JP3960078B2 - Composite particle and method for producing the same - Google Patents

Composite particle and method for producing the same Download PDF

Info

Publication number
JP3960078B2
JP3960078B2 JP2002052571A JP2002052571A JP3960078B2 JP 3960078 B2 JP3960078 B2 JP 3960078B2 JP 2002052571 A JP2002052571 A JP 2002052571A JP 2002052571 A JP2002052571 A JP 2002052571A JP 3960078 B2 JP3960078 B2 JP 3960078B2
Authority
JP
Japan
Prior art keywords
particles
layer
metal
composite
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002052571A
Other languages
Japanese (ja)
Other versions
JP2003252916A (en
Inventor
房郎 北條
利昭 石井
俊也 佐藤
崇夫 三輪
幹男 今野
順超 顧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002052571A priority Critical patent/JP3960078B2/en
Publication of JP2003252916A publication Critical patent/JP2003252916A/en
Application granted granted Critical
Publication of JP3960078B2 publication Critical patent/JP3960078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機高分子化合物で被覆された単核の複合粒子及びその製造方法に関する。
【0002】
【従来の技術】
数μm以上の微粒子表面を有機高分子化合物でコーティングする技術は多くの公知例が知られている。しかし、1μm〜5nmの金属,金属酸化物またはケイ素酸化物の微粒子を有機高分子化合物により被覆して単核の複合粒子を得るのは困難である。それは、粒子同士による凝集等のため粒子核表面の均一被覆が困難なことによる。
【0003】
単核の微粒子を得るための方法としてポーラスアルミナ等の膜により核となる金粒子を支持し高分子化合物により被覆する方法により金微粒子のコーティングがなされている(Chem. Mater. 1998, 10, 1214. Adv. Mater. 1999, 11, 34.)。
【0004】
また、銀微粒子をポリスチレンまたはメタクリル酸でオレイン酸存在下,乳化重合することにより100nmサイズの銀微粒子のコーティングがされている
(J. Am. Chem. Soc., 1999, 121, 10642.)。
【0005】
従来、無機酸化物微粒子を有機高分子で被覆する例として、特開平9−325525号公報,特開平9−311504号公報,特開平9−311505号公報,特開平9−325524号公報等に記載のように、無機酸化物微粒子を単量体と共に分散させて重合する際に、無機酸化物微粒子をシラン系あるいはチタネート系カップリング剤で処理する方法、あるいは、界面活性剤を含む溶媒中に無機微粒子を分散させ、粒子表面に界面活性剤を吸着させる方法により無機酸化物微粒子と有機物との親和性を高めた無機酸化物微粒子を用いる例が知られている。
【0006】
【発明が解決しようとする課題】
ポーラスアルミナ等の膜により核となる金粒子を支持し高分子化合物により被覆する方法では、核や複合粒子の大きさが膜の孔の大きさにより制限されてしまうこと、微粒子をいちいち膜に支持し、膜を溶解しなければならず、手間がかかることなど欠点がある。
【0007】
銀微粒子をポリスチレンまたはメタクリル酸でオレイン酸存在下,乳化重合する方法では、現在のところ2−10nmの膜厚でしかコーティングされておらず、コーティングする高分子化合物の膜厚を厚くすると(>10nm)球形に形の整った微粒子が得られにくくなる、また、多核の微粒子が多くなってくる等問題点がある。
【0008】
無機酸化物微粒子を有機高分子で被覆する従来技術の例では、いずれの方法によっても得られるのは樹脂中に無機酸化物微粒子が分散した粒子であり、2層構造を有する単核の複合粒子を得ることはできない。
【0009】
本発明の目的は、上述の状況において特に1μm〜5nmの任意の大きさの金属酸化物またはケイ素酸化物微粒子において、ポーラスアルミナ等の膜による支持によらず、簡便に金属酸化物またはケイ素酸化物の微粒子を任意の膜厚の有機高分子化合物でコーティングした単核の複合粒子を得ることである。
【0010】
【課題を解決するための手段】
本発明は金属酸化物微粒子の合成方法および高分子重合法を鋭意検討した結果得られたものである。
【0011】
その特徴は、中心になる第1の層の金属酸化物微粒子またはケイ素酸化物微粒子をビニル基の重合反応により、金属酸化物微粒子またはケイ素酸化物微粒子の表面を有機高分子化合物で被覆する際、金属酸化物微粒子またはケイ素酸化物微粒子の表面を、微粒子と反応しうる置換基および有機高分子の単量体と反応しうるビニル基を有するカップリング剤で処理し、有機高分子の単量体と反応しうるビニル基を有する界面活性剤を添加し単量体と共に重合反応させることにより、重合反応過程において分散安定性を高め、これにより2類の異なる物質からなる2層構造を有する複合粒子であり中心の第一の層が金属酸化物またはケイ素酸化物、外側の第二の層が有機高分子化合物であることを特徴とする複合粒子を得ることができることにある。この際、カップリング剤,界面活性剤は一層と考えない。本発明では、粒径1μm〜5nmの金属酸化物微粒子またはケイ素酸化物微粒子の表面が膜厚5μm〜5nmの有機高分子化合物でコーティングされた複合粒子を得ることができる。
【0012】
金属酸化物微粒子またはケイ素酸化物微粒子の表面を有機高分子化合物で被覆する際、シランカップリング剤または界面活性剤を用いて微粒子表面を処理し、有機物との親和性を高めた微粒子と有機高分子の単量体を用いて重合反応を行っても収率良く2層構造を有する複合粒子を得ることはできない。
【0013】
カップリング剤としては、金属酸化物微粒子またはケイ素酸化物微粒子と反応しうる置換基および有機高分子層を形成する単量体と反応し得る置換基を有していることが重要である。具体的には、金属酸化物微粒子またはケイ素酸化物微粒子の−OH基と反応するシリルアルコキシル基またはSiOH基そして高分子鎖を形成するビニル基(H2C=CH−R−SiR′m(OH)3-m R′:OCH3,OC25,OC37,OC37,OC49 m=3,2,1 Rは特に限定しない)を有することが必要である。また、ケイ素をチタンなど他の金属元素に置き換えることも可能である。
【0014】
界面活性剤としては、有機高分子層を形成する単量体と反応しうる置換基を有していることが重要である。具体的には、アニオン系,カチオン系界面活性剤を用いることができるが、ビニル基を有することが必要である。例えばビニル基を有するスルフォン酸およびその塩(H2C =CH−R″−SO3X・xH2O X:H,Li,K,Na)であればR″は特に限定はしない。実施例では4−スチレンスルフォン酸ナトリウム塩(H2C =CHC64SO3Na・xH2O)を用いている。
【0015】
第一層の金属酸化物またはケイ素酸化物は、金属またはケイ素のアルコキシ化合物,金属またはケイ素ハロゲン化物,金属塩,金属キレートの加水分解縮合反応により形成し、微粒子表面に−OH基を有することが必要である。この際、第一層の金属酸化物またはケイ素酸化物の粒子内に金属,金属酸化物,ケイ素酸化物を有する複合粒子を用いて有機高分子化合物によるコーティングを行うこともできる。金属粒子のケイ素またはチタン酸化物によるコーティングは以下の例が公知である(Adv. Mater. 2001, 13, 11.、Langmuir 2000, 16, 2713.)。また、チタン酸化物の粒子内にケイ素酸化物を有する複合粒子も以下のように公知である(Langmuir 1999, 15, 5535.)。本発明においてはこの方法を応用し第一層の金属酸化物またはケイ素酸化物の粒子内に金属,金属酸化物,ケイ素酸化物を有する複合粒子を用いて有機高分子化合物によるコーティングを行う事ができる。
【0016】
本発明の金属酸化物またはケイ素酸化物を形成するための前駆体化合物としては、最終的に金属酸化物と成り得る化合物であれば限定されない。金属アルコキシド,金属アセチルアセトネート,金属カルボキシレート及び金属キレートからなる群から選ばれる1種以上が好ましい。金属またはケイ素アルコキシドとしては、Si,Ge,Sn,Pb,Al,Ga,As,Sb,Bi,Ti,Zr,V,Nb,Ta,Na,K,Li,Ca,Mg,Ba,Srなどのアルコキシドが挙げられる。具体的には以下のようなものが挙げられる。LiOCH3,NaOCH3 ,Cu(OCH3)2 ,Ca(OCH3)2 ,Sr(OC25)2 ,Ba(OC25)2 ,Zn(OC25)2 ,B(OCH3)3 ,Al(i−OC37)3 ,Ga(OC25)3,Y(OC49)3,Ge(OC25)4 ,Pb(OC49)4 ,P(OCH3)3
Sb(OC25)3 ,VO(OC25)3 ,Ta(OC37)5 ,W(OC25)6
La(OC37)3 ,Nd(OC25)3 ,Si(OCH3)4 ,Si(OC25)4 ,Si(i−OC37)4,Si(t−OC49)4,Ti(OCH3)4,Ti(OC25)4,Ti(i−OC37)4,Ti(OC49)4,Zr(OCH3)4,Zr(OC25)4,Zr(OC37)4 ,Zr(OC49)4 ,Al(OCH3)3,Al(OC25)3 ,Al(i−OC37)3 ,Al(OC49)3 ,La[Al(iso−OC37)43,Mg[Al(iso−OC37)42 ,Mg[Al(sec−OC49)42
Ni(iso−OC37)42 ,(C37O)2Zr[Al(OC37)42
Ba[Zr2(OC25)92 等を用いることができる。
【0017】
金属キレート化合物としては、アセチルアセトナート等の1,3−ジカルボニル化合物を配位子に有するものなどが用いられ、具体的には以下のようなものが挙げられる。トリス(アセチルアセトナート)アルミニウム,トリス(エチルアセトアセタト)アルミニウム,トリス(サリチルアルデヒダト)アルミニウム,インジウムアセチルアセトネート,亜鉛アセチルアセトネート,銅アセチルアセトネート,白金アセチルアセトネート等を用いることができる。
【0018】
金属カルボン酸塩としては、例えば酢酸塩などが用いられ、具体的には以下のようなものが挙げられる。酢酸バリウム,酢酸銅(II),酢酸リチウム,酢酸マグネシウム,酢酸鉛,シュウ酸バリウム,シュウ酸カルシウム,シュウ酸銅(II),シュウ酸マグネシウム,シュウ酸スズ(II),シュウ酸イットリウム,ステアリル酸イットリウム等を用いることができる。
【0019】
金属またはケイ素ハロゲン化物としては、TiCl4 ,ZnCl2 ,WCl6 ,SnCl2 ,SrCl6 ,SiCl4 等を用いることができる。
【0020】
2種類の異なる物質からなる2層構造を有する複合粒子の第二層の有機高分子化合物は、ビニル基の重合によるものであれば特に限定されるものではなく、イオン性重合またはラジカル重合を用いる事ができる。また、本発明の金属酸化物またはケイ素酸化物を形成する反応は水,アルコール溶媒中で行うことが望ましい。そのため、その後の第二層の有機高分子化合物による被覆反応も引き続き同じ溶媒中で行うことが望ましい。この場合、以下に示すポリスチレン誘導体、またはポリ(メタ)アクリレート,ポリ酢酸ビニル誘導体等のラジカル重合活性の高いモノマーを重合して得られる高分子化合物を用いることが好ましい。上記熱可塑性樹脂の重合に用いられるスチレン誘導体モノマーとしては、特に限定されないが、例えば、スチレン,α−メチルスチレン,p−メチルスチレン,p−クロロスチレンが挙げられ、これらは単独または2種以上を組み合わせて用いることができる。上記熱可塑性樹脂の重合に用いられるその他のモノマーとしては、特に限定されないが、例えば、(メタ)アクリレート,酢酸ビニル,プロピオン酸ビニル等のビニルエステル,アクリロニトリル,メタクリロニトリル等の不飽和ニトリル,アクリル酸,メタクリル酸が挙げられる。これらは単独または2種以上を組み合わせて用いることができる。
【0021】
また、本発明では反応開始時のモノマー濃度を変えるか、重合途中でのモノマーと開始剤の再添加を行うことにより第二層の有機高分子化合物の厚さを制御することができる。
【0022】
本発明の複合粒子はフォトニック結晶材料としても利用することができる。光の波長と同程度の周期的な屈折率変化を内部に有する物質では光は周期的な屈折率分布により光波がブラッグ反射を受けフォトバンドギャップ(PBG)が現れる。フォトニック結晶中の光の伝搬はバンド構造によって決定されるため、結晶構造や周期的摂動の大きさを制御することにより、その光学的性質を自由に設計することが可能であり、光情報処理,光伝送等に用いられるレーザ,光導波路,光集積回路等の様々な光デバイス等を構成する基本構造として応用できる。
【0023】
現在、高分子材料のポリスチレン,シリカの微粒子の自己組織化や機械的配列法を利用した3次元フォトニック結晶の形成が知られている。(Jpn. J. Appl. Phys. 37,(1998)L508. Appl. Phys. Lett. 71, 1148. Jpn. J. Appl. Phys. 37,L1527. Appl. Phys. Lett. 72, 1957. Appl. Phys. Lett. 75, 932. Advanced Robotics.11, 169. J. Lightwave Technol. 17, 1956. Advanced Robotics. 11,169.)
しかし、微粒子の自己組織化を用いる方法は容易に形成できる利点を有するが、粒子が隣接しており完全なPBGを実現するのが困難であるという欠点を有する。完全なPBGの実現には粒子間隔を一定にして配列する必要がある。
【0024】
本発明の微粒子を2あるいは3次元に配列させることにより中心の粒子間隔を被覆した第二の層の膜厚により制御することができ、完全なPBGが期待できるフォトニック結晶材料としても用いることができる。
【0025】
フォトニック結晶として用いる場合、2種類の異なる物質からなる2層構造を有する複合粒子においては中心の第一層と外側の第二層の屈折率差が大きいことが望ましく、外側の第二層には空気と屈折率差の大きくない高分子化合物を用いることが望ましい。また、中心核の第一層は金属粒子等の光吸収の大きい粒子ではなく金属酸化物等の光吸収の小さい材料の方が望ましい。
【0026】
【発明の実施の形態】
本発明の複合粒子の製造方法の概略を図1を用いて説明する。金属またはケイ素のアルコキシ化合物,ケイ素ハロゲン化物,金属塩,金属キレートの加水分解縮合反応により中心となる第一層の無機酸化物粒子1を形成する。この際、形成された無機酸化物粒子1の表面は−OH基を有している。次に、得られた無機酸化物粒子1の表面の−OH基と反応し得るアルコキシル基または水酸基と、有機高分子を形成する単量体と反応し得るビニル基とを有するカップリング剤2で処理し、カップリング剤2の付加した無機酸化物粒子1を形成する。次に、得られた無機酸化物粒子1に、有機高分子を形成する単量体と反応し得るビニル基を有する界面活性剤3を有機高分子を形成する単量体4と共に添加し重合反応させる。これにより、図1に示すような無機酸化物粒子1の表面を有機高分子化合物6でコーティングした単核の複合粒子を得ることができる。
【0027】
以下、本発明の複合粒子作製の実施例を説明する。
【0028】
〔実施例1〕(第一層:金内包SiO2,第二層:ポリメタクリル酸)
塩化金酸(HAuCl4)2.4×10-4mol/L,クエン酸ナトリウム1.6×10-3mol/Lの水溶液80mLを80℃で40分間反応させ金微粒子を得た。ついで、上記で合成した金微粒子5.41gにテトラエトキシシラン
(Si(OEt)4)0.125g,25%NH3 水溶液0.9g,エタノール19.58gを加えて35℃で5時間反応させ金微粒子をケイ素酸化物でコーティングした微粒子を得た。得られた金−ケイ素酸化物複合粒子反応溶液を窒素バブリングした後、シランカップリング剤(CH2=CCH3COOC36Si(OCH3)3)0.005gを加え35℃で30分撹拌した後、5%界面活性剤溶液(CH2=CHC64SO3Na)0.027g,反応開始剤:5%過硫酸カリウム溶液(K228)0.61g ,メタクリル酸メチル0.29gを加えて70℃で12時間反応させ複合粒子を得た。
【0029】
〔実施例2〕(第一層:金内包SiO2,第二層:ポリスチレン)
実施例1と同様の方法により得られた金−ケイ素酸化物複合粒子反応溶液を窒素バブリングした後、シランカップリング剤(CH2=CCH3COOC36Si(OCH3)3)0.005g を加え35℃で30分撹拌した後、5%界面活性剤溶液(CH2=CHC64SO3Na)0.027g 、反応開始剤:5%過硫酸カリウム溶液(K228)0.61g,p−スチレン0.3g を加えて70℃で12時間反応させ複合粒子を得た。
【0030】
〔実施例3〕(第一層:SiO2,第二層:ポリメタクリル酸)
テトラエトキシシラン(Si(OEt)4)0.2mol/L,水11mol/L,NH30.2mol/Lのエタノール溶液30mLを35℃で12時間反応させケイ素酸化物微粒子を得た。得られたケイ素酸化物微粒子反応溶液3mLを遠心分離し、混合溶媒(エタノール75.3wt%,純水24.7wt%)にて溶媒置換し30mLとし、超音波照射により再分散した。実施例1と同様にメタクリル酸メチルと反応させ複合粒子を得た。
【0031】
〔実施例4〕(第一層:SiO2,第二層:ポリスチレン)
実施例3と同様の方法により得られたケイ素酸化物微粒子反応溶液3mLを遠心分離し、混合溶媒(エタノール75.3wt%,純水24.7wt%)にて溶媒置換し30mLとし、超音波照射により再分散した。実施例2と同様にp−スチレンと反応させ複合粒子を得た。
【0032】
〔実施例5〕(第一層:TiO2,第二層:ポリメタクリル酸)
テトラエトキシチタン(Ti(OEt)4)0.1mol/L のエタノール溶液60mLに水0.5mol/L,ヒドロキシプロピルセルロース(分散安定剤)0.5g/Lの濃度になるように加えて1時間還流させチタン酸化物粒子を得た。得られたチタン酸化物微粒子を遠心分離器にて分離し純水にて洗浄した。得られたチタン酸化物微粒子に混合溶媒(エタノール75.3wt%,純水24.7wt%)にて溶媒置換し150mLとし超音波照射により再分散した。得られたチタン酸化物のエタノール溶液30mLを実施例1と同様にメタクリル酸メチルと反応させ複合粒子を得た。
【0033】
〔実施例6〕(第一層:TiO2,第二層:ポリスチレン)
実施例5と同様の方法により得られたチタン酸化物微粒子のエタノール溶液12mLにエタノール18mLを加え、実施例2と同様にp−スチレンと反応させ複合粒子を得た。
【0034】
〔実施例7〕(第一層:SiO2,第二層:ポリスチレン)
実施例3と同様にして得られたシリコン酸化物微粒子反応溶液3mLを遠心分離し、混合溶媒(エタノール75.3wt%,純水24.7wt%)にて溶媒置換し30mLとし、超音波照射により再分散した。シランカップリング剤(CH2=CCH3COOC36Si(OCH3)3)0.007gを加え35℃で30分撹拌した後、5%界面活性剤溶液(CH2=CHC64SO3Na)0.041g 、反応開始剤:5%過硫酸カリウム溶液(K228)0.94g,p−スチレン0.45gを加えて70℃で12時間反応させ複合粒子を得た。
【0035】
〔実施例8〕(第一層:SiO2,第二層:ポリスチレン)
実施例3と同様にして得られたシリコン酸化物微粒子反応溶液3mLを遠心分離し、混合溶媒(エタノール75.3wt%,純水24.7wt%)にて溶媒置換し30mLとし、超音波照射により再分散した。シランカップリング剤(CH2=CCH3COOC36Si(OCH3)3)0.015gを加え35℃で30分反応した。反応溶液に5%界面活性剤溶液(CH2=CHC64SO3Na)0.084g,反応開始剤:5%過硫酸カリウム溶液(K228)1.92g,p−スチレン0.93gを加えて70℃で12時間反応させ複合粒子を得た。
【0036】
〔比較例1〕(シランカップリング剤使用,界面活性剤なし)
テトラエトキシシラン(Si(OEt)4)0.2mol/L,水11mol/L,NH30.2mol/Lのエタノール溶液30mLを35℃で12時間反応させケイ素酸化物微粒子を得た。得られたケイ素酸化物微粒子反応溶液3mLを遠心分離し、混合溶媒(エタノール75.3wt%,純水24.7wt%)にて溶媒置換し30mLとし、超音波照射により再分散した。シランカップリング剤(CH2=CCH3COOC36Si(OCH3)3)0.005gを加え35℃で30分撹拌した後、反応開始剤:5%過硫酸カリウム溶液(K228)0.61g,p−スチレン0.3g を加えて70℃で12時間反応させた。70℃で12時間反応させた。得られた粒子はSiO2 粒子を多数含む復核の粒子あるいはSiO2 粒子を含まない無核の粒子がほとんどであり、SiO2 粒子を含む単核の粒子は得られなかった。
【0037】
〔比較例2〕(シランカップリング剤なし、ビニル基を有さない界面活性剤使用)
テトラエトキシシラン(Si(OEt)4)0.2mol/L,水11mol/L,NH30.2mol/Lのエタノール溶液30mLを35℃で12時間反応させケイ素酸化物微粒子を得た。得られたケイ素酸化物微粒子反応溶液3mLを遠心分離し、混合溶媒(エタノール75.3wt%,純水24.7wt%)にて溶媒置換し30mLとし、超音波照射により再分散した。5%界面活性剤溶液(C2H5C6H4SO3Na)0.027g 加え35℃で30分撹拌した後、反応開始剤:5%過硫酸カリウム溶液(K228)0.61g,p−スチレン0.3g を加えて70℃で12時間反応させた。得られた粒子はSiO2 粒子を多数含む復核の粒子、SiO2 粒子を含まない無核の粒子、あるいはSiO2 粒子がほとんどであり、SiO2 粒子を含む単核の粒子は得られなかった。
【0038】
〔比較例3〕(シランカップリング剤なし、界面活性剤重合反応前に使用)
テトラエトキシシラン(Si(OEt)4)0.2mol/L,水11mol/L,NH30.2mol/Lのエタノール溶液30mLを35℃で12時間反応させケイ素酸化物微粒子を得た。得られたケイ素酸化物微粒子反応溶液3mLを遠心分離し、混合溶媒(エタノール75.3wt%,純水24.7wt%)にて溶媒置換し30mLとし、超音波照射により再分散した。5%界面活性剤溶液(CH2=CHC64SO3Na)0.027g加え35℃で30分撹拌した後、反応開始剤:5%過硫酸カリウム溶液(K228)0.61g,p−スチレン0.3g を加えて70℃で12時間反応させた。得られた粒子はSiO2 粒子を含む復核の粒子、SiO2 粒子を含まない無核の粒子がほとんどであり、全粒子中、SiO2 粒子を含む単核の粒子の割合は3%であった。
【0039】
表1に、実施例1−8で作製した複合粒子の形態を示す。
【0040】
生成粒子の粒径および粒径分布の測定は、被覆前後の少量の反応液を採取し透過型電子顕微鏡によって行った。1サンプル毎に200個以上の粒子の粒径を測定して粒径分布を求め、以下に示す式により分散度(CV )を算出した。
【0041】
【数1】

Figure 0003960078
【0042】
表1に示すように、メタクリル酸メチルを用いた実施例1に比べポリスチレンを用いた実施例2では分散度の小さい複合粒子を得ることができる。同様に実施例3よりも4,5よりも6では分散度の小さい複合粒子が得られる。
【0043】
フォトニック結晶として用いる場合、中心の第一層と外側の第二層の屈折率差が大きいことが望ましく実施例2または3よりも4または5のほうが望ましい。
【0044】
実施例7および8に示すように反応開始時の試薬濃度を変えることにより粒径を制御することができる。
【0045】
【表1】
Figure 0003960078
【0046】
本発明の複合粒子は、農薬,医薬,肥料等の各種製剤、それらの徐放性製剤や、漁網,海苔養殖網等のコーティング剤,船底塗料,その他公園等の砂場に蒔く小動物用徐放性忌避剤、更には、塗料,インキ,トナー,接着剤,紙へのラミネーション,発泡樹脂材料,消化剤,化粧品材料,土建材料,ファトニック結晶等の光学材料等の用途として幅広く利用できる。
【0047】
【発明の効果】
本発明により数μmサイズ以下の金属酸化物またはケイ素酸化物を有機高分子化合物で任意の厚さにコーティングした単核の複合粒子を効率よく製造することができる。
【図面の簡単な説明】
【図1】本発明の複合粒子製造方法を示す図である。
【符号の説明】
1…無機酸化物粒子、2,5…カップリング剤、3…界面活性剤、4…有機高分子の単量体、6…有機高分子化合物。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mononuclear composite particle coated with an organic polymer compound and a method for producing the same.
[0002]
[Prior art]
There are many known examples of techniques for coating the surface of fine particles of several μm or more with an organic polymer compound. However, it is difficult to obtain mononuclear composite particles by coating fine particles of 1 μm to 5 nm of metal, metal oxide or silicon oxide with an organic polymer compound. This is because it is difficult to uniformly coat the particle core surface due to aggregation between particles.
[0003]
As a method for obtaining mononuclear fine particles, gold fine particles are coated by a method in which a gold particle as a nucleus is supported by a film such as porous alumina and coated with a polymer compound (Chem. Mater. 1998, 10, 1214). Adv. Mater. 1999, 11, 34.).
[0004]
Further, silver fine particles are coated with 100 nm-sized silver fine particles by emulsion polymerization in the presence of oleic acid with polystyrene or methacrylic acid (J. Am. Chem. Soc., 1999, 121, 10642.).
[0005]
Conventional examples of coating inorganic oxide fine particles with organic polymers are described in JP-A-9-325525, JP-A-9-31504, JP-A-9-31505, JP-A-9-325524, and the like. As described above, when the inorganic oxide fine particles are dispersed together with the monomer and polymerized, the inorganic oxide fine particles are treated with a silane or titanate coupling agent, or inorganic in a solvent containing a surfactant. An example of using inorganic oxide fine particles in which the affinity between the inorganic oxide fine particles and the organic substance is increased by a method of dispersing the fine particles and adsorbing the surfactant on the particle surface is known.
[0006]
[Problems to be solved by the invention]
In the method in which the core gold particles are supported by a membrane such as porous alumina and coated with a polymer compound, the size of the core and composite particles is limited by the size of the pores of the membrane, and the fine particles are supported by the membrane one by one. However, there are drawbacks such as the fact that the film must be dissolved and it takes time.
[0007]
In the method of emulsion polymerization in the presence of oleic acid in the presence of oleic acid with polystyrene or methacrylic acid, silver fine particles are currently only coated with a film thickness of 2-10 nm. When the film thickness of the polymer compound to be coated is increased (> 10 nm) ) There are problems such as difficulty in obtaining spherically shaped fine particles and an increase in multinuclear fine particles.
[0008]
In the example of the prior art in which inorganic oxide fine particles are coated with an organic polymer, any method can be obtained by dispersing inorganic oxide fine particles in a resin, and a mononuclear composite particle having a two-layer structure. Can't get.
[0009]
The object of the present invention is to easily apply metal oxides or silicon oxides in a metal oxide or silicon oxide fine particle having an arbitrary size of 1 μm to 5 nm in the above-mentioned situation without being supported by a film such as porous alumina. Mononuclear composite particles obtained by coating the fine particles with an organic polymer compound having an arbitrary film thickness.
[0010]
[Means for Solving the Problems]
The present invention has been obtained as a result of intensive studies on a method for synthesizing metal oxide fine particles and a polymer polymerization method.
[0011]
The characteristic is that when the surface of the metal oxide fine particles or silicon oxide fine particles is coated with an organic polymer compound by the vinyl group polymerization reaction of the metal oxide fine particles or silicon oxide fine particles of the first layer which is the center, The surface of the metal oxide fine particle or silicon oxide fine particle is treated with a coupling agent having a substituent capable of reacting with the fine particle and a vinyl group capable of reacting with the monomer of the organic polymer, and the monomer of the organic polymer A composite particle having a two-layer structure consisting of two different substances by adding a surfactant having a vinyl group capable of reacting with the monomer and causing a polymerization reaction with the monomer to increase dispersion stability in the polymerization reaction process. And a composite particle characterized in that the central first layer is a metal oxide or silicon oxide and the outer second layer is an organic polymer compound. . At this time, the coupling agent and the surfactant are not further considered. In the present invention, composite particles in which the surfaces of metal oxide fine particles or silicon oxide fine particles having a particle diameter of 1 μm to 5 nm are coated with an organic polymer compound having a film thickness of 5 μm to 5 nm can be obtained.
[0012]
When coating the surface of metal oxide fine particles or silicon oxide fine particles with an organic polymer compound, the surface of the fine particles is treated with a silane coupling agent or a surfactant to increase the affinity for organic matter and organic Even if the polymerization reaction is carried out using molecular monomers, composite particles having a two-layer structure cannot be obtained with good yield.
[0013]
It is important that the coupling agent has a substituent capable of reacting with the metal oxide fine particles or silicon oxide fine particles and a substituent capable of reacting with the monomer forming the organic polymer layer. Specifically, silylalkoxyl groups or SiOH groups that react with —OH groups of metal oxide fine particles or silicon oxide fine particles and vinyl groups that form polymer chains (H 2 C═CH—R—SiR ′ m (OH ) 3-m R ′: OCH 3 , OC 2 H 5 , OC 3 H 7 , OC 3 H 7 , OC 4 H 9 m = 3, 2, 1 R is not particularly limited. It is also possible to replace silicon with other metal elements such as titanium.
[0014]
It is important that the surfactant has a substituent capable of reacting with the monomer that forms the organic polymer layer. Specifically, an anionic or cationic surfactant can be used, but it must have a vinyl group. For example, R ″ is not particularly limited as long as it is a sulfonic acid having a vinyl group and a salt thereof (H 2 C═CH—R ″ —SO 3 X · xH 2 OX: H, Li, K, Na). In the examples, 4-styrenesulfonic acid sodium salt (H 2 C = CHC 6 H 4 SO 3 Na.xH 2 O) is used.
[0015]
The first layer metal oxide or silicon oxide is formed by hydrolysis condensation reaction of metal or silicon alkoxy compound, metal or silicon halide, metal salt or metal chelate, and may have —OH group on the surface of fine particles. is necessary. At this time, coating with an organic polymer compound may be performed using composite particles having metal, metal oxide, and silicon oxide in the metal oxide or silicon oxide particles of the first layer. The following examples are known for coating metal particles with silicon or titanium oxide (Adv. Mater. 2001, 13, 11., Langmuir 2000, 16, 2713.). Further, composite particles having silicon oxide in titanium oxide particles are also known as follows (Langmuir 1999, 15, 5535.). In the present invention, this method is applied to perform coating with an organic polymer compound using composite particles having metal, metal oxide, and silicon oxide in the metal oxide or silicon oxide particles of the first layer. it can.
[0016]
The precursor compound for forming the metal oxide or silicon oxide of the present invention is not limited as long as it is a compound that can finally become a metal oxide. One or more selected from the group consisting of metal alkoxides, metal acetylacetonates, metal carboxylates and metal chelates are preferred. Examples of the metal or silicon alkoxide include Si, Ge, Sn, Pb, Al, Ga, As, Sb, Bi, Ti, Zr, V, Nb, Ta, Na, K, Li, Ca, Mg, Ba, and Sr. An alkoxide is mentioned. Specific examples include the following. LiOCH 3 , NaOCH 3 , Cu (OCH 3 ) 2 , Ca (OCH 3 ) 2 , Sr (OC 2 H 5 ) 2 , Ba (OC 2 H 5 ) 2 , Zn (OC 2 H 5 ) 2 , B (OCH 3) 3, Al (i- OC 3 H 7) 3, Ga (OC 2 H 5) 3, Y (OC 4 H 9) 3, Ge (OC 2 H 5) 4, Pb (OC 4 H 9) 4 , P (OCH 3 ) 3 ,
Sb (OC 2 H 5 ) 3 , VO (OC 2 H 5 ) 3 , Ta (OC 3 H 7 ) 5 , W (OC 2 H 5 ) 6 ,
La (OC 3 H 7 ) 3 , Nd (OC 2 H 5 ) 3 , Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (i-OC 3 H 7 ) 4 , Si (t-OC 4 H 9) 4, Ti ( OCH 3) 4, Ti (OC 2 H 5) 4, Ti (i-OC 3 H 7) 4, Ti (OC 4 H 9) 4, Zr (OCH 3) 4, Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OC 4 H 9 ) 4 , Al (OCH 3 ) 3 , Al (OC 2 H 5 ) 3 , Al (i-OC 3 H 7 ) 3 , Al (OC 4 H 9 ) 3 , La [Al (iso-OC 3 H 7 ) 4 ] 3 , Mg [Al (iso-OC 3 H 7 ) 4 ] 2 , Mg [Al (sec-OC 4 H 9 ) 4 ] 2 ,
Ni (iso-OC 3 H 7 ) 4 ] 2 , (C 3 H 7 O) 2 Zr [Al (OC 3 H 7 ) 4 ] 2 ,
Ba [Zr 2 (OC 2 H 5 ) 9 ] 2 or the like can be used.
[0017]
As the metal chelate compound, those having a 1,3-dicarbonyl compound such as acetylacetonate as a ligand are used, and specific examples include the following. Tris (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (salicylaldehyde) aluminum, indium acetylacetonate, zinc acetylacetonate, copper acetylacetonate, platinum acetylacetonate, etc. can be used .
[0018]
As the metal carboxylate, for example, acetate is used, and specific examples include the following. Barium acetate, copper (II) acetate, lithium acetate, magnesium acetate, lead acetate, barium oxalate, calcium oxalate, copper (II) oxalate, magnesium oxalate, tin (II) oxalate, yttrium oxalate, stearyl acid Yttrium or the like can be used.
[0019]
As the metal or silicon halide, TiCl 4 , ZnCl 2 , WCl 6 , SnCl 2 , SrCl 6 , SiCl 4 or the like can be used.
[0020]
The organic polymer compound of the second layer of the composite particle having a two-layer structure composed of two different substances is not particularly limited as long as it is based on vinyl group polymerization, and ionic polymerization or radical polymerization is used. I can do things. The reaction for forming the metal oxide or silicon oxide of the present invention is preferably carried out in water or an alcohol solvent. Therefore, it is desirable that the subsequent coating reaction with the organic polymer compound of the second layer is subsequently performed in the same solvent. In this case, it is preferable to use a high molecular compound obtained by polymerizing a monomer having a high radical polymerization activity such as a polystyrene derivative shown below or poly (meth) acrylate or polyvinyl acetate derivative. Although it does not specifically limit as a styrene derivative monomer used for the superposition | polymerization of the said thermoplastic resin, For example, styrene, (alpha) -methylstyrene, p-methylstyrene, p-chlorostyrene is mentioned, These are individual or 2 or more types. They can be used in combination. Other monomers used for the polymerization of the thermoplastic resin are not particularly limited. For example, vinyl esters such as (meth) acrylate, vinyl acetate and vinyl propionate, unsaturated nitriles such as acrylonitrile and methacrylonitrile, acrylic Examples include acid and methacrylic acid. These can be used alone or in combination of two or more.
[0021]
In the present invention, the thickness of the organic polymer compound in the second layer can be controlled by changing the monomer concentration at the start of the reaction or by re-adding the monomer and the initiator during the polymerization.
[0022]
The composite particles of the present invention can also be used as a photonic crystal material. In a substance having a periodic refractive index change equivalent to the wavelength of light, light is subjected to Bragg reflection due to a periodic refractive index distribution, and a photo band gap (PBG) appears. Since the propagation of light in a photonic crystal is determined by the band structure, its optical properties can be freely designed by controlling the crystal structure and the magnitude of periodic perturbation. It can be applied as a basic structure constituting various optical devices such as lasers, optical waveguides, and optical integrated circuits used for optical transmission.
[0023]
At present, it is known to form a three-dimensional photonic crystal using a self-organization of fine particles of a polymer material such as polystyrene and silica and a mechanical alignment method. (Jpn. J. Appl. Phys. 37, (1998) L508. Appl. Phys. Lett. 71, 1148. Jpn. J. Appl. Phys. 37, L1527. Appl. Phys. Lett. 72, 1957. Appl. Phys. Lett. 75, 932. Advanced Robotics.11, 169. J. Lightwave Technol. 17, 1956. Advanced Robotics. 11,169.)
However, the method using the self-assembly of fine particles has an advantage that it can be easily formed, but has a disadvantage that it is difficult to realize a complete PBG because the particles are adjacent to each other. In order to realize perfect PBG, it is necessary to arrange the particles at a constant interval.
[0024]
By arranging the fine particles of the present invention in two or three dimensions, the film thickness of the second layer covering the central particle interval can be controlled, and it can be used as a photonic crystal material that can be expected to have perfect PBG. it can.
[0025]
When used as a photonic crystal, in a composite particle having a two-layer structure made of two different substances, it is desirable that the refractive index difference between the central first layer and the outer second layer is large, It is desirable to use a polymer compound that does not have a large refractive index difference from air. In addition, the first layer of the central core is preferably a material having a small light absorption such as a metal oxide rather than a particle having a large light absorption such as a metal particle.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The outline of the method for producing composite particles of the present invention will be described with reference to FIG. The first layer of inorganic oxide particles 1 is formed by hydrolysis and condensation reaction of a metal or silicon alkoxy compound, silicon halide, metal salt, or metal chelate. At this time, the surface of the formed inorganic oxide particle 1 has an —OH group. Next, a coupling agent 2 having an alkoxyl group or a hydroxyl group capable of reacting with —OH groups on the surface of the obtained inorganic oxide particles 1 and a vinyl group capable of reacting with a monomer forming an organic polymer. The inorganic oxide particle 1 to which the coupling agent 2 was added is processed. Next, a surfactant 3 having a vinyl group capable of reacting with a monomer that forms an organic polymer is added to the resulting inorganic oxide particles 1 together with the monomer 4 that forms an organic polymer, and a polymerization reaction is performed. Let Thereby, mononuclear composite particles in which the surface of the inorganic oxide particles 1 as shown in FIG. 1 is coated with the organic polymer compound 6 can be obtained.
[0027]
Examples of composite particle production according to the present invention will be described below.
[0028]
[Example 1] (First layer: gold-encapsulated SiO 2 , second layer: polymethacrylic acid)
Gold fine particles were obtained by reacting 80 mL of an aqueous solution of chloroauric acid (HAuCl 4 ) 2.4 × 10 −4 mol / L and sodium citrate 1.6 × 10 −3 mol / L at 80 ° C. for 40 minutes. Next, 0.15 g of tetraethoxysilane (Si (OEt) 4 ), 0.9 g of 25% NH 3 aqueous solution, and 19.58 g of ethanol were added to 5.41 g of the gold fine particles synthesized above, and reacted at 35 ° C. for 5 hours. Fine particles coated with silicon oxide were obtained. The obtained gold-silicon oxide composite particle reaction solution was bubbled with nitrogen, 0.005 g of a silane coupling agent (CH 2 = CCH 3 COOC 3 H 6 Si (OCH 3 ) 3 ) was added, and the mixture was stirred at 35 ° C. for 30 minutes. After that, 0.027 g of 5% surfactant solution (CH 2 = CHC 6 H 4 SO 3 Na), initiator: 0.61 g of 5% potassium persulfate solution (K 2 S 2 O 8 ), methyl methacrylate 0.29 g was added and reacted at 70 ° C. for 12 hours to obtain composite particles.
[0029]
[Example 2] (First layer: gold-encapsulated SiO 2 , second layer: polystyrene)
Nitrogen bubbling was performed on the gold-silicon oxide composite particle reaction solution obtained by the same method as in Example 1, and then 0.005 g of a silane coupling agent (CH 2 ═CCH 3 COOC 3 H 6 Si (OCH 3 ) 3 ). After stirring at 35 ° C. for 30 minutes, 0.027 g of 5% surfactant solution (CH 2 ═CHC 6 H 4 SO 3 Na), initiator: 5% potassium persulfate solution (K 2 S 2 O 8) ) 0.61 g and p-styrene 0.3 g were added and reacted at 70 ° C. for 12 hours to obtain composite particles.
[0030]
[Example 3] (First layer: SiO 2 , Second layer: polymethacrylic acid)
Silicon oxide fine particles were obtained by reacting 30 mL of an ethanol solution of tetraethoxysilane (Si (OEt) 4 ) 0.2 mol / L, water 11 mol / L, NH 3 0.2 mol / L at 35 ° C. for 12 hours. 3 mL of the obtained silicon oxide fine particle reaction solution was centrifuged, and the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, and redispersed by ultrasonic irradiation. In the same manner as in Example 1, it was reacted with methyl methacrylate to obtain composite particles.
[0031]
[Example 4] (first layer: SiO 2 , second layer: polystyrene)
Centrifugation of 3 mL of the silicon oxide fine particle reaction solution obtained by the same method as in Example 3, and solvent substitution with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, ultrasonic irradiation Was redispersed. In the same manner as in Example 2, it was reacted with p-styrene to obtain composite particles.
[0032]
Example 5 (first layer: TiO 2 , second layer: polymethacrylic acid)
1 hour by adding 0.1 mol / L ethanol solution of tetraethoxytitanium (Ti (OEt) 4 ) to a concentration of 0.5 mol / L water and 0.5 g / L hydroxypropylcellulose (dispersion stabilizer) The mixture was refluxed to obtain titanium oxide particles. The obtained titanium oxide fine particles were separated with a centrifugal separator and washed with pure water. The obtained titanium oxide fine particles were subjected to solvent substitution with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 150 mL and redispersed by ultrasonic irradiation. 30 mL of the obtained titanium oxide ethanol solution was reacted with methyl methacrylate in the same manner as in Example 1 to obtain composite particles.
[0033]
[Example 6] (first layer: TiO 2 , second layer: polystyrene)
18 mL of ethanol was added to 12 mL of an ethanol solution of titanium oxide fine particles obtained by the same method as in Example 5 and reacted with p-styrene in the same manner as in Example 2 to obtain composite particles.
[0034]
[Example 7] (first layer: SiO 2 , second layer: polystyrene)
3 mL of the silicon oxide fine particle reaction solution obtained in the same manner as in Example 3 was centrifuged, and the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL. Redistributed. After adding 0.007 g of a silane coupling agent (CH 2 ═CCH 3 COOC 3 H 6 Si (OCH 3 ) 3 ) and stirring at 35 ° C. for 30 minutes, a 5% surfactant solution (CH 2 ═CHC 6 H 4 SO 3 Na) 0.041 g, reaction initiator: 0.94 g of 5% potassium persulfate solution (K 2 S 2 O 8 ) and 0.45 g of p-styrene were added and reacted at 70 ° C. for 12 hours to obtain composite particles.
[0035]
[Example 8] (first layer: SiO 2 , second layer: polystyrene)
3 mL of the silicon oxide fine particle reaction solution obtained in the same manner as in Example 3 was centrifuged, and the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL. Redistributed. A silane coupling agent (CH 2 ═CCH 3 COOC 3 H 6 Si (OCH 3 ) 3 ) (0.015 g) was added and the reaction was carried out at 35 ° C. for 30 minutes. In the reaction solution, 5% surfactant solution (CH 2 = CHC 6 H 4 SO 3 Na) 0.084 g, reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) 1.92 g, p-styrene 0.93 g was added and reacted at 70 ° C. for 12 hours to obtain composite particles.
[0036]
[Comparative Example 1] (using silane coupling agent, no surfactant)
Silicon oxide fine particles were obtained by reacting 30 mL of an ethanol solution of tetraethoxysilane (Si (OEt) 4 ) 0.2 mol / L, water 11 mol / L, NH 3 0.2 mol / L at 35 ° C. for 12 hours. 3 mL of the obtained silicon oxide fine particle reaction solution was centrifuged, and the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, and redispersed by ultrasonic irradiation. After adding 0.005 g of a silane coupling agent (CH 2 = CCH 3 COOC 3 H 6 Si (OCH 3 ) 3 ) and stirring at 35 ° C. for 30 minutes, a reaction initiator: 5% potassium persulfate solution (K 2 S 2 0.68 g of O 8 ) and 0.3 g of p-styrene were added and reacted at 70 ° C. for 12 hours. The reaction was carried out at 70 ° C. for 12 hours. The resultant particles were mostly grain seedless containing no particles or SiO 2 particles Fukukaku including a large number of SiO 2 particles, particles of mononuclear containing SiO 2 particles was not obtained.
[0037]
[Comparative Example 2] (use of surfactant having no silane coupling agent and no vinyl group)
Silicon oxide fine particles were obtained by reacting 30 mL of an ethanol solution of tetraethoxysilane (Si (OEt) 4 ) 0.2 mol / L, water 11 mol / L, NH 3 0.2 mol / L at 35 ° C. for 12 hours. 3 mL of the obtained silicon oxide fine particle reaction solution was centrifuged, and the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, and redispersed by ultrasonic irradiation. After adding 0.027 g of 5% surfactant solution (C 2 H 5 C 6 H 4 SO 3 Na) and stirring at 35 ° C. for 30 minutes, reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) 0.61 g and 0.3 g of p-styrene were added and reacted at 70 ° C. for 12 hours. Particles of Fukukaku resulting particles containing a large number of SiO 2 particles, particles seedless without the SiO 2 particles or SiO 2 particles, are mostly particles of mononuclear containing SiO 2 particles was not obtained.
[0038]
[Comparative Example 3] (No silane coupling agent, used before surfactant polymerization reaction)
Silicon oxide fine particles were obtained by reacting 30 mL of an ethanol solution of tetraethoxysilane (Si (OEt) 4 ) 0.2 mol / L, water 11 mol / L, NH 3 0.2 mol / L at 35 ° C. for 12 hours. 3 mL of the obtained silicon oxide fine particle reaction solution was centrifuged, and the solvent was replaced with a mixed solvent (ethanol 75.3 wt%, pure water 24.7 wt%) to 30 mL, and redispersed by ultrasonic irradiation. After adding 0.027 g of 5% surfactant solution (CH 2 ═CHC 6 H 4 SO 3 Na) and stirring at 35 ° C. for 30 minutes, the reaction initiator: 5% potassium persulfate solution (K 2 S 2 O 8 ) 0 0.61 g and 0.3 g of p-styrene were added and reacted at 70 ° C. for 12 hours. The resulting particles particles Fukukaku containing SiO 2 particles, most particles seedless without the SiO 2 particles in all particles, the proportion of mononuclear particles containing SiO 2 particles was 3% .
[0039]
Table 1 shows the form of the composite particles produced in Example 1-8.
[0040]
The particle size and particle size distribution of the produced particles were measured by collecting a small amount of reaction solution before and after coating and using a transmission electron microscope. The particle size distribution was obtained by measuring the particle size of 200 or more particles for each sample, and the dispersity (C V ) was calculated by the following formula.
[0041]
[Expression 1]
Figure 0003960078
[0042]
As shown in Table 1, in Example 2 using polystyrene compared to Example 1 using methyl methacrylate, composite particles having a low degree of dispersion can be obtained. Similarly, composite particles having a lower degree of dispersion can be obtained when the ratio is 4 than 4 than 5 in Example 3.
[0043]
When used as a photonic crystal, it is desirable that the refractive index difference between the central first layer and the outer second layer is large, and 4 or 5 is more desirable than Example 2 or 3.
[0044]
As shown in Examples 7 and 8, the particle size can be controlled by changing the reagent concentration at the start of the reaction.
[0045]
[Table 1]
Figure 0003960078
[0046]
The composite particles of the present invention are various preparations such as agricultural chemicals, pharmaceuticals and fertilizers, their sustained release preparations, coating agents such as fishing nets and laver culture nets, ship bottom paints, and other small animals that run in sandboxes such as parks. It can be widely used for repellents, optical materials such as paints, inks, toners, adhesives, paper lamination, foamed resin materials, digestive agents, cosmetic materials, civil engineering materials, and photonic crystals.
[0047]
【The invention's effect】
According to the present invention, mononuclear composite particles in which metal oxide or silicon oxide having a size of several μm or less is coated with an organic polymer compound in an arbitrary thickness can be efficiently produced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for producing composite particles of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inorganic oxide particle, 2, 5 ... Coupling agent, 3 ... Surfactant, 4 ... Monomer of organic polymer, 6 ... Organic polymer compound.

Claims (8)

粒径が5nm〜1μmの金属酸化物またはケイ素酸化物と、前記金属酸化物またはケイ素酸化物の粒子表面の−OH基と反応したビニル基を有するカップリング剤と、前記カップリング剤、ビニル基を有する単量体、及び、ビニル基を有する界面活性剤のビニル基のアニオン,カチオンまたはラジカル重合によって生成し、前記金属酸化物またはケイ素酸化物の粒子表面を被覆する有機高分子化合物とを有することを特徴とする複合粒子。A metal oxide or silicon oxide having a particle size of 5 nm to 1 μm, a coupling agent having a vinyl group reacted with —OH group on the particle surface of the metal oxide or silicon oxide, the coupling agent, and a vinyl group monomers having,及 beauty, anionic vinyl groups of the surfactant having a vinyl group, generated by cation or radical polymerization, an organic polymer compound coating the particle surface of the metal oxide or silicon oxide Composite particles characterized by having. 請求項1に記載の複合粒子において、前記有機高分子化合物の膜厚が5nm〜5μmであることを特徴とする複合粒子。The composite particle according to claim 1 , wherein the organic polymer compound has a thickness of 5 nm to 5 μm. 請求項1に記載の複合粒子において、第二の層がポリスチレンであることを特徴とする複合粒子。The composite particle according to claim 1, wherein the second layer is polystyrene. 請求項1に記載の複合粒子において、中心の第一の層がチタン酸化物であることを特徴とする複合粒子。The composite particle according to claim 1, wherein the central first layer is titanium oxide. 請求項1に記載の複合粒子において、中心の第一の層がチタン酸化物,第二の層がポリスチレンであることを特徴とする複合粒子。2. The composite particle according to claim 1, wherein the central first layer is titanium oxide and the second layer is polystyrene. 請求項1に記載の複合粒子において、中心の第一層内に金属,金属酸化物またはケイ素酸化物の粒子を有することを特徴とする複合粒子。The composite particle according to claim 1, wherein the composite particle has metal, metal oxide, or silicon oxide particles in the central first layer. 請求項に記載の複合粒子において、第二の層がポリスチレンであることを特徴とする複合粒子。In the composite particles of claim 6, the composite particles which the second layer, characterized in that polystyrene. 金属またはケイ素のアルコキシ化合物,ケイ素ハロゲン化物,金属塩,金属キレートの加水分解縮合反応により中心になる第一層の粒径が5nm〜1μmの微粒子を形成する工程と、形成した微粒子表面を微粒子と反応しうる置換基および前記微粒子表面を被覆する有機高分子層を形成する単量体と反応しうるビニル基を有するカップリング剤で処理する工程と、前記単量体と反応しうるビニル基を有する界面活性剤を添加し、前記単量体と共に重合反応させる工程とを有することを特徴とする複合粒子の製造方法。  A step of forming fine particles having a particle size of 5 nm to 1 μm at the center of the first layer by hydrolytic condensation reaction of a metal or silicon alkoxy compound, silicon halide, metal salt or metal chelate; A step of treating with a coupling agent having a vinyl group capable of reacting with a monomer capable of reacting with a monomer that forms an organic polymer layer covering the surface of the fine particle surface, and a vinyl group capable of reacting with the monomer. A method for producing composite particles, comprising: adding a surfactant having a polymerization reaction with the monomer.
JP2002052571A 2002-02-28 2002-02-28 Composite particle and method for producing the same Expired - Fee Related JP3960078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052571A JP3960078B2 (en) 2002-02-28 2002-02-28 Composite particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052571A JP3960078B2 (en) 2002-02-28 2002-02-28 Composite particle and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003252916A JP2003252916A (en) 2003-09-10
JP3960078B2 true JP3960078B2 (en) 2007-08-15

Family

ID=28664231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052571A Expired - Fee Related JP3960078B2 (en) 2002-02-28 2002-02-28 Composite particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP3960078B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108451A1 (en) * 2004-05-07 2005-11-17 Kyoto University Method for preparing colloidal crystal using polymer-grafted fine particles
JP5068170B2 (en) * 2005-10-13 2012-11-07 東洋アルミニウム株式会社 Coated metal pigment, method for producing the same, and coating composition containing the same
JP5241492B2 (en) * 2006-06-16 2013-07-17 株式会社日本触媒 Polymer-coated metal oxide fine particles and their applications
JP2008266472A (en) * 2007-04-20 2008-11-06 Nippon Shokubai Co Ltd Polymer-coated metal oxide particulates and method for producing the same
JP2008266103A (en) * 2007-04-25 2008-11-06 Kri Inc Capsule micro particles and manufacturing method thereof, and method of manufacturing composite using the capsule micro particles
JP5862739B1 (en) 2013-09-30 2016-02-16 株式会社リコー Three-dimensional modeling powder material, curing liquid, three-dimensional modeling kit, and three-dimensional model manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JP2003252916A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US11400430B2 (en) Hybrid organic-inorganic nano-particles
US8287636B2 (en) Pearlescent pigments with large aspect ratio and a method of their preparation
EP0607213B1 (en) Composite materials containing nanoscalar particles, process for producing them and their use for optical components
JP2001520937A (en) Stabilized particles, production method thereof, and use thereof
CN106547040B (en) A kind of high intensity crystal film with photon and preparation method thereof
CN109852105B (en) Method for preparing an antireflective coating composition and porous coating prepared therefrom
CN104624125B (en) A kind of Photochromic double-shell microcapsule and its preparation method and application
JP2007154198A (en) Manufacturing method of photochromic nanoparticles and photochromic nanoparticles manufactured by the same
JP2003512287A (en) Zirconia sol and method for producing the same
JP2009533306A (en) Process for producing metal oxide flakes
TW200918591A (en) Novel nanoparticles
JP3960078B2 (en) Composite particle and method for producing the same
JP4113045B2 (en) White powder and method for producing the same
JPH07507532A (en) Vanadium oxide colloidal dispersion and antistatic coating
JP2007169347A (en) Inorganic oxide structure and method of manufacturing the same
JPS62213839A (en) Preparation of composite particle coated uniformly
JP4499962B2 (en) Composition of metal oxide ultrafine particles and polymer
WO2017004842A1 (en) Method for preparing inverse opal colloidal crystal fiber
CN112048192B (en) Preparation method of amphiphilic Janus organic pigment particles
JP5369310B2 (en) Nanoparticle body and method for producing the same
JP2011116987A (en) Black pearlescent pigment having metal layer
CN115806715B (en) Photonic crystal 3D printing ink, photonic crystal and preparation method thereof
RU2583022C2 (en) Method of producing nanocomposites based on gold nanoparticles coated with shell made of silicon oxide and quantum dots
Zhang et al. ZnO@ PNIPAM nanospheres synthesis from inverse Pickering miniemulsion polymerization
KR101280018B1 (en) Method for preparing titania microspheres with high refractive index

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees