, etc. of the resulting hollow particles are shown in Tables 5 and 6 together with Example 22.

【0054】[0054]

【表5】 [Table 5]

【0055】[0055]

【表6】 [Table 6]

【0056】実施例32 実施例22で得られたTiO2粒子2gを水素ガス雰囲
気下で室温から300℃まで10℃/分の条件で昇温
し、300℃で1時間ホールドした。その後10℃/分
の割合で室温まで冷却した。得られた中空粒子の平均粒
子径は0.40μm、粒子径に対する内部空孔径の比が
0.88であった。この中空粒子を赤外吸収スペクト
ル、X線回折、元素分析等にて分析したところ、コアが
空孔、シェルがTiOであった。
Example 32 2 g of the TiO 2 particles obtained in Example 22 was heated from room temperature to 300 ° C. under the conditions of 10 ° C./min in a hydrogen gas atmosphere and held at 300 ° C. for 1 hour. Then, it was cooled to room temperature at a rate of 10 ° C./min. The obtained hollow particles had an average particle size of 0.40 μm and a ratio of internal pore size to particle size of 0.88. When the hollow particles were analyzed by infrared absorption spectrum, X-ray diffraction, elemental analysis and the like, the core was void and the shell was TiO 2.

【0057】実施例33〜35 基本的には実施例32と同様の方法であるが、使用する
中空粒子および製造条件を表7に示すように変えたもの
を実施例33〜35とした。結果として得られた中空粒
子の形状、組成等について、実施例32と併せて表7に
示す。
Examples 33 to 35 Basically, the same method as in Example 32 was used, except that the hollow particles used and the production conditions were changed as shown in Table 7 to obtain Examples 33 to 35. The shape, composition, etc. of the resulting hollow particles are shown in Table 7 together with that of Example 32.

【0058】[0058]

【表7】 [Table 7]

【0059】[0059]

【発明の効果】本発明は、各用途で広く使用されている
複合粒子、中空粒子とそれらの製造方法に関し、高強
度、高耐熱性であり、高機能を発現することができ、化
粧品、電子材料、半導体材料、塗料、研磨剤、スペーサ
ー、コーティング剤、光学材料、触媒、充填剤、医薬、
診断薬、トナー、樹脂改質剤、インク、吸着剤、耐紫外
線材料等に好適に使用される複合粒子とその製造方法、
並びに隠蔽率、吸着率、比表面積等が大きく、光学材
料、マイクロカプセル材料、隠蔽材料、化粧品、カラム
充填剤、触媒等に好適に使用される中空粒子とその製造
方法に関する。
INDUSTRIAL APPLICABILITY The present invention relates to composite particles and hollow particles which are widely used in various applications, and a method for producing them, which has high strength, high heat resistance, can exhibit high functions, and can be used in cosmetics and electronic products. Materials, semiconductor materials, paints, abrasives, spacers, coating agents, optical materials, catalysts, fillers, pharmaceuticals,
Composite particles suitably used for diagnostic agents, toners, resin modifiers, inks, adsorbents, UV resistant materials, etc., and a method for producing the same,
The present invention also relates to hollow particles having a large hiding rate, adsorption rate, specific surface area and the like, which are suitably used for optical materials, microcapsule materials, hiding materials, cosmetics, column fillers, catalysts and the like, and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた球状スチレン重合体(コ
ア)/TiO2複合粒子構造を示す電子顕微鏡写真であ
る。図中の目盛りは0.5μmを示す。
FIG. 1 is an electron micrograph showing the structure of a spherical styrene polymer (core) / TiO 2 composite particle obtained in Example 1. The scale in the figure indicates 0.5 μm.

【図2】実施例22で得られた中空TiO2粒子構造を
示す電子顕微鏡写真である。図中の目盛りは0.5μm
を示す。
2 is an electron micrograph showing the structure of hollow TiO 2 particles obtained in Example 22. FIG. The scale in the figure is 0.5 μm
Indicates.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 38/06 J ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C04B 38/06 J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)コアが重合体、(b)シェルがチ
タニウム化合物および/またはシリコン化合物からなる
ことを特徴とする球状重合体−金属化合物複合粒子。
1. Spherical polymer-metal compound composite particles, wherein (a) the core is a polymer and (b) the shell is a titanium compound and / or a silicon compound.
【請求項2】 チタニウムアルコキシドおよび/または
シリコンアルコキシドのアルコール溶液中またはアルコ
ール/水混合溶液中に球状重合体粒子を均一に分散せし
め、加水分解反応により該球状重合体粒子の表面に均一
なチタニウム化合物またはシリコン化合物被覆層を設
け、さらに必要に応じ、加熱処理することを特徴とする
請求項1記載の複合粒子の製造方法。
2. Spherical polymer particles are uniformly dispersed in an alcohol solution of a titanium alkoxide and / or a silicon alkoxide or in an alcohol / water mixed solution, and a titanium compound is uniformly formed on the surface of the spherical polymer particles by a hydrolysis reaction. Alternatively, the method for producing composite particles according to claim 1, wherein a silicon compound coating layer is provided, and if necessary, heat treatment is performed.
【請求項3】 チタニウム化合物および/またはシリコ
ン化合物からなり、内部に空孔を有することを特徴とす
る球状中空粒子。
3. A spherical hollow particle comprising a titanium compound and / or a silicon compound and having pores inside.
【請求項4】 請求項1記載の複合粒子を加熱すること
によりコアの重合体を分解し、粒子内部に空孔を持た
せ、さらに必要に応じ、還元処理することを特徴とする
請求項3記載の中空粒子の製造方法。
4. The polymer of the core is decomposed by heating the composite particle according to claim 1, to give pores inside the particle, and further, if necessary, reduction treatment is performed. A method for producing the hollow particles described above.
JP30259292A 1992-11-12 1992-11-12 Composite particles, hollow particles and their production method Expired - Lifetime JP3265653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30259292A JP3265653B2 (en) 1992-11-12 1992-11-12 Composite particles, hollow particles and their production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30259292A JP3265653B2 (en) 1992-11-12 1992-11-12 Composite particles, hollow particles and their production method

Publications (2)

Publication Number Publication Date
JPH06142491A true JPH06142491A (en) 1994-05-24
JP3265653B2 JP3265653B2 (en) 2002-03-11

Family

ID=17910835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30259292A Expired - Lifetime JP3265653B2 (en) 1992-11-12 1992-11-12 Composite particles, hollow particles and their production method

Country Status (1)

Country Link
JP (1) JP3265653B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032920A1 (en) * 1996-03-06 1997-09-12 Rhodia Chimie Composite particles including an organic polymer and an oxide and/or hydroxide
WO1999011574A1 (en) * 1997-09-02 1999-03-11 Ishihara Sangyo Kaisha, Ltd. Hollow fine powder, flaky fine titanium oxide powder prepared by pulverizing said hollow fine powder, and process for preparing the both
JP2000226453A (en) * 1999-02-05 2000-08-15 Jsr Corp Hollow particle and preparation thereof
WO2001060745A1 (en) * 2000-02-17 2001-08-23 Otsuka Chemical Co., Ltd. Carbon-coated porous silica powder, process for producing the same, and conductive resin composition containing the powder
JP2001342010A (en) * 2000-05-30 2001-12-11 Kyocera Corp Inorganic hollow particle and its manufacturing method
US6454819B1 (en) * 1999-01-18 2002-09-24 Kabushiki Kaisha Toshiba Composite particles and production process thereof, aqueous dispersion, aqueous dispersion composition for chemical mechanical polishing, and process for manufacture of semiconductor device
JP2003200033A (en) * 2002-01-09 2003-07-15 Hitachi Chem Co Ltd Hollow particulate assembly manufacturing method and hollow particulate assembly obtained thereby
JP2004083371A (en) * 2002-08-28 2004-03-18 National Institute For Materials Science Process for producing ceramic porous body
JP2004307837A (en) * 2003-03-25 2004-11-04 Sekisui Plastics Co Ltd Silica-coated polymer particle, method for producing the same and cosmetic
JP2005263550A (en) * 2004-03-18 2005-09-29 Nagoya Kogyo Univ High dispersion silica nano hollow particle and its producing method
JP2005263590A (en) * 2004-03-19 2005-09-29 National Institute Of Advanced Industrial & Technology Water based wet forming of ceramic nanoparticle and method of manufacturing highly controlled porous ceramic
KR100549163B1 (en) * 2001-10-20 2006-02-03 김호건 Manufacturing Method of Silica-Titania Composit Material with Nano sized pore for Protein Immobillization
JP2006062902A (en) * 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
WO2007037202A1 (en) * 2005-09-28 2007-04-05 Sekisui Plastics Co., Ltd. Silica-combined polymer particle, process for producing the same, and use thereof
JP2007256368A (en) * 2006-03-20 2007-10-04 Sekisui Plastics Co Ltd Light guiding plate and liquid crystal display apparatus
JP2008247664A (en) * 2007-03-30 2008-10-16 Jsr Corp Method for producing silica-base hollow particle, and method for producing silica-base hollow particle-dispersed body
JP2009504632A (en) * 2005-08-10 2009-02-05 ザ プロクター アンド ギャンブル カンパニー Hollow silica particles, composition containing them, and method for producing the same
JP2009067614A (en) * 2007-09-11 2009-04-02 Kao Corp Composite hollow mesoporous silica particle
JP2009067671A (en) * 2007-08-22 2009-04-02 Jsr Corp Method for manufacturing silica-based hollow particle
JP2009203115A (en) * 2008-02-28 2009-09-10 Kao Corp Hollow silica particle and its manufacturing method
JP2009234848A (en) * 2008-03-27 2009-10-15 Jsr Corp Method for producing silica-based hollow particle and method for producing silica-based hollow particle dispersion
JP2009263171A (en) * 2008-04-25 2009-11-12 Kao Corp Mesoporous silica particle of core-shell structure
JP2010100502A (en) * 2008-10-27 2010-05-06 Covalent Materials Corp Ceramic particle
WO2010074063A1 (en) 2008-12-25 2010-07-01 電気化学工業株式会社 Composite particles, process for producing the composite particles, hollow particles, process for producing the hollow particles, and use of the hollow particles
JP2010168264A (en) * 2008-12-26 2010-08-05 Nitto Denko Corp Inorganic porous body and method for producing the same
JP2011016718A (en) * 2010-09-06 2011-01-27 Kyocera Corp Inorganic hollow powder and method for manufacturing the same
JP2012144394A (en) * 2011-01-12 2012-08-02 Konica Minolta Holdings Inc Method for producing hollow particle, and optical material and heat insulation material using hollow particle
JP5087403B2 (en) * 2005-09-28 2012-12-05 積水化成品工業株式会社 Silica composite polymer particles, method for producing the same, and use thereof
US8435475B2 (en) 2007-06-26 2013-05-07 Denki Kagaku Kogyo Kabushiki Kaisha Spherical organic polymer-silicon compound composite particles, hollow particles and their production methods
US8623312B2 (en) 2005-06-02 2014-01-07 Asahi Glass Company, Limited Process for producing dispersion of hollow fine SiO2 particles, coating composition and substrate with antireflection coating film
JP2014143188A (en) * 2012-12-28 2014-08-07 Sekisui Chem Co Ltd Organic/inorganic hybrid particle, conductive particle, conductive material and connection structure
JP2014143187A (en) * 2012-12-28 2014-08-07 Sekisui Chem Co Ltd Organic/inorganic hybrid particle, conductive particle, conductive material and connection structure
JP2015530342A (en) * 2013-05-16 2015-10-15 エルジー・ケム・リミテッド Hollow silicon-based particles, production method thereof, and negative electrode active material for lithium secondary battery including the same
JP2017141441A (en) * 2016-02-08 2017-08-17 三洋化成工業株式会社 Composite particle, white pigment dispersion and ink composition for inkjet
WO2018207751A1 (en) 2017-05-11 2018-11-15 日本化薬株式会社 Hollow structure particles, method for producing same and white ink
JP2019516006A (en) * 2016-03-18 2019-06-13 ブンデスリパブリック ドイチュラント、バートリィトン ドエヒ デン ブンデスミニスター ファ ヴィルトシャフト ウント エネルジー、ディザ バートリィトン ドエヒ デン プレジデンテン デァ ブンデスアンスタルツ ファ マトリアルフォシュン ウント−プロフン (ビーエーエム) Method for synthesizing hybrid core-shell microparticles comprising a silicon dioxide shell and a polymer core with controlled structure and surface area
JP2020090398A (en) * 2018-12-03 2020-06-11 花王株式会社 Method for producing hollow inorganic oxide particles
JP2021113170A (en) * 2020-01-20 2021-08-05 日本化薬株式会社 Cosmetic composition including metal oxide hollow particle
KR20210136472A (en) * 2020-05-07 2021-11-17 단국대학교 산학협력단 Method for manufacturing thermoplastic polymer foam using hollow nanoparticle
US11179694B2 (en) 2017-09-11 2021-11-23 Basf Se Method of forming porous metal oxide microspheres
US11185835B2 (en) 2017-09-11 2021-11-30 Basf Se Method of forming porous metal oxide microspheres using polydisperse polymer nanospheres
US11345820B2 (en) 2017-12-11 2022-05-31 Nippon Kayaku Kabushiki Kaisha Hollow particles and production method therefor, and white ink
KR20230040330A (en) 2020-07-17 2023-03-22 우베 에쿠시모 가부시키가이샤 Hollow inorganic particles and method for producing the hollow inorganic particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102323419B1 (en) * 2019-11-18 2021-11-05 비드오리진(주) Polymer core-inorganic shell particle, method of preparation thereof and polishing composition comprising thereof

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506206A (en) * 1996-03-06 2000-05-23 ロディア シミ Composite particles containing organic polymer and oxide and / or hydroxide
FR2745816A1 (en) * 1996-03-06 1997-09-12 Rhone Poulenc Chimie COMPOSITE PARTICLES CONSISTING OF AN ORGANIC POLYMER AND AN OXIDE, HOLLOW OXIDE-BASED PARTICLES, THEIR PREPARATION AND THEIR USES
WO1997032920A1 (en) * 1996-03-06 1997-09-12 Rhodia Chimie Composite particles including an organic polymer and an oxide and/or hydroxide
CN1330577C (en) * 1997-09-02 2007-08-08 石原产业株式会社 Hollow fine powder, flaky fine titanium oxide powder prepared by pulverising said hollow fine powder and process for preparing both
AU743389B2 (en) * 1997-09-02 2002-01-24 Ishihara Sangyo Kaisha Ltd. Fine hollow powder,thin flaky titanium oxide powder obtained by pulverization of the fine hollow powder and processes for producing the same
WO1999011574A1 (en) * 1997-09-02 1999-03-11 Ishihara Sangyo Kaisha, Ltd. Hollow fine powder, flaky fine titanium oxide powder prepared by pulverizing said hollow fine powder, and process for preparing the both
US8163386B1 (en) 1997-09-02 2012-04-24 Ishihara Sangyo Kaisha, Ltd. Fine hollow powder thin flaky titanium oxide powder obtained by pulverization of the fine hollow powder and processes for producing the same
JP3611303B2 (en) * 1997-09-02 2005-01-19 石原産業株式会社 Hollow fine powder, flaky titanium oxide fine powder obtained by pulverizing hollow fine powder, and method for producing them
US6454819B1 (en) * 1999-01-18 2002-09-24 Kabushiki Kaisha Toshiba Composite particles and production process thereof, aqueous dispersion, aqueous dispersion composition for chemical mechanical polishing, and process for manufacture of semiconductor device
EP1683821A1 (en) 1999-01-18 2006-07-26 JSR Corporation Composite particles and production process thereof, aqueous dispersion composition for chemical polishing, and process for manufacture of semiconductor device
JP2000226453A (en) * 1999-02-05 2000-08-15 Jsr Corp Hollow particle and preparation thereof
WO2001060745A1 (en) * 2000-02-17 2001-08-23 Otsuka Chemical Co., Ltd. Carbon-coated porous silica powder, process for producing the same, and conductive resin composition containing the powder
JP2001342010A (en) * 2000-05-30 2001-12-11 Kyocera Corp Inorganic hollow particle and its manufacturing method
KR100549163B1 (en) * 2001-10-20 2006-02-03 김호건 Manufacturing Method of Silica-Titania Composit Material with Nano sized pore for Protein Immobillization
JP2003200033A (en) * 2002-01-09 2003-07-15 Hitachi Chem Co Ltd Hollow particulate assembly manufacturing method and hollow particulate assembly obtained thereby
JP2004083371A (en) * 2002-08-28 2004-03-18 National Institute For Materials Science Process for producing ceramic porous body
JP2004307837A (en) * 2003-03-25 2004-11-04 Sekisui Plastics Co Ltd Silica-coated polymer particle, method for producing the same and cosmetic
JP2005263550A (en) * 2004-03-18 2005-09-29 Nagoya Kogyo Univ High dispersion silica nano hollow particle and its producing method
JP2005263590A (en) * 2004-03-19 2005-09-29 National Institute Of Advanced Industrial & Technology Water based wet forming of ceramic nanoparticle and method of manufacturing highly controlled porous ceramic
JP4524425B2 (en) * 2004-03-19 2010-08-18 独立行政法人産業技術総合研究所 Ceramic nanoparticle-coated organic resin sphere particles, molded body thereof, porous ceramics, and production method thereof
JP2006062902A (en) * 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
US8623312B2 (en) 2005-06-02 2014-01-07 Asahi Glass Company, Limited Process for producing dispersion of hollow fine SiO2 particles, coating composition and substrate with antireflection coating film
JP2009504632A (en) * 2005-08-10 2009-02-05 ザ プロクター アンド ギャンブル カンパニー Hollow silica particles, composition containing them, and method for producing the same
WO2007037202A1 (en) * 2005-09-28 2007-04-05 Sekisui Plastics Co., Ltd. Silica-combined polymer particle, process for producing the same, and use thereof
JP5087403B2 (en) * 2005-09-28 2012-12-05 積水化成品工業株式会社 Silica composite polymer particles, method for producing the same, and use thereof
JP2007256368A (en) * 2006-03-20 2007-10-04 Sekisui Plastics Co Ltd Light guiding plate and liquid crystal display apparatus
JP2008247664A (en) * 2007-03-30 2008-10-16 Jsr Corp Method for producing silica-base hollow particle, and method for producing silica-base hollow particle-dispersed body
US8435475B2 (en) 2007-06-26 2013-05-07 Denki Kagaku Kogyo Kabushiki Kaisha Spherical organic polymer-silicon compound composite particles, hollow particles and their production methods
JP2009067671A (en) * 2007-08-22 2009-04-02 Jsr Corp Method for manufacturing silica-based hollow particle
JP2009067614A (en) * 2007-09-11 2009-04-02 Kao Corp Composite hollow mesoporous silica particle
JP2009203115A (en) * 2008-02-28 2009-09-10 Kao Corp Hollow silica particle and its manufacturing method
JP2009234848A (en) * 2008-03-27 2009-10-15 Jsr Corp Method for producing silica-based hollow particle and method for producing silica-based hollow particle dispersion
JP2009263171A (en) * 2008-04-25 2009-11-12 Kao Corp Mesoporous silica particle of core-shell structure
JP2010100502A (en) * 2008-10-27 2010-05-06 Covalent Materials Corp Ceramic particle
WO2010074063A1 (en) 2008-12-25 2010-07-01 電気化学工業株式会社 Composite particles, process for producing the composite particles, hollow particles, process for producing the hollow particles, and use of the hollow particles
JP2010168264A (en) * 2008-12-26 2010-08-05 Nitto Denko Corp Inorganic porous body and method for producing the same
JP2011016718A (en) * 2010-09-06 2011-01-27 Kyocera Corp Inorganic hollow powder and method for manufacturing the same
JP2012144394A (en) * 2011-01-12 2012-08-02 Konica Minolta Holdings Inc Method for producing hollow particle, and optical material and heat insulation material using hollow particle
JP2014143188A (en) * 2012-12-28 2014-08-07 Sekisui Chem Co Ltd Organic/inorganic hybrid particle, conductive particle, conductive material and connection structure
JP2014143187A (en) * 2012-12-28 2014-08-07 Sekisui Chem Co Ltd Organic/inorganic hybrid particle, conductive particle, conductive material and connection structure
JP2015530342A (en) * 2013-05-16 2015-10-15 エルジー・ケム・リミテッド Hollow silicon-based particles, production method thereof, and negative electrode active material for lithium secondary battery including the same
US9722242B2 (en) 2013-05-16 2017-08-01 Lg Chem, Ltd. Hollow silicon-based particle, preparation method thereof and anode active material for lithium secondary battery including the same
JP2017141441A (en) * 2016-02-08 2017-08-17 三洋化成工業株式会社 Composite particle, white pigment dispersion and ink composition for inkjet
JP2019516006A (en) * 2016-03-18 2019-06-13 ブンデスリパブリック ドイチュラント、バートリィトン ドエヒ デン ブンデスミニスター ファ ヴィルトシャフト ウント エネルジー、ディザ バートリィトン ドエヒ デン プレジデンテン デァ ブンデスアンスタルツ ファ マトリアルフォシュン ウント−プロフン (ビーエーエム) Method for synthesizing hybrid core-shell microparticles comprising a silicon dioxide shell and a polymer core with controlled structure and surface area
US10888829B2 (en) 2016-03-18 2021-01-12 Bundesrepublik Deutschland, Vertreten Durch Den Bundesrepublik Für Wirtschaft Und Energie Process for synthesizing hybrid core-shell microparticles comprising a polymer core and a silicon dioxide shell with controlled structure and surface
WO2018207751A1 (en) 2017-05-11 2018-11-15 日本化薬株式会社 Hollow structure particles, method for producing same and white ink
US10995228B2 (en) 2017-05-11 2021-05-04 Nippon Kayaku Kabushiki Kaisha Hollow structure particles, method for producing same and white ink
US11179694B2 (en) 2017-09-11 2021-11-23 Basf Se Method of forming porous metal oxide microspheres
US11185835B2 (en) 2017-09-11 2021-11-30 Basf Se Method of forming porous metal oxide microspheres using polydisperse polymer nanospheres
US11471849B2 (en) 2017-09-11 2022-10-18 President And Fellows Of Harvard College Porous metal oxide microspheres with varying pore sizes
US11517871B2 (en) 2017-09-11 2022-12-06 President And Fellows Of Harvard College Porous metal oxide microspheres
US11345820B2 (en) 2017-12-11 2022-05-31 Nippon Kayaku Kabushiki Kaisha Hollow particles and production method therefor, and white ink
JP2020090398A (en) * 2018-12-03 2020-06-11 花王株式会社 Method for producing hollow inorganic oxide particles
JP2021113170A (en) * 2020-01-20 2021-08-05 日本化薬株式会社 Cosmetic composition including metal oxide hollow particle
KR20210136472A (en) * 2020-05-07 2021-11-17 단국대학교 산학협력단 Method for manufacturing thermoplastic polymer foam using hollow nanoparticle
KR20230040330A (en) 2020-07-17 2023-03-22 우베 에쿠시모 가부시키가이샤 Hollow inorganic particles and method for producing the hollow inorganic particles

Also Published As

Publication number Publication date
JP3265653B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
JPH06142491A (en) Composite particle, hollow particle and their production
JP3300379B2 (en) Method for producing carbon-metal compound composite particles
JP3636365B2 (en) Polymer beads and method for producing the same
JP3738847B2 (en) Method for producing diagnostic particles
WO2009081700A1 (en) Polymer-coated fine inorganic particle and process for producing the same
CN105860593A (en) Composition capable of enhancing pearlescent effect of pearlescent pigment, and preparation method and application thereof
JPS62213839A (en) Preparation of composite particle coated uniformly
KR100913272B1 (en) Preparation method of core-shell type nanocomposite particles in supercritical carbon dioxide
JPH05138009A (en) Production of spherical inorganic hollow particles
EP3519530A1 (en) Coated support means for fracking mining methods
JP2006275600A (en) Magnetic particle, manufacturing method thereof, and carrier for biochemistry
KR20210067411A (en) Polymer bead and the manufacturing method thereof
JPH11191510A (en) Magnetic polymer article, its manufacturing and diagnostic medicine
JP2000159509A (en) Production of inorganic particles and inorganic particles
KR20040067374A (en) Preparation of polymer spherical composites containing metal nano particles by chemical precipitation method
JPH0753728A (en) Blocking-resistant synthetic resin emulsion powder
JPH05139711A (en) Uniform particle diameter fired particulate and production therefor
JP3042101B2 (en) Method for producing composite particles and hollow particles
JP2000034582A (en) Composite particle and hollow particle
JP5346261B2 (en) Metal composite organic resin particles and method for producing metal composite organic resin particles
JPH05170425A (en) Production of composite particle
JP5453027B2 (en) Metal composite organic resin particles and method for producing metal composite organic resin particles
JP2003252916A (en) Composite particle and its manufacturing method
JP4639696B2 (en) Magnetic composite particles and method for producing the same
JPS6228178B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

EXPY Cancellation because of completion of term