JP2003252916A - Composite particle and its manufacturing method - Google Patents

Composite particle and its manufacturing method

Info

Publication number
JP2003252916A
JP2003252916A JP2002052571A JP2002052571A JP2003252916A JP 2003252916 A JP2003252916 A JP 2003252916A JP 2002052571 A JP2002052571 A JP 2002052571A JP 2002052571 A JP2002052571 A JP 2002052571A JP 2003252916 A JP2003252916 A JP 2003252916A
Authority
JP
Japan
Prior art keywords
layer
particles
composite particle
organic polymer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002052571A
Other languages
Japanese (ja)
Other versions
JP3960078B2 (en
Inventor
Fusao Hojo
房郎 北條
Toshiaki Ishii
利昭 石井
Toshiya Sato
俊也 佐藤
Takao Miwa
崇夫 三輪
Mikio Konno
幹男 今野
Jiyunchiyou Ko
順超 顧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002052571A priority Critical patent/JP3960078B2/en
Publication of JP2003252916A publication Critical patent/JP2003252916A/en
Application granted granted Critical
Publication of JP3960078B2 publication Critical patent/JP3960078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a composite particle of a single nucleus wherein a metallic oxide or a silicon dioxide having a size of ≤ several μm is coated with an organic polymer compound of any film thickness. <P>SOLUTION: A manufacturing method of the composite particle comprises treating a surface of a metallic oxide finely divided particle or a silicon dioxide finely divided particle with a coupling agent having a substituent group reactive with the finely divided particle and a vinyl group reactive with a monomer of an organic polymer, adding a surfactant having a vinyl group reactive with the monomer of the organic polymer thereto, polymerizing the surfactant with the monomer, and improving dispersion stability of resulting product in the polymerization reaction process to obtain the composite particle comprising the metallic oxide or the silicon dioxide as a first layer of the center and the organic polymer compound as a second layer of the outside. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機高分子化合物
で被覆された単核の複合粒子及びその製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a mononuclear composite particle coated with an organic polymer compound and a method for producing the same.

【0002】[0002]

【従来の技術】数μm以上の微粒子表面を有機高分子化
合物でコーティングする技術は多くの公知例が知られて
いる。しかし、1μm〜5nmの金属,金属酸化物また
はケイ素酸化物の微粒子を有機高分子化合物により被覆
して単核の複合粒子を得るのは困難である。それは、粒
子同士による凝集等のため粒子核表面の均一被覆が困難
なことによる。
2. Description of the Related Art There are many known examples of the technique for coating the surface of fine particles of several μm or more with an organic polymer compound. However, it is difficult to obtain mononuclear composite particles by coating fine particles of 1 μm to 5 nm of metal, metal oxide or silicon oxide with an organic polymer compound. This is because it is difficult to uniformly coat the surface of the particle core due to aggregation of particles and the like.

【0003】単核の微粒子を得るための方法としてポー
ラスアルミナ等の膜により核となる金粒子を支持し高分
子化合物により被覆する方法により金微粒子のコーティ
ングがなされている(Chem. Mater. 1998, 10, 1214. A
dv. Mater. 1999, 11, 34.)。
As a method for obtaining mononuclear fine particles, gold fine particles have been coated by a method of supporting a core gold particle with a film of porous alumina or the like and coating it with a polymer compound (Chem. Mater. 1998, 10, 1214.A
dv. Mater. 1999, 11, 34.).

【0004】また、銀微粒子をポリスチレンまたはメタ
クリル酸でオレイン酸存在下,乳化重合することにより
100nmサイズの銀微粒子のコーティングがされてい
る(J. Am. Chem. Soc., 1999, 121, 10642.)。
Further, 100 nm size silver fine particles are coated by emulsion polymerization of silver fine particles with polystyrene or methacrylic acid in the presence of oleic acid (J. Am. Chem. Soc., 1999, 121, 10642. ).

【0005】従来、無機酸化物微粒子を有機高分子で被
覆する例として、特開平9−325525号公報,特開平9−
311504号公報,特開平9−311505号公報,
特開平9−325524号公報等に記載のように、無機
酸化物微粒子を単量体と共に分散させて重合する際に、
無機酸化物微粒子をシラン系あるいはチタネート系カッ
プリング剤で処理する方法、あるいは、界面活性剤を含
む溶媒中に無機微粒子を分散させ、粒子表面に界面活性
剤を吸着させる方法により無機酸化物微粒子と有機物と
の親和性を高めた無機酸化物微粒子を用いる例が知られ
ている。
Conventionally, as examples of coating inorganic oxide fine particles with an organic polymer, JP-A-9-325525 and JP-A-9-325525 have been proposed.
311504, JP-A-9-31105,
As described in JP-A-9-325524, when the inorganic oxide fine particles are dispersed together with a monomer and polymerized,
Inorganic oxide particles are treated by a method of treating the inorganic oxide particles with a silane-based or titanate-based coupling agent, or by dispersing the inorganic particles in a solvent containing a surfactant and adsorbing the surfactant on the particle surface. An example is known in which fine particles of an inorganic oxide having a high affinity with an organic substance are used.

【0006】[0006]

【発明が解決しようとする課題】ポーラスアルミナ等の
膜により核となる金粒子を支持し高分子化合物により被
覆する方法では、核や複合粒子の大きさが膜の孔の大き
さにより制限されてしまうこと、微粒子をいちいち膜に
支持し、膜を溶解しなければならず、手間がかかること
など欠点がある。
In the method of supporting gold particles as cores with a film of porous alumina or the like and coating them with a polymer compound, the size of the cores and composite particles is limited by the size of the pores of the film. However, there are drawbacks such as that it takes time and effort because it is necessary to support the fine particles on the membrane one by one and dissolve the membrane.

【0007】銀微粒子をポリスチレンまたはメタクリル
酸でオレイン酸存在下,乳化重合する方法では、現在の
ところ2−10nmの膜厚でしかコーティングされてお
らず、コーティングする高分子化合物の膜厚を厚くする
と(>10nm)球形に形の整った微粒子が得られにく
くなる、また、多核の微粒子が多くなってくる等問題点
がある。
In the method of emulsion-polymerizing fine silver particles with polystyrene or methacrylic acid in the presence of oleic acid, at present, only a film thickness of 2-10 nm is coated, and when the film thickness of the polymer compound to be coated is increased. (> 10 nm) It becomes difficult to obtain fine particles having a spherical shape, and the number of polynuclear fine particles increases.

【0008】無機酸化物微粒子を有機高分子で被覆する
従来技術の例では、いずれの方法によっても得られるの
は樹脂中に無機酸化物微粒子が分散した粒子であり、2
層構造を有する単核の複合粒子を得ることはできない。
In the examples of the prior art in which the inorganic oxide fine particles are coated with the organic polymer, particles obtained by dispersing the inorganic oxide fine particles in the resin are obtained by any method.
It is not possible to obtain mononuclear composite particles having a layered structure.

【0009】本発明の目的は、上述の状況において特に
1μm〜5nmの任意の大きさの金属酸化物またはケイ
素酸化物微粒子において、ポーラスアルミナ等の膜によ
る支持によらず、簡便に金属酸化物またはケイ素酸化物
の微粒子を任意の膜厚の有機高分子化合物でコーティン
グした単核の複合粒子を得ることである。
The object of the present invention is to provide a metal oxide or silicon oxide fine particle having an arbitrary size of 1 μm to 5 nm, particularly in the above-mentioned situation, without depending on the support by a membrane such as porous alumina. This is to obtain mononuclear composite particles in which fine particles of silicon oxide are coated with an organic polymer compound having an arbitrary thickness.

【0010】[0010]

【課題を解決するための手段】本発明は金属酸化物微粒
子の合成方法および高分子重合法を鋭意検討した結果得
られたものである。
Means for Solving the Problems The present invention was obtained as a result of extensive studies on a method for synthesizing metal oxide fine particles and a polymerizing method.

【0011】その特徴は、中心になる第1の層の金属酸
化物微粒子またはケイ素酸化物微粒子をビニル基の重合
反応により、金属酸化物微粒子またはケイ素酸化物微粒
子の表面を有機高分子化合物で被覆する際、金属酸化物
微粒子またはケイ素酸化物微粒子の表面を、微粒子と反
応しうる置換基および有機高分子の単量体と反応しうる
ビニル基を有するカップリング剤で処理し、有機高分子
の単量体と反応しうるビニル基を有する界面活性剤を添
加し単量体と共に重合反応させることにより、重合反応
過程において分散安定性を高め、これにより2類の異な
る物質からなる2層構造を有する複合粒子であり中心の
第一の層が金属酸化物またはケイ素酸化物、外側の第二
の層が有機高分子化合物であることを特徴とする複合粒
子を得ることができることにある。この際、カップリン
グ剤,界面活性剤は一層と考えない。本発明では、粒径
1μm〜5nmの金属酸化物微粒子またはケイ素酸化物
微粒子の表面が膜厚5μm〜5nmの有機高分子化合物
でコーティングされた複合粒子を得ることができる。
The characteristic is that the surface of the metal oxide fine particles or silicon oxide fine particles is coated with an organic polymer compound by the vinyl group polymerization reaction of the metal oxide fine particles or silicon oxide fine particles of the first layer as the center. In doing so, the surface of the metal oxide fine particles or the silicon oxide fine particles is treated with a coupling agent having a substituent capable of reacting with the fine particles and a vinyl group capable of reacting with the monomer of the organic polymer, and the By adding a surfactant having a vinyl group capable of reacting with the monomer and polymerizing the monomer together with the monomer, the dispersion stability is enhanced in the polymerization reaction process, thereby forming a two-layer structure composed of two different substances. It is possible to obtain a composite particle characterized in that the central first layer is a metal oxide or silicon oxide and the outer second layer is an organic polymer compound. In the Rukoto. At this time, the coupling agent and the surfactant are not considered further. In the present invention, it is possible to obtain composite particles in which the surface of metal oxide fine particles or silicon oxide fine particles having a particle diameter of 1 μm to 5 nm is coated with an organic polymer compound having a film thickness of 5 μm to 5 nm.

【0012】金属酸化物微粒子またはケイ素酸化物微粒
子の表面を有機高分子化合物で被覆する際、シランカッ
プリング剤または界面活性剤を用いて微粒子表面を処理
し、有機物との親和性を高めた微粒子と有機高分子の単
量体を用いて重合反応を行っても収率良く2層構造を有
する複合粒子を得ることはできない。
When the surface of metal oxide fine particles or silicon oxide fine particles is coated with an organic polymer compound, the fine particle surface is treated with a silane coupling agent or a surfactant to improve the affinity with organic substances. Even if the organic polymer monomer is used for the polymerization reaction, a composite particle having a two-layer structure cannot be obtained in good yield.

【0013】カップリング剤としては、金属酸化物微粒
子またはケイ素酸化物微粒子と反応しうる置換基および
有機高分子層を形成する単量体と反応し得る置換基を有
していることが重要である。具体的には、金属酸化物微
粒子またはケイ素酸化物微粒子の−OH基と反応するシ
リルアルコキシル基またはSiOH基そして高分子鎖を
形成するビニル基(H2C=CH−R−SiR′m(OH)
3-m R′:OCH3,OC25,OC37,OC37
OC49 m=3,2,1 Rは特に限定しない)を有
することが必要である。また、ケイ素をチタンなど他の
金属元素に置き換えることも可能である。
It is important that the coupling agent has a substituent capable of reacting with the metal oxide fine particles or the silicon oxide fine particles and a substituent capable of reacting with the monomer forming the organic polymer layer. is there. Specifically, a silylalkoxyl group or SiOH group that reacts with -OH groups of metal oxide fine particles or silicon oxide fine particles and a vinyl group (H 2 C = CH-R-SiR ' m (OH )
3-m R ′: OCH 3 , OC 2 H 5 , OC 3 H 7 , OC 3 H 7 ,
OC 4 H 9 m = 3,2,1 R is not particularly limited). It is also possible to replace silicon with another metal element such as titanium.

【0014】界面活性剤としては、有機高分子層を形成
する単量体と反応しうる置換基を有していることが重要
である。具体的には、アニオン系,カチオン系界面活性
剤を用いることができるが、ビニル基を有することが必
要である。例えばビニル基を有するスルフォン酸および
その塩(H2C =CH−R″−SO3X・xH2O X:
H,Li,K,Na)であればR″は特に限定はしな
い。実施例では4−スチレンスルフォン酸ナトリウム塩
(H2C =CHC64SO3Na・xH2O)を用いてい
る。
It is important that the surfactant has a substituent capable of reacting with the monomer forming the organic polymer layer. Specifically, an anionic or cationic surfactant can be used, but it is necessary to have a vinyl group. For example sulfonic acid having a vinyl group and a salt thereof (H 2 C = CH-R "-SO 3 X · xH 2 O X:
R ″ is not particularly limited as long as it is H, Li, K, Na). In the examples, 4-styrenesulfonic acid sodium salt (H 2 C ═CHC 6 H 4 SO 3 Na · xH 2 O) is used. .

【0015】第一層の金属酸化物またはケイ素酸化物
は、金属またはケイ素のアルコキシ化合物,金属または
ケイ素ハロゲン化物,金属塩,金属キレートの加水分解
縮合反応により形成し、微粒子表面に−OH基を有する
ことが必要である。この際、第一層の金属酸化物または
ケイ素酸化物の粒子内に金属,金属酸化物,ケイ素酸化
物を有する複合粒子を用いて有機高分子化合物によるコ
ーティングを行うこともできる。金属粒子のケイ素また
はチタン酸化物によるコーティングは以下の例が公知で
ある(Adv. Mater. 2001, 13, 11.、Langmuir 2000, 16,
2713.)。また、チタン酸化物の粒子内にケイ素酸化物
を有する複合粒子も以下のように公知である(Langmuir
1999, 15, 5535.)。本発明においてはこの方法を応用
し第一層の金属酸化物またはケイ素酸化物の粒子内に金
属,金属酸化物,ケイ素酸化物を有する複合粒子を用い
て有機高分子化合物によるコーティングを行う事ができ
る。
The metal oxide or silicon oxide of the first layer is formed by a hydrolytic condensation reaction of a metal or silicon alkoxy compound, a metal or silicon halide, a metal salt or a metal chelate, and an -OH group is formed on the surface of the fine particles. It is necessary to have. At this time, coating with an organic polymer compound can be performed using composite particles having a metal, a metal oxide, and a silicon oxide in the particles of the metal oxide or the silicon oxide of the first layer. The following examples are known for coating metal particles with silicon or titanium oxide (Adv. Mater. 2001, 13, 11., Langmuir 2000, 16,).
2713.). In addition, composite particles having silicon oxide in titanium oxide particles are also known as follows (Langmuir
1999, 15, 5535.). In the present invention, this method may be applied to perform coating with an organic polymer compound using composite particles having a metal, a metal oxide, and a silicon oxide in the particles of the metal oxide or the silicon oxide of the first layer. it can.

【0016】本発明の金属酸化物またはケイ素酸化物を
形成するための前駆体化合物としては、最終的に金属酸
化物と成り得る化合物であれば限定されない。金属アル
コキシド,金属アセチルアセトネート,金属カルボキシ
レート及び金属キレートからなる群から選ばれる1種以
上が好ましい。金属またはケイ素アルコキシドとして
は、Si,Ge,Sn,Pb,Al,Ga,As,S
b,Bi,Ti,Zr,V,Nb,Ta,Na,K,L
i,Ca,Mg,Ba,Srなどのアルコキシドが挙げ
られる。具体的には以下のようなものが挙げられる。L
iOCH3,NaOCH3,Cu(OCH3)2 ,Ca(OCH3)2
,Sr(OC25)2 ,Ba(OC25)2 ,Zn(OC2
5)2 ,B(OCH3)3 ,Al(i−OC37)3 ,Ga
(OC25)3,Y(OC49)3,Ge(OC25)4 ,Pb
(OC49)4 ,P(OCH3)3 ,Sb(OC25)3 ,V
O(OC25)3 ,Ta(OC37)5 ,W(OC25)6
La(OC37)3 ,Nd(OC25)3 ,Si(OCH3)4
,Si(OC25)4 ,Si(i−OC37)4,Si(t
−OC49)4,Ti(OCH3)4,Ti(OC25)4,Ti
(i−OC37)4,Ti(OC49)4,Zr(OCH3)4
Zr(OC25)4,Zr(OC37)4 ,Zr(OC49)4
,Al(OCH3)3,Al(OC25)3 ,Al(i−OC
37)3 ,Al(OC49)3 ,La[Al(iso−OC
37)43,Mg[Al(iso−OC37)42 ,M
g[Al(sec−OC49)42 ,Ni(iso−OC3
7)42 ,(C37O)2Zr[Al(OC37)42 ,B
a[Zr2(OC25)92 等を用いることができる。
The precursor compound for forming the metal oxide or silicon oxide of the present invention is not limited as long as it is a compound that can finally become a metal oxide. One or more selected from the group consisting of metal alkoxides, metal acetylacetonates, metal carboxylates and metal chelates are preferred. Examples of the metal or silicon alkoxide include Si, Ge, Sn, Pb, Al, Ga, As and S.
b, Bi, Ti, Zr, V, Nb, Ta, Na, K, L
Examples thereof include alkoxides such as i, Ca, Mg, Ba and Sr. Specific examples include the following. L
iOCH 3, NaOCH 3, Cu ( OCH 3) 2, Ca (OCH 3) 2
, Sr (OC 2 H 5 ) 2 , Ba (OC 2 H 5 ) 2 , Zn (OC 2
H 5) 2, B (OCH 3) 3, Al (i-OC 3 H 7) 3, Ga
(OC 2 H 5) 3, Y (OC 4 H 9) 3, Ge (OC 2 H 5) 4, Pb
(OC 4 H 9 ) 4 , P (OCH 3 ) 3 , Sb (OC 2 H 5 ) 3 , V
O (OC 2 H 5 ) 3 , Ta (OC 3 H 7 ) 5 , W (OC 2 H 5 ) 6 ,
La (OC 3 H 7 ) 3 , Nd (OC 2 H 5 ) 3 , Si (OCH 3 ) 4
, Si (OC 2 H 5 ) 4 , Si (i-OC 3 H 7 ) 4 , Si (t
-OC 4 H 9) 4, Ti (OCH 3) 4, Ti (OC 2 H 5) 4, Ti
(i-OC 3 H 7) 4, Ti (OC 4 H 9) 4, Zr (OCH 3) 4,
Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OC 4 H 9 ) 4
, Al (OCH 3 ) 3 , Al (OC 2 H 5 ) 3 , Al (i-OC
3 H 7 ) 3 , Al (OC 4 H 9 ) 3 , La [Al (iso-OC
3 H 7) 4] 3, Mg [Al (iso-OC 3 H 7) 4] 2, M
g [Al (sec-OC 4 H 9) 4] 2, Ni (iso-OC 3 H
7 ) 4 ] 2 , (C 3 H 7 O) 2 Zr [Al (OC 3 H 7 ) 4 ] 2 , B
a [Zr 2 (OC 2 H 5 ) 9 ] 2 or the like can be used.

【0017】金属キレート化合物としては、アセチルア
セトナート等の1,3−ジカルボニル化合物を配位子に
有するものなどが用いられ、具体的には以下のようなも
のが挙げられる。トリス(アセチルアセトナート)アル
ミニウム,トリス(エチルアセトアセタト)アルミニウ
ム,トリス(サリチルアルデヒダト)アルミニウム,イ
ンジウムアセチルアセトネート,亜鉛アセチルアセトネ
ート,銅アセチルアセトネート,白金アセチルアセトネ
ート等を用いることができる。
As the metal chelate compound, those having a 1,3-dicarbonyl compound such as acetylacetonate as a ligand are used, and specific examples include the following. Tris (acetylacetonato) aluminum, tris (ethylacetoacetato) aluminum, tris (salicylaldehyde) aluminum, indium acetylacetonate, zinc acetylacetonate, copper acetylacetonate, platinum acetylacetonate, etc. can be used. .

【0018】金属カルボン酸塩としては、例えば酢酸塩
などが用いられ、具体的には以下のようなものが挙げら
れる。酢酸バリウム,酢酸銅(II),酢酸リチウム,酢
酸マグネシウム,酢酸鉛,シュウ酸バリウム,シュウ酸
カルシウム,シュウ酸銅(II),シュウ酸マグネシウム,
シュウ酸スズ(II),シュウ酸イットリウム,ステアリ
ル酸イットリウム等を用いることができる。
As the metal carboxylate, for example, acetate or the like is used, and specific examples include the following. Barium acetate, copper (II) acetate, lithium acetate, magnesium acetate, lead acetate, barium oxalate, calcium oxalate, copper (II) oxalate, magnesium oxalate,
Tin (II) oxalate, yttrium oxalate, yttrium stearate, etc. can be used.

【0019】金属またはケイ素ハロゲン化物としては、
TiCl4 ,ZnCl2 ,WCl6,SnCl2 ,Sr
Cl6 ,SiCl4 等を用いることができる。
As the metal or silicon halide,
TiCl 4 , ZnCl 2 , WCl 6 , SnCl 2 , Sr
Cl 6 , SiCl 4, etc. can be used.

【0020】2種類の異なる物質からなる2層構造を有
する複合粒子の第二層の有機高分子化合物は、ビニル基
の重合によるものであれば特に限定されるものではな
く、イオン性重合またはラジカル重合を用いる事ができ
る。また、本発明の金属酸化物またはケイ素酸化物を形
成する反応は水,アルコール溶媒中で行うことが望まし
い。そのため、その後の第二層の有機高分子化合物によ
る被覆反応も引き続き同じ溶媒中で行うことが望まし
い。この場合、以下に示すポリスチレン誘導体、または
ポリ(メタ)アクリレート,ポリ酢酸ビニル誘導体等の
ラジカル重合活性の高いモノマーを重合して得られる高
分子化合物を用いることが好ましい。上記熱可塑性樹脂
の重合に用いられるスチレン誘導体モノマーとしては、
特に限定されないが、例えば、スチレン,α−メチルス
チレン,p−メチルスチレン,p−クロロスチレンが挙
げられ、これらは単独または2種以上を組み合わせて用
いることができる。上記熱可塑性樹脂の重合に用いられ
るその他のモノマーとしては、特に限定されないが、例
えば、(メタ)アクリレート,酢酸ビニル,プロピオン
酸ビニル等のビニルエステル,アクリロニトリル,メタ
クリロニトリル等の不飽和ニトリル,アクリル酸,メタ
クリル酸が挙げられる。これらは単独または2種以上を
組み合わせて用いることができる。
The organic polymer compound in the second layer of the composite particles having a two-layer structure composed of two different substances is not particularly limited as long as it is based on the polymerization of vinyl group, and it is ionic polymerization or radical. Polymerization can be used. The reaction for forming the metal oxide or silicon oxide of the present invention is preferably carried out in a water or alcohol solvent. Therefore, it is desirable that the subsequent coating reaction of the second layer with the organic polymer compound is also performed in the same solvent. In this case, it is preferable to use a polymer compound obtained by polymerizing a monomer having a high radical polymerization activity such as a polystyrene derivative, a poly (meth) acrylate, or a polyvinyl acetate derivative shown below. The styrene derivative monomer used for the polymerization of the thermoplastic resin,
Although not particularly limited, examples thereof include styrene, α-methylstyrene, p-methylstyrene, and p-chlorostyrene, and these can be used alone or in combination of two or more kinds. Other monomers used for the polymerization of the thermoplastic resin are not particularly limited, but include, for example, (meth) acrylate, vinyl acetate, vinyl esters such as vinyl propionate, unsaturated nitriles such as acrylonitrile and methacrylonitrile, and acryl. Acid and methacrylic acid are mentioned. These may be used alone or in combination of two or more.

【0021】また、本発明では反応開始時のモノマー濃
度を変えるか、重合途中でのモノマーと開始剤の再添加
を行うことにより第二層の有機高分子化合物の厚さを制
御することができる。
In the present invention, the thickness of the organic polymer compound in the second layer can be controlled by changing the monomer concentration at the start of the reaction or by re-adding the monomer and the initiator during the polymerization. .

【0022】本発明の複合粒子はフォトニック結晶材料
としても利用することができる。光の波長と同程度の周
期的な屈折率変化を内部に有する物質では光は周期的な
屈折率分布により光波がブラッグ反射を受けフォトバン
ドギャップ(PBG)が現れる。フォトニック結晶中の
光の伝搬はバンド構造によって決定されるため、結晶構
造や周期的摂動の大きさを制御することにより、その光
学的性質を自由に設計することが可能であり、光情報処
理,光伝送等に用いられるレーザ,光導波路,光集積回
路等の様々な光デバイス等を構成する基本構造として応
用できる。
The composite particles of the present invention can also be used as a photonic crystal material. In a substance having a periodic refractive index change similar to the wavelength of light inside, the light wave undergoes Bragg reflection due to the periodic refractive index distribution, and a photo band gap (PBG) appears. Since the propagation of light in a photonic crystal is determined by the band structure, it is possible to freely design its optical properties by controlling the crystal structure and the magnitude of periodic perturbations. It can be applied as a basic structure for forming various optical devices such as lasers used for optical transmission, optical waveguides, and optical integrated circuits.

【0023】現在、高分子材料のポリスチレン,シリカ
の微粒子の自己組織化や機械的配列法を利用した3次元
フォトニック結晶の形成が知られている。(Jpn. J. Ap
pl.Phys. 37,(1998)L508. Appl. Phys. Lett. 71, 114
8. Jpn. J. Appl. Phys. 37,L1527. Appl. Phys. Lett.
72, 1957. Appl. Phys. Lett. 75, 932. AdvancedRobo
tics.11, 169. J. Lightwave Technol. 17, 1956. Adva
nced Robotics. 11,169.) しかし、微粒子の自己組織化を用いる方法は容易に形成
できる利点を有するが、粒子が隣接しており完全なPB
Gを実現するのが困難であるという欠点を有する。完全
なPBGの実現には粒子間隔を一定にして配列する必要
がある。
At present, the formation of three-dimensional photonic crystals using the self-organization of fine particles of polystyrene or silica, which is a polymer material, or the mechanical arrangement method is known. (Jpn. J. Ap
pl.Phys. 37, (1998) L508. Appl. Phys. Lett. 71, 114
8. Jpn. J. Appl. Phys. 37, L1527. Appl. Phys. Lett.
72, 1957. Appl. Phys. Lett. 75, 932. AdvancedRobo
tics.11, 169. J. Lightwave Technol. 17, 1956. Adva
nced Robotics. 11,169.) However, the method using self-assembly of fine particles has an advantage that it can be easily formed.
It has the drawback that it is difficult to implement G. In order to realize a complete PBG, it is necessary to arrange the particles with a constant spacing.

【0024】本発明の微粒子を2あるいは3次元に配列
させることにより中心の粒子間隔を被覆した第二の層の
膜厚により制御することができ、完全なPBGが期待で
きるフォトニック結晶材料としても用いることができ
る。
By arranging the fine particles of the present invention two-dimensionally or three-dimensionally, the central particle spacing can be controlled by the film thickness of the second layer covering the particles, and a perfect PBG can be expected as a photonic crystal material. Can be used.

【0025】フォトニック結晶として用いる場合、2種
類の異なる物質からなる2層構造を有する複合粒子にお
いては中心の第一層と外側の第二層の屈折率差が大きい
ことが望ましく、外側の第二層には空気と屈折率差の大
きくない高分子化合物を用いることが望ましい。また、
中心核の第一層は金属粒子等の光吸収の大きい粒子では
なく金属酸化物等の光吸収の小さい材料の方が望まし
い。
When used as a photonic crystal, in a composite particle having a two-layer structure composed of two different substances, it is desirable that the difference in refractive index between the central first layer and the outer second layer is large, and the outer first layer is large. It is desirable to use a polymer compound having a large difference in refractive index from air for the two layers. Also,
The first layer of the central nucleus is preferably made of a material having a small light absorption such as a metal oxide rather than a particle having a large light absorption such as a metal particle.

【0026】[0026]

【発明の実施の形態】本発明の複合粒子の製造方法の概
略を図1を用いて説明する。金属またはケイ素のアルコ
キシ化合物,ケイ素ハロゲン化物,金属塩,金属キレー
トの加水分解縮合反応により中心となる第一層の無機酸
化物粒子1を形成する。この際、形成された無機酸化物
粒子1の表面は−OH基を有している。次に、得られた
無機酸化物粒子1の表面の−OH基と反応し得るアルコ
キシル基または水酸基と、有機高分子を形成する単量体
と反応し得るビニル基とを有するカップリング剤2で処
理し、カップリング剤2の付加した無機酸化物粒子1を
形成する。次に、得られた無機酸化物粒子1に、有機高
分子を形成する単量体と反応し得るビニル基を有する界
面活性剤3を有機高分子を形成する単量体4と共に添加
し重合反応させる。これにより、図1に示すような無機
酸化物粒子1の表面を有機高分子化合物6でコーティン
グした単核の複合粒子を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION An outline of a method for producing composite particles of the present invention will be described with reference to FIG. The inorganic oxide particles 1 of the first layer, which serves as the center, are formed by the hydrolysis and condensation reaction of an alkoxy compound of metal or silicon, a silicon halide, a metal salt, and a metal chelate. At this time, the surface of the formed inorganic oxide particles 1 has —OH groups. Next, with a coupling agent 2 having an alkoxyl group or a hydroxyl group capable of reacting with the —OH group on the surface of the obtained inorganic oxide particles 1 and a vinyl group capable of reacting with a monomer forming an organic polymer. The inorganic oxide particles 1 to which the coupling agent 2 has been added are formed by the treatment. Next, to the obtained inorganic oxide particles 1, a surfactant 3 having a vinyl group capable of reacting with a monomer forming an organic polymer is added together with a monomer 4 forming an organic polymer to carry out a polymerization reaction. Let Thereby, mononuclear composite particles obtained by coating the surface of the inorganic oxide particles 1 with the organic polymer compound 6 as shown in FIG. 1 can be obtained.

【0027】以下、本発明の複合粒子作製の実施例を説
明する。
Examples of producing composite particles of the present invention will be described below.

【0028】〔実施例1〕(第一層:金内包SiO2
第二層:ポリメタクリル酸) 塩化金酸(HAuCl4)2.4×10-4mol/L,クエン
酸ナトリウム1.6×10-3mol/Lの水溶液80mLを
80℃で40分間反応させ金微粒子を得た。ついで、上
記で合成した金微粒子5.41gにテトラエトキシシラ
ン(Si(OEt)4)0.125g,25%NH3 水溶液
0.9g,エタノール19.58gを加えて35℃で5時間反
応させ金微粒子をケイ素酸化物でコーティングした微粒
子を得た。得られた金−ケイ素酸化物複合粒子反応溶液
を窒素バブリングした後、シランカップリング剤(CH
2=CCH3COOC36Si(OCH3)3)0.005g
を加え35℃で30分撹拌した後、5%界面活性剤溶液
(CH2=CHC64SO3Na)0.027g,反応開
始剤:5%過硫酸カリウム溶液(K228)0.61g
,メタクリル酸メチル0.29gを加えて70℃で12
時間反応させ複合粒子を得た。
Example 1 (first layer: gold-encapsulating SiO 2 ,
Second layer: polymethacrylic acid) 80 mL of an aqueous solution of chloroauric acid (HAuCl 4 ) 2.4 × 10 -4 mol / L and sodium citrate 1.6 × 10 -3 mol / L is reacted at 80 ° C. for 40 minutes. Gold fine particles were obtained. Next, to 1251 g of the gold fine particles synthesized above, 0.125 g of tetraethoxysilane (Si (OEt) 4 ), 0.9 g of 25% NH 3 aqueous solution and 19.58 g of ethanol were added and reacted at 35 ° C. for 5 hours. To obtain fine particles coated with silicon oxide. After bubbling the obtained gold-silicon oxide composite particle reaction solution with nitrogen, a silane coupling agent (CH
2 = CCH 3 COOC 3 H 6 Si (OCH 3) 3) 0.005g
Was added and stirred at 35 ° C. for 30 minutes, then 0.027 g of a 5% surfactant solution (CH 2 ═CHC 6 H 4 SO 3 Na), a reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) 0.61g
, 0.29 g of methyl methacrylate was added, and the mixture was added at 70 ° C for 12
Composite particles were obtained by reacting for a time.

【0029】〔実施例2〕(第一層:金内包SiO2
第二層:ポリスチレン) 実施例1と同様の方法により得られた金−ケイ素酸化物
複合粒子反応溶液を窒素バブリングした後、シランカッ
プリング剤(CH2=CCH3COOC36Si(OC
3)3)0.005g を加え35℃で30分撹拌した
後、5%界面活性剤溶液(CH2=CHC64SO3
a)0.027g 、反応開始剤:5%過硫酸カリウム溶
液(K228)0.61g,p−スチレン0.3g を加
えて70℃で12時間反応させ複合粒子を得た。
[Example 2] (First layer: gold-encapsulating SiO 2 ,
Second layer: polystyrene) gold was produced in the same manner as in Example 1 - after the silicon oxide composite particles reaction solution was bubbled nitrogen, silane coupling agent (CH 2 = CCH 3 COOC 3 H 6 Si (OC
H 3 ) 3 ) 0.005 g was added and the mixture was stirred at 35 ° C. for 30 minutes and then a 5% surfactant solution (CH 2 ═CHC 6 H 4 SO 3 N
a) 0.027 g, reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) 0.61 g, and p-styrene 0.3 g were added and reacted at 70 ° C. for 12 hours to obtain composite particles.

【0030】〔実施例3〕(第一層:SiO2,第二
層:ポリメタクリル酸) テトラエトキシシラン(Si(OEt)4)0.2mol/L,
水11mol/L,NH30.2mol/Lのエタノール溶液3
0mLを35℃で12時間反応させケイ素酸化物微粒子
を得た。得られたケイ素酸化物微粒子反応溶液3mLを
遠心分離し、混合溶媒(エタノール75.3wt%,純
水24.7wt%)にて溶媒置換し30mLとし、超音
波照射により再分散した。実施例1と同様にメタクリル
酸メチルと反応させ複合粒子を得た。
[Example 3] (first layer: SiO 2 , second layer: polymethacrylic acid) tetraethoxysilane (Si (OEt) 4 ) 0.2 mol / L,
Water 11 mol / L, NH 3 0.2 mol / L ethanol solution 3
0 mL was reacted at 35 ° C. for 12 hours to obtain silicon oxide fine particles. 3 mL of the obtained silicon oxide fine particle reaction solution was centrifuged, the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, and the mixture was re-dispersed by ultrasonic irradiation. Composite particles were obtained by reacting with methyl methacrylate in the same manner as in Example 1.

【0031】〔実施例4〕(第一層:SiO2,第二
層:ポリスチレン) 実施例3と同様の方法により得られたケイ素酸化物微粒
子反応溶液3mLを遠心分離し、混合溶媒(エタノール
75.3wt%,純水24.7wt%)にて溶媒置換し3
0mLとし、超音波照射により再分散した。実施例2と
同様にp−スチレンと反応させ複合粒子を得た。
[Example 4] (First layer: SiO 2 , second layer: polystyrene) 3 mL of the reaction solution of silicon oxide fine particles obtained by the same method as in Example 3 was centrifuged and mixed solvent (ethanol 75 Replace the solvent with 0.3 wt% and pure water 24.7 wt% 3
The volume was adjusted to 0 mL and redispersed by ultrasonic irradiation. Composite particles were obtained by reacting with p-styrene in the same manner as in Example 2.

【0032】〔実施例5〕(第一層:TiO2,第二
層:ポリメタクリル酸) テトラエトキシチタン(Ti(OEt)4)0.1mol/L
のエタノール溶液60mLに水0.5mol/L,ヒドロキ
シプロピルセルロース(分散安定剤)0.5g/Lの濃度
になるように加えて1時間還流させチタン酸化物粒子を
得た。得られたチタン酸化物微粒子を遠心分離器にて分
離し純水にて洗浄した。得られたチタン酸化物微粒子に
混合溶媒(エタノール75.3wt%,純水24.7wt
%)にて溶媒置換し150mLとし超音波照射により再
分散した。得られたチタン酸化物のエタノール溶液30
mLを実施例1と同様にメタクリル酸メチルと反応させ
複合粒子を得た。
Example 5 (First layer: TiO 2 , second layer: polymethacrylic acid) Tetraethoxy titanium (Ti (OEt) 4 ) 0.1 mol / L
Water was added to 60 mL of ethanol solution at a concentration of 0.5 mol / L and hydroxypropyl cellulose (dispersion stabilizer) at 0.5 g / L, and the mixture was refluxed for 1 hour to obtain titanium oxide particles. The obtained titanium oxide fine particles were separated with a centrifugal separator and washed with pure water. Mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt) in the obtained titanium oxide fine particles.
%) To replace the solvent to 150 mL, and redisperse by ultrasonic irradiation. The obtained titanium oxide ethanol solution 30
mL was reacted with methyl methacrylate in the same manner as in Example 1 to obtain composite particles.

【0033】〔実施例6〕(第一層:TiO2,第二
層:ポリスチレン) 実施例5と同様の方法により得られたチタン酸化物微粒
子のエタノール溶液12mLにエタノール18mLを加
え、実施例2と同様にp−スチレンと反応させ複合粒子
を得た。
Example 6 (First Layer: TiO 2 , Second Layer: Polystyrene) 18 mL of ethanol was added to 12 mL of an ethanol solution of titanium oxide fine particles obtained by the same method as in Example 5, and Example 2 was used. In the same manner as described above, a composite particle was obtained by reacting with p-styrene.

【0034】〔実施例7〕(第一層:SiO2,第二
層:ポリスチレン) 実施例3と同様にして得られたシリコン酸化物微粒子反
応溶液3mLを遠心分離し、混合溶媒(エタノール7
5.3wt%,純水24.7wt%)にて溶媒置換し30
mLとし、超音波照射により再分散した。シランカップ
リング剤(CH2=CCH3COOC36Si(OC
3)3)0.007gを加え35℃で30分撹拌した後、
5%界面活性剤溶液(CH2=CHC64SO3Na)
0.041g 、反応開始剤:5%過硫酸カリウム溶液
(K228)0.94g,p−スチレン0.45gを加えて
70℃で12時間反応させ複合粒子を得た。
[Example 7] (First layer: SiO 2 , second layer: polystyrene) 3 mL of a reaction solution of fine particles of silicon oxide obtained in the same manner as in Example 3 was centrifuged to obtain a mixed solvent (ethanol 7).
The solvent is replaced with 5.3 wt% and pure water 24.7 wt% 30
It was made up to mL and redispersed by ultrasonic irradiation. Silane coupling agent (CH 2 = CCH 3 COOC 3 H 6 Si (OC
H 3 ) 3 ) 0.007 g was added and stirred at 35 ° C. for 30 minutes,
5% surfactant solution (CH 2 = CHC 6 H 4 SO 3 Na)
0.041 g, a reaction initiator: 0.94 g of a 5% potassium persulfate solution (K 2 S 2 O 8 ) and 0.45 g of p-styrene were added and reacted at 70 ° C. for 12 hours to obtain composite particles.

【0035】〔実施例8〕(第一層:SiO2,第二
層:ポリスチレン) 実施例3と同様にして得られたシリコン酸化物微粒子反
応溶液3mLを遠心分離し、混合溶媒(エタノール7
5.3wt%,純水24.7wt%)にて溶媒置換し30
mLとし、超音波照射により再分散した。シランカップ
リング剤(CH2=CCH3COOC36Si(OC
3)3)0.015gを加え35℃で30分反応した。反
応溶液に5%界面活性剤溶液(CH2=CHC64SO3
Na)0.084g,反応開始剤:5%過硫酸カリウム
溶液(K228)1.92g,p−スチレン0.93g
を加えて70℃で12時間反応させ複合粒子を得た。
[Example 8] (First layer: SiO 2 , second layer: polystyrene) 3 mL of a reaction solution of silicon oxide fine particles obtained in the same manner as in Example 3 was centrifuged to obtain a mixed solvent (ethanol 7).
The solvent is replaced with 5.3 wt% and pure water 24.7 wt% 30
It was made up to mL and redispersed by ultrasonic irradiation. Silane coupling agent (CH 2 = CCH 3 COOC 3 H 6 Si (OC
H 3) 3) 0.015g was reacted 30 minutes at 35 ° C. added. 5% surfactant solution (CH 2 = CHC 6 H 4 SO 3
Na) 0.084 g, reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) 1.92 g, p-styrene 0.93 g
Was added and reacted at 70 ° C. for 12 hours to obtain composite particles.

【0036】〔比較例1〕(シランカップリング剤使
用,界面活性剤なし) テトラエトキシシラン(Si(OEt)4)0.2mol/L,
水11mol/L,NH30.2mol/Lのエタノール溶液3
0mLを35℃で12時間反応させケイ素酸化物微粒子
を得た。得られたケイ素酸化物微粒子反応溶液3mLを
遠心分離し、混合溶媒(エタノール75.3wt%,純
水24.7wt%)にて溶媒置換し30mLとし、超音
波照射により再分散した。シランカップリング剤(CH
2=CCH3COOC36Si(OCH3)3)0.005g
を加え35℃で30分撹拌した後、反応開始剤:5%過
硫酸カリウム溶液(K228)0.61g,p−スチレ
ン0.3g を加えて70℃で12時間反応させた。70
℃で12時間反応させた。得られた粒子はSiO2 粒子
を多数含む復核の粒子あるいはSiO2 粒子を含まない
無核の粒子がほとんどであり、SiO2 粒子を含む単核
の粒子は得られなかった。
Comparative Example 1 (using silane coupling agent, no surfactant) Tetraethoxysilane (Si (OEt) 4 ) 0.2 mol / L,
Water 11 mol / L, NH 3 0.2 mol / L ethanol solution 3
0 mL was reacted at 35 ° C. for 12 hours to obtain silicon oxide fine particles. 3 mL of the obtained silicon oxide fine particle reaction solution was centrifuged, the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, and the mixture was re-dispersed by ultrasonic irradiation. Silane coupling agent (CH
2 = CCH 3 COOC 3 H 6 Si (OCH 3) 3) 0.005g
Was added and stirred at 35 ° C. for 30 minutes, and then a reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) 0.61 g and p-styrene 0.3 g were added and reacted at 70 ° C. for 12 hours. . 70
The reaction was performed at 12 ° C for 12 hours. The resultant particles were mostly grain seedless containing no particles or SiO 2 particles Fukukaku including a large number of SiO 2 particles, particles of mononuclear containing SiO 2 particles was not obtained.

【0037】〔比較例2〕(シランカップリング剤な
し、ビニル基を有さない界面活性剤使用) テトラエトキシシラン(Si(OEt)4)0.2mol/L,
水11mol/L,NH30.2mol/Lのエタノール溶液3
0mLを35℃で12時間反応させケイ素酸化物微粒子
を得た。得られたケイ素酸化物微粒子反応溶液3mLを
遠心分離し、混合溶媒(エタノール75.3wt%,純
水24.7wt%)にて溶媒置換し30mLとし、超音
波照射により再分散した。5%界面活性剤溶液(C2H5C6
H4SO3Na)0.027g 加え35℃で30分撹拌した後、
反応開始剤:5%過硫酸カリウム溶液(K228)0.
61g,p−スチレン0.3g を加えて70℃で12時
間反応させた。得られた粒子はSiO2 粒子を多数含む
復核の粒子、SiO2 粒子を含まない無核の粒子、ある
いはSiO2 粒子がほとんどであり、SiO2 粒子を含
む単核の粒子は得られなかった。
[Comparative Example 2] (without silane coupling agent, using surfactant not having vinyl group) Tetraethoxysilane (Si (OEt) 4 ) 0.2 mol / L,
Water 11 mol / L, NH 3 0.2 mol / L ethanol solution 3
0 mL was reacted at 35 ° C. for 12 hours to obtain silicon oxide fine particles. 3 mL of the obtained silicon oxide fine particle reaction solution was centrifuged, the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, and the mixture was re-dispersed by ultrasonic irradiation. 5% surfactant solution (C 2 H 5 C 6
H 4 SO 3 Na) 0.027 g was added and stirred at 35 ° C. for 30 minutes,
Reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) 0.
61 g and 0.3 g of p-styrene were added and reacted at 70 ° C. for 12 hours. Particles of Fukukaku resulting particles containing a large number of SiO 2 particles, particles seedless without the SiO 2 particles or SiO 2 particles, are mostly particles of mononuclear containing SiO 2 particles was not obtained.

【0038】〔比較例3〕(シランカップリング剤な
し、界面活性剤重合反応前に使用) テトラエトキシシラン(Si(OEt)4)0.2mol/L,
水11mol/L,NH30.2mol/Lのエタノール溶液3
0mLを35℃で12時間反応させケイ素酸化物微粒子
を得た。得られたケイ素酸化物微粒子反応溶液3mLを
遠心分離し、混合溶媒(エタノール75.3wt%,純
水24.7wt%)にて溶媒置換し30mLとし、超音
波照射により再分散した。5%界面活性剤溶液(CH2
=CHC64SO3Na)0.027g加え35℃で30
分撹拌した後、反応開始剤:5%過硫酸カリウム溶液
(K228)0.61g,p−スチレン0.3g を加え
て70℃で12時間反応させた。得られた粒子はSiO
2 粒子を含む復核の粒子、SiO2 粒子を含まない無核
の粒子がほとんどであり、全粒子中、SiO2粒子を含
む単核の粒子の割合は3%であった。
Comparative Example 3 (without silane coupling agent, used before surfactant polymerization reaction) Tetraethoxysilane (Si (OEt) 4 ) 0.2 mol / L,
Water 11 mol / L, NH 3 0.2 mol / L ethanol solution 3
0 mL was reacted at 35 ° C. for 12 hours to obtain silicon oxide fine particles. 3 mL of the obtained silicon oxide fine particle reaction solution was centrifuged, the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, and the mixture was re-dispersed by ultrasonic irradiation. 5% surfactant solution (CH 2
= CHC 6 H 4 SO 3 Na) 0.027 g, and added at 35 ° C. for 30
After stirring for a minute, 0.61 g of a reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) and 0.3 g of p-styrene were added and the reaction was carried out at 70 ° C. for 12 hours. The obtained particles are SiO
Particles of Fukukaku containing 2 particles, most particles seedless without the SiO 2 particles in all particles, the proportion of mononuclear particles containing SiO 2 particles was 3%.

【0039】表1に、実施例1−8で作製した複合粒子
の形態を示す。
Table 1 shows the morphology of the composite particles produced in Examples 1-8.

【0040】生成粒子の粒径および粒径分布の測定は、
被覆前後の少量の反応液を採取し透過型電子顕微鏡によ
って行った。1サンプル毎に200個以上の粒子の粒径
を測定して粒径分布を求め、以下に示す式により分散度
(CV )を算出した。
The particle size and particle size distribution of the produced particles can be measured by
A small amount of the reaction solution before and after the coating was sampled and subjected to a transmission electron microscope. The particle size distribution was obtained by measuring the particle size of 200 or more particles for each sample, and the dispersity (C V ) was calculated by the following formula.

【0041】[0041]

【数1】 [Equation 1]

【0042】表1に示すように、メタクリル酸メチルを
用いた実施例1に比べポリスチレンを用いた実施例2で
は分散度の小さい複合粒子を得ることができる。同様に
実施例3よりも4,5よりも6では分散度の小さい複合
粒子が得られる。
As shown in Table 1, in Example 2 using polystyrene as compared with Example 1 using methyl methacrylate, composite particles having a small degree of dispersion can be obtained. Similarly, composite particles having a smaller degree of dispersion can be obtained in the case of 6 and 6 than in the example 3.

【0043】フォトニック結晶として用いる場合、中心
の第一層と外側の第二層の屈折率差が大きいことが望ま
しく実施例2または3よりも4または5のほうが望まし
い。
When used as a photonic crystal, it is desirable that the difference in refractive index between the first layer in the center and the second layer on the outside is large, and 4 or 5 is more desirable than in Example 2 or 3.

【0044】実施例7および8に示すように反応開始時
の試薬濃度を変えることにより粒径を制御することがで
きる。
As shown in Examples 7 and 8, the particle size can be controlled by changing the reagent concentration at the start of the reaction.

【0045】[0045]

【表1】 [Table 1]

【0046】本発明の複合粒子は、農薬,医薬,肥料等
の各種製剤、それらの徐放性製剤や、漁網,海苔養殖網
等のコーティング剤,船底塗料,その他公園等の砂場に
蒔く小動物用徐放性忌避剤、更には、塗料,インキ,ト
ナー,接着剤,紙へのラミネーション,発泡樹脂材料,
消化剤,化粧品材料,土建材料,ファトニック結晶等の
光学材料等の用途として幅広く利用できる。
The composite particles of the present invention are used for various preparations such as agricultural chemicals, medicines, fertilizers, sustained-release preparations thereof, coating agents for fishing nets, seaweed cultivation nets, ship bottom paints, and other small animals sown in sandboxes such as parks. Sustained release repellent, as well as paints, inks, toners, adhesives, paper lamination, foamed resin materials,
It can be widely used for applications such as extinguishing agents, cosmetic materials, civil engineering materials, and optical materials such as fatonic crystals.

【0047】[0047]

【発明の効果】本発明により数μmサイズ以下の金属酸
化物またはケイ素酸化物を有機高分子化合物で任意の厚
さにコーティングした単核の複合粒子を効率よく製造す
ることができる。
According to the present invention, mononuclear composite particles in which a metal oxide or a silicon oxide having a size of several μm or less is coated with an organic polymer compound to an arbitrary thickness can be efficiently produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合粒子製造方法を示す図である。FIG. 1 is a diagram showing a method for producing composite particles of the present invention.

【符号の説明】[Explanation of symbols]

1…無機酸化物粒子、2,5…カップリング剤、3…界
面活性剤、4…有機高分子の単量体、6…有機高分子化
合物。
1 ... Inorganic oxide particles, 2, 5 ... Coupling agent, 3 ... Surfactant, 4 ... Organic polymer monomer, 6 ... Organic polymer compound.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 俊也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 三輪 崇夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 今野 幹男 宮城県仙台市青葉区荒巻字青葉07 (72)発明者 顧 順超 宮城県仙台市青葉区荒巻字青葉07 Fターム(参考) 4J011 CA05 PA04 PA07 PA13 PB06 4J100 AB02P AJ02P CA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiya Sato             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Takao Miwa             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Mikio Konno             07 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi Prefecture (72) Inventor             07 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi Prefecture F-term (reference) 4J011 CA05 PA04 PA07 PA13 PB06                 4J100 AB02P AJ02P CA01

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】2類の異なる物質からなる2層構造を有す
る複合粒子であり、中心の第一の層が球形を有する粒径
5nm〜1μmの金属酸化物またはケイ素酸化物,外側
の第二の層が球形を有し膜厚5nm〜5μmの有機高分
子化合物であることを特徴とする複合粒子。
1. A composite particle having a two-layer structure composed of two different substances, wherein a central first layer has a spherical shape and a metal oxide or silicon oxide having a particle size of 5 nm to 1 μm and an outer second layer. Layer is spherical and has a thickness of 5 nm to 5 μm, which is an organic polymer compound.
【請求項2】2類の異なる物質からなる2層構造を有す
る複合粒子であり、中心の第一の層が金属酸化物または
ケイ素酸化物,外側の第二の層がビニル基を有する単量
体のアニオン,カチオンまたはラジカル重合によって生
成する有機高分子化合物であることを特徴とする複合粒
子。
2. A composite particle having a two-layer structure composed of two different substances, wherein the first central layer has a metal oxide or silicon oxide and the second outer layer has a vinyl group. Composite particles characterized by being an organic polymer compound produced by anion, cation or radical polymerization of the body.
【請求項3】金属酸化物またはケイ素酸化物と、前記金
属酸化物またはケイ素酸化物の粒子表面に被覆されたビ
ニル基を有する単量体のアニオン,カチオンまたはラジ
カル重合によって生成する有機高分子化合物とを有する
ことを特徴とする複合粒子。
3. An organic polymer compound produced by anion, cation or radical polymerization of a metal oxide or silicon oxide and a vinyl group-containing monomer coated on the surface of the metal oxide or silicon oxide particles. And a composite particle.
【請求項4】請求項1〜3のいずれかに記載の複合粒子
において、前記金属酸化物またはケイ素酸化物の粒径が
5nm〜1μmであることを特徴とする複合粒子。
4. The composite particle according to claim 1, wherein the metal oxide or the silicon oxide has a particle size of 5 nm to 1 μm.
【請求項5】請求項1〜3のいずれかに記載の複合粒子
において、前記有機高分子化合物の膜厚が5nm〜5μ
mであることを特徴とする複合粒子。
5. The composite particle according to claim 1, wherein the organic polymer compound has a film thickness of 5 nm to 5 μm.
m is a composite particle.
【請求項6】請求項1または2に記載の複合粒子におい
て、第二の層がポリスチレンであることを特徴とする複
合粒子。
6. The composite particle according to claim 1, wherein the second layer is polystyrene.
【請求項7】請求項1または2に記載の複合粒子におい
て、中心の第一の層がチタン酸化物であることを特徴と
する複合粒子。
7. The composite particle according to claim 1 or 2, wherein the central first layer is titanium oxide.
【請求項8】請求項1または2に記載の複合粒子におい
て、中心の第一の層がチタン酸化物,第二の層がポリス
チレンであることを特徴とする複合粒子。
8. The composite particle according to claim 1, wherein the central first layer is titanium oxide and the second layer is polystyrene.
【請求項9】請求項1または2に記載の複合粒子におい
て、中心の第一層内に金属,金属酸化物またはケイ素酸
化物の粒子を有することを特徴とする複合粒子。
9. The composite particle according to claim 1 or 2, wherein the central first layer contains particles of a metal, a metal oxide or a silicon oxide.
【請求項10】請求項9に記載の複合粒子において、第
二の層がポリスチレンであることを特徴とする複合粒
子。
10. The composite particle according to claim 9, wherein the second layer is polystyrene.
【請求項11】金属またはケイ素のアルコキシ化合物,
ケイ素ハロゲン化物,金属塩,金属キレートの加水分解
縮合反応により中心になる第一層の微粒子を形成する工
程と、形成した微粒子表面を微粒子と反応しうる置換基
および前記微粒子表面を被覆する有機高分子層を形成す
る単量体と反応しうる置換基を有するカップリング剤で
処理する工程と、前記単量体と反応しうる置換基を有す
る界面活性剤を添加し、前記単量体と共に重合反応させ
る工程とを有することを特徴とする複合粒子の製造方
法。
11. An alkoxy compound of metal or silicon,
The step of forming the fine particles of the first layer, which is the core, by the hydrolytic condensation reaction of silicon halide, metal salt, and metal chelate, the substituent capable of reacting the formed fine particle surface with the fine particles, and the organic high-layer coating for the fine particle surface. The step of treating with a coupling agent having a substituent capable of reacting with the monomer forming the molecular layer, and adding a surfactant having a substituent capable of reacting with the monomer, and polymerizing with the monomer A method for producing composite particles, which comprises a step of reacting.
JP2002052571A 2002-02-28 2002-02-28 Composite particle and method for producing the same Expired - Fee Related JP3960078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052571A JP3960078B2 (en) 2002-02-28 2002-02-28 Composite particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052571A JP3960078B2 (en) 2002-02-28 2002-02-28 Composite particle and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003252916A true JP2003252916A (en) 2003-09-10
JP3960078B2 JP3960078B2 (en) 2007-08-15

Family

ID=28664231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052571A Expired - Fee Related JP3960078B2 (en) 2002-02-28 2002-02-28 Composite particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP3960078B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145285A1 (en) * 2006-06-16 2007-12-21 Nippon Shokubai Co., Ltd. Polymer-coated metal oxide microparticle and application thereof
JPWO2005108451A1 (en) * 2004-05-07 2008-07-31 国立大学法人京都大学 Method for producing colloidal crystal by polymer graft fine particles
JP2008266103A (en) * 2007-04-25 2008-11-06 Kri Inc Capsule micro particles and manufacturing method thereof, and method of manufacturing composite using the capsule micro particles
JP2008266472A (en) * 2007-04-20 2008-11-06 Nippon Shokubai Co Ltd Polymer-coated metal oxide particulates and method for producing the same
JPWO2007043453A1 (en) * 2005-10-13 2009-04-16 東洋アルミニウム株式会社 Coated metal pigment, method for producing the same, and coating composition containing the same
US20160236412A1 (en) * 2013-09-30 2016-08-18 Teruki Kusahara Powder material for three-dimensional object formation, hardening liquid and three-dimensional object formation kit, and formation method and formation apparatus of three-dimensional object

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005108451A1 (en) * 2004-05-07 2008-07-31 国立大学法人京都大学 Method for producing colloidal crystal by polymer graft fine particles
JPWO2007043453A1 (en) * 2005-10-13 2009-04-16 東洋アルミニウム株式会社 Coated metal pigment, method for producing the same, and coating composition containing the same
JP5068170B2 (en) * 2005-10-13 2012-11-07 東洋アルミニウム株式会社 Coated metal pigment, method for producing the same, and coating composition containing the same
US8580382B2 (en) 2005-10-13 2013-11-12 Toyo Aluminium Kabushiki Kaisha Coated metal pigment, method for production of the same, and coating composition containing the same
WO2007145285A1 (en) * 2006-06-16 2007-12-21 Nippon Shokubai Co., Ltd. Polymer-coated metal oxide microparticle and application thereof
JP5241492B2 (en) * 2006-06-16 2013-07-17 株式会社日本触媒 Polymer-coated metal oxide fine particles and their applications
JP2008266472A (en) * 2007-04-20 2008-11-06 Nippon Shokubai Co Ltd Polymer-coated metal oxide particulates and method for producing the same
JP2008266103A (en) * 2007-04-25 2008-11-06 Kri Inc Capsule micro particles and manufacturing method thereof, and method of manufacturing composite using the capsule micro particles
US20160236412A1 (en) * 2013-09-30 2016-08-18 Teruki Kusahara Powder material for three-dimensional object formation, hardening liquid and three-dimensional object formation kit, and formation method and formation apparatus of three-dimensional object
US10828827B2 (en) * 2013-09-30 2020-11-10 Ricoh Company, Ltd. Powder material for three-dimensional object formation, hardening liquid and three-dimensional object formation kit, and formation method and formation apparatus of three-dimensional object
US11628617B2 (en) 2013-09-30 2023-04-18 Ricoh Company, Ltd. Formation method of three-dimensional object with metal and/or ceramic particles and thin organic resin

Also Published As

Publication number Publication date
JP3960078B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP5451074B2 (en) Core-shell type nanoparticles and method for producing the same
JP2007154198A (en) Manufacturing method of photochromic nanoparticles and photochromic nanoparticles manufactured by the same
CN109852105B (en) Method for preparing an antireflective coating composition and porous coating prepared therefrom
JP5531232B2 (en) Polymer-coated inorganic fine particles and method for producing the same
JP4701409B2 (en) Core-shell cerium oxide polymer hybrid nanoparticles and method for producing dispersion thereof
CN104624125B (en) A kind of Photochromic double-shell microcapsule and its preparation method and application
TW200540191A (en) Use of random copolymers
TW200918591A (en) Novel nanoparticles
JP4113045B2 (en) White powder and method for producing the same
JP2010053385A (en) Silica-coated gold nanorod and method for producing the same
JP2003252916A (en) Composite particle and its manufacturing method
KR20130034693A (en) Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
JPH05138009A (en) Production of spherical inorganic hollow particles
KR100913272B1 (en) Preparation method of core-shell type nanocomposite particles in supercritical carbon dioxide
JPH0640951B2 (en) Method for producing uniformly coated composite particles
Chen et al. A general method for synthesis continuous silver nanoshells on dielectric colloids
US20070282075A1 (en) Use Of Statistical Copolymers
JP2006110653A (en) Inorganic oxide periodic structure
JP4499962B2 (en) Composition of metal oxide ultrafine particles and polymer
JP2011116987A (en) Black pearlescent pigment having metal layer
JP4437906B2 (en) Structure manufacturing method, porous structure manufacturing method, and porous structure
JP2006213534A (en) Inorganic oxide periodic structure
JP3782256B2 (en) White powder and method for producing the same
JP6084387B2 (en) Coating material and manufacturing method thereof
JP2002088406A (en) Method for producing metallic colloidal solution, and metallic colloidal solution obtained by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040830

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20061024

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070402

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110525

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110525

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120525

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130525

LAPS Cancellation because of no payment of annual fees