JP5369310B2 - Nanoparticle body and method for producing the same - Google Patents

Nanoparticle body and method for producing the same Download PDF

Info

Publication number
JP5369310B2
JP5369310B2 JP2009002999A JP2009002999A JP5369310B2 JP 5369310 B2 JP5369310 B2 JP 5369310B2 JP 2009002999 A JP2009002999 A JP 2009002999A JP 2009002999 A JP2009002999 A JP 2009002999A JP 5369310 B2 JP5369310 B2 JP 5369310B2
Authority
JP
Japan
Prior art keywords
nanoparticle
surfactant
dispersion
nanoparticles
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009002999A
Other languages
Japanese (ja)
Other versions
JP2010159464A (en
Inventor
秀博 神谷
志行 飯島
昔離野 小早川
泰裕 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Toho Chemical Industry Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Toho Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Toho Chemical Industry Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2009002999A priority Critical patent/JP5369310B2/en
Publication of JP2010159464A publication Critical patent/JP2010159464A/en
Application granted granted Critical
Publication of JP5369310B2 publication Critical patent/JP5369310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanoparticle body which has superior dispersibility to both of a polar organic solvent and a non-polar organic solvent. <P>SOLUTION: The method for producing the nanoparticle body includes coating the surface of the nanoparticle of a metal or a metal oxide with a phosphate-based surface active agent expressed by chemical formula (1), (wherein R<SP>1</SP>represents a saturated or unsaturated hydrocarbon group having a straight chain or branched chain of 1-3 carbon atoms; R<SP>2</SP>represents an alkyl group having 10-16 carbon atoms; n is an integer of 8-16; and m+k=3, m=1 or 2 and k=1 or 2). The nanoparticle of the metal or the metal oxide is a nanoparticle of silver, titanium oxide or iron oxide. The nanoparticle body has a hydrophilic group having an affinity to the polar organic solvent and a hydrophobic group having an affinity to the non-polar organic solvent, on the surface of the particle. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ナノ粒子体及びその製造方法、並びにナノ粒子体を分散させたナノ粒子分散体、ナノ粒子を含む複合材料の製造方法に関する。   The present invention relates to a nanoparticle body and a method for producing the same, a nanoparticle dispersion in which the nanoparticle body is dispersed, and a method for producing a composite material including the nanoparticles.

ナノ粒子は、医薬品、光学材料、顔料、触媒、電子材料等の広い分野で利用されている。本願において、ナノ粒子とは、平均粒子径がナノサイズ(1nm以上100nm以下)である粒子をいう。ナノ粒子の中で平均粒子径が10nm未満の粒子のみを指すときはシングルナノ粒子という。特に、粒子径が数nmの金属酸化物のシングルナノ粒子は特異な電磁気・光学的特性を示し、これらを樹脂などに高密度に分散させることによって、高密度記録媒体や光学素子等の新規材料の開発が期待されている。金属酸化物のナノ粒子としては、酸化チタン、酸化ジルコニウム、酸化鉄、酸化セリウム、酸化亜鉛、酸化インジウムなどのナノ粒子がよく知られている。酸化チタンのナノ粒子は、可視域における高い透明性などの特性を有し、光学フィルタやレンズ、塗料、化粧品等に利用されている。また、酸化鉄のナノ粒子は電磁波吸収体材料等に利用されており、銀のナノ粒子は抗菌材料等に利用されている。   Nanoparticles are used in a wide range of fields such as pharmaceuticals, optical materials, pigments, catalysts, and electronic materials. In this application, a nanoparticle means the particle | grains whose average particle diameter is nanosize (1 nm or more and 100 nm or less). When referring to only particles having an average particle diameter of less than 10 nm among nanoparticles, it is referred to as a single nanoparticle. In particular, single nanoparticles of metal oxide with a particle size of several nanometers exhibit unique electromagnetic and optical properties, and these materials are dispersed at high density in a resin, thereby enabling new materials such as high-density recording media and optical elements. Development is expected. As metal oxide nanoparticles, nanoparticles such as titanium oxide, zirconium oxide, iron oxide, cerium oxide, zinc oxide, and indium oxide are well known. Titanium oxide nanoparticles have properties such as high transparency in the visible range, and are used in optical filters, lenses, paints, cosmetics, and the like. Iron oxide nanoparticles are used for electromagnetic wave absorber materials and the like, and silver nanoparticles are used for antibacterial materials and the like.

ナノ粒子の持つこのような優れた性能は、基材中への分散の均一性が高いほど、より十分に発揮されると考えられる。しかし、ナノ粒子は凝集しやすく、分散体中のナノ粒子の濃度が高いほど凝集しやすい。   Such excellent performance of the nanoparticles is considered to be more sufficiently exhibited as the uniformity of dispersion in the base material is higher. However, the nanoparticles tend to aggregate, and the higher the concentration of nanoparticles in the dispersion, the easier it is to aggregate.

金属酸化物のナノ粒子を樹脂中に分散させる際にはまず、ナノ粒子を樹脂溶剤に均一に分散させる必要がある。従来、逆ミセル法、有機金属錯体の熱分解法などにより脂肪酸などの有機物で被覆された機能性ナノ粒子の調製方法が知られている(非特許文献1、非特許文献2、特許文献1参照)。いずれも得られたナノ粒子はヘキサンを始めとした非極性溶媒に一次粒子まで完全に均一分散が可能であった。   When the metal oxide nanoparticles are dispersed in the resin, it is first necessary to uniformly disperse the nanoparticles in the resin solvent. Conventionally, a method for preparing functional nanoparticles coated with an organic substance such as a fatty acid by a reverse micelle method or a pyrolysis method of an organometallic complex is known (see Non-Patent Document 1, Non-Patent Document 2, and Patent Document 1). ). In any case, the obtained nanoparticles could be completely uniformly dispersed up to the primary particles in a nonpolar solvent such as hexane.

P.A.Dresco他、「Langmuir」、15巻、p.1945−1951、1999年P.A.Dresco et al., "Langmuir", Volume 15, p. 1945-951, 1999 T.Hyeon他、「Journal of the American Chemical Society」、123巻、p.12798−12801、2001年T. Hyeon et al., "Journal of the American Chemical Society", 123, p. 12798-12801, 2001

特開2008−69046号公報(0014段落)Japanese Patent Laying-Open No. 2008-69046 (paragraph 0014)

しかし、非特許文献1や非特許文献2に記載された調整法では、メタノール等の極性を有する溶媒には分散できず、得られたナノ粒子が完全分散する溶媒は特定の溶媒に限られるという問題があった。また、分散可能な溶媒が限られていることで、用途が限定されてしまうという問題があった。   However, in the adjustment methods described in Non-Patent Document 1 and Non-Patent Document 2, it cannot be dispersed in a polar solvent such as methanol, and the solvent in which the obtained nanoparticles are completely dispersed is limited to a specific solvent. There was a problem. In addition, there is a problem that the use is limited because the dispersible solvent is limited.

さらに、たとえナノ粒子を特定の溶媒で分散させることができても分散液中のナノ粒子を乾燥粉体にすると、凝集して溶媒への再分散が困難となり、ナノ粒子を再分散させた溶液を作製できないという問題があった。   Furthermore, even if the nanoparticles can be dispersed with a specific solvent, if the nanoparticles in the dispersion are made into a dry powder, it will aggregate and it will be difficult to redisperse in the solvent. There was a problem that could not be produced.

本発明は、このような従来の問題点を鑑みてなされたものである。本発明の第1の目的は、極性有機溶媒に対しても非極性有機溶媒に対しても分散性に優れるナノ粒子体を提供することにある。   The present invention has been made in view of such conventional problems. The first object of the present invention is to provide a nanoparticle having excellent dispersibility in both polar and nonpolar organic solvents.

また、本発明の第2の目的は、分散体中におけるナノ粒子の分散均一性に優れるナノ粒子分散体を提供することにある。   In addition, a second object of the present invention is to provide a nanoparticle dispersion having excellent dispersion uniformity of nanoparticles in the dispersion.

本発明の第3の目的は、基材中におけるナノ粒子の分散均一性に優れる複合材料の製造方法を提供することにある。   A third object of the present invention is to provide a method for producing a composite material having excellent dispersion uniformity of nanoparticles in a substrate.

本発明の第1の態様は、上記第1の目的を達成するため、金属又は金属酸化物のナノ粒子に、下記化学式(1)
(ただし、R1は炭素数1〜3の直鎖又は分岐鎖の飽和又は不飽和の炭化水素基、Rは炭素数10〜16のアルキル基であり、n=8〜16の整数、m+k=3であり且つm=1又は2、k=1又は2である。)
で示されるリン酸系の界面活性剤で表面を被覆することを特徴とするナノ粒子体の製造方法を提供する。本発明の第1の態様によれば、ナノ粒子の表面がかかる界面活性剤で覆われるため、極性のある有機溶媒にも非極性の有機溶媒にも分散性に優れている。R1は、たとえば、メチル基、エチル基、プロピル基、イソプロピル基、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、エチニル基、プロパルギル基が挙げられる。R1がアリル基であることは好ましい。上記化学式(1)の界面活性剤が、Rについては、炭素数10又は12のアルキル基、あるいは、炭素数14又は16のアルキル基が好ましい。なかでも、少ない量の界面活性剤でも高い分散性を実現できるナノ粒子体を得られる点において、また得られるナノ粒子体を各種有機溶媒に分散させたときの透明性の高さの点において、Rが炭素数10又は12のアルキル基であることが好ましく、n=12であることが特に好ましい。
In the first aspect of the present invention, in order to achieve the first object, a metal or metal oxide nanoparticle is represented by the following chemical formula (1).
(Wherein, R 1 is a hydrocarbon group of a saturated or unsaturated straight-chain or branched-chain having 1 to 3 carbon atoms, R 2 is an alkyl group having 10 to 16 carbon atoms, n = 8 to 16 integer, m + k = 3 and m = 1 or 2, k = 1 or 2.)
A method for producing a nanoparticle body is provided, wherein the surface is coated with a phosphate-based surfactant represented by the formula: According to the 1st aspect of this invention, since the surface of a nanoparticle is covered with this surfactant, it is excellent in the dispersibility also in a polar organic solvent and a nonpolar organic solvent. Examples of R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, an ethynyl group, and a propargyl group. R 1 is preferably an allyl group. Regarding the surfactant of the above chemical formula (1), R 2 is preferably an alkyl group having 10 or 12 carbon atoms, or an alkyl group having 14 or 16 carbon atoms. Among them, in terms of obtaining a nanoparticle body that can realize high dispersibility even with a small amount of surfactant, and in terms of high transparency when the obtained nanoparticle body is dispersed in various organic solvents, R 2 is preferably an alkyl group having 10 or 12 carbon atoms, and particularly preferably n = 12.

上記化学式(1)で示されるリン酸系の界面活性剤は、例えば、ポリオキシエチレンアルキル(アルケニル、アルキニル)エーテルと長鎖α−オレフィンオキサイドとを縮合させ、公知の方法を用いてリン酸エステル化することにより容易に得ることができる。   The phosphoric acid surfactant represented by the chemical formula (1) is, for example, a polyoxyethylene alkyl (alkenyl, alkynyl) ether and a long-chain α-olefin oxide condensed with a phosphoric acid ester using a known method. Can be easily obtained.

上記したナノ粒子体の製造方法は、前記金属又は金属酸化物のナノ粒子が、銀、酸化チタン又は酸化鉄のナノ粒子であることが好ましい。   In the above-described method for producing a nanoparticle body, the metal or metal oxide nanoparticles are preferably silver, titanium oxide, or iron oxide nanoparticles.

また、前記金属又は金属酸化物のナノ粒子が、酸化チタンのナノ粒子であって、前記ナノ粒子を含有する水溶液に、前記界面活性剤を含有する水溶液を混合する混合工程を含むことが好ましい。前記混合工程が、攪拌を行いながら前記希釈水溶液に前記界面活性剤を含有する水溶液をすばやく添加し、さらに攪拌を行うものであることがより好ましい。また、混合後に回収した粒子を乾燥する乾燥工程を含むことが好ましい。   The metal or metal oxide nanoparticles are preferably titanium oxide nanoparticles, and it is preferable to include a mixing step in which the aqueous solution containing the surfactant is mixed with the aqueous solution containing the nanoparticles. More preferably, in the mixing step, an aqueous solution containing the surfactant is quickly added to the diluted aqueous solution while stirring, and the stirring is further performed. Moreover, it is preferable to include the drying process which dries the particle | grains collect | recovered after mixing.

また、前記混合工程において、界面活性剤の量を酸化チタン1gに対し1mmol以上3mmol以下とすることが好ましい。   In the mixing step, the amount of the surfactant is preferably 1 mmol or more and 3 mmol or less with respect to 1 g of titanium oxide.

また、前記ナノ粒子が、平均粒子径8nm以下のシングルナノ粒子であることが好ましい。   Moreover, it is preferable that the said nanoparticle is a single nanoparticle with an average particle diameter of 8 nm or less.

あるいは、前記金属又は金属酸化物のナノ粒子が、酸化鉄のナノ粒子であって、水酸化鉄水溶液を加熱して水溶液中に酸化鉄を生成させた水溶液に前記界面活性剤を混合する混合工程を含むことが好ましい。また混合した液の中に生成される析出物を磁石で回収して、乾燥させ粉末にすることが好ましい。   Alternatively, the metal or metal oxide nanoparticles are iron oxide nanoparticles, and the surfactant is mixed in an aqueous solution in which an aqueous iron hydroxide solution is heated to produce iron oxide in the aqueous solution It is preferable to contain. Moreover, it is preferable to collect the precipitate produced in the mixed liquid with a magnet and to dry it into a powder.

またあるいは、前記金属又は金属酸化物のナノ粒子が、銀のナノ粒子であって、硝酸銀水溶液に、前記界面活性剤と還元剤とを含有する水溶液を混合する混合工程を含むことが好ましい。混合した液にトルエンを加えて有機層に粒子を抽出させ、かかる有機層を回収して、溶媒を蒸発乾固させ粉末にすることが好ましい。   Alternatively, it is preferable that the metal or metal oxide nanoparticles include silver nanoparticles, and a mixing step of mixing an aqueous solution containing the surfactant and the reducing agent in an aqueous silver nitrate solution. It is preferable to add toluene to the mixed liquid to extract particles in the organic layer, collect the organic layer, evaporate the solvent to dryness, and form a powder.

本発明の第2の態様は、上記第1の目的を達成するため、金属又は金属酸化物のナノ粒子に、下記化学式(1)
(ただし、R1は炭素数1〜3の直鎖又は分岐鎖の飽和又は不飽和の炭化水素基、Rは炭素数10〜16のアルキル基であり、n=8〜16の整数、m+k=3であり且つm=1又は2、k=1又は2である。)
で示されるリン酸系の界面活性剤で表面に被覆を施した粉末であることを特徴とするナノ粒子体を提供する。本発明の第2の態様によれば、ナノ粒子の表面が疎水基と親水基の両方で覆われているため、極性のある有機溶媒にも非極性の有機溶媒にも分散可能である。R1は、たとえば、メチル基、エチル基、プロピル基、イソプロピル基、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、エチニル基、プロパルギル基が挙げられる。R1がアリル基であることは好ましい。上記化学式(1)の界面活性剤が、Rについては、炭素数10又は12のアルキル基、あるいは、炭素数14又は16のアルキル基が好ましい。各種有機溶媒に分散させたときの透明性の高さの点において、上記化学式(1)の界面活性剤が、Rについては、炭素数10又は12のアルキル基、あるいは、炭素数14又は16のアルキル基が好ましい。なかでも、Rが炭素数10又は12のアルキル基であることが好ましく、nについては、n=12であることが特に好ましい。
In order to achieve the first object, the second aspect of the present invention includes a metal or metal oxide nanoparticle having the following chemical formula (1):
(Wherein, R 1 is a hydrocarbon group of a saturated or unsaturated straight-chain or branched-chain having 1 to 3 carbon atoms, R 2 is an alkyl group having 10 to 16 carbon atoms, n = 8 to 16 integer, m + k = 3 and m = 1 or 2, k = 1 or 2.)
A nanoparticle body characterized by being a powder having a surface coated with a phosphoric acid surfactant as shown in FIG. According to the second aspect of the present invention, since the surface of the nanoparticle is covered with both a hydrophobic group and a hydrophilic group, it can be dispersed in a polar organic solvent or a nonpolar organic solvent. Examples of R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, an ethynyl group, and a propargyl group. R 1 is preferably an allyl group. Regarding the surfactant of the above chemical formula (1), R 2 is preferably an alkyl group having 10 or 12 carbon atoms, or an alkyl group having 14 or 16 carbon atoms. In terms of high transparency when dispersed in various organic solvents, the surfactant of the above chemical formula (1) is an alkyl group having 10 or 12 carbon atoms, or 14 or 16 carbon atoms for R 2. Are preferred. Among these, R 2 is preferably an alkyl group having 10 or 12 carbon atoms, and n is particularly preferably n = 12.

上記したナノ粒子体は、前記金属又は金属酸化物のナノ粒子が、酸化チタン、酸化鉄又は銀のナノ粒子であることが好ましい。   In the above-described nanoparticle body, the metal or metal oxide nanoparticles are preferably titanium oxide, iron oxide, or silver nanoparticles.

また、前記金属又は金属酸化物のナノ粒子が、酸化チタンのナノ粒子であって、平均粒子径8nm以下のシングルナノ粒子であることが好ましい。   The metal or metal oxide nanoparticles are preferably titanium oxide nanoparticles and single nanoparticles having an average particle diameter of 8 nm or less.

また、極性有機溶媒への親和性を有する親水基と非極性有機溶媒への親和性を有する疎水基とを粒子表面に有することが好ましい。分散性の点から、前記親水基が長鎖エチレンオキサイド基を含むものであり、前記疎水基が長鎖アルキル基を含むものであることが好ましい。特に、前記親水基が炭素数8〜16の直鎖のエチレンオキサイド基を含むものであり、前記疎水基が炭素数10〜16の長鎖アルキル基を含むものであることがより好ましく、さらに、前記親水基と前記疎水基が1つの分子内で分岐したものであって、分岐点がナノ粒子の表面に結合したリン酸基にエステル結合した炭素原子であることがさらに好ましい。   Moreover, it is preferable to have a hydrophilic group having an affinity for a polar organic solvent and a hydrophobic group having an affinity for a nonpolar organic solvent on the particle surface. From the viewpoint of dispersibility, it is preferable that the hydrophilic group includes a long-chain ethylene oxide group and the hydrophobic group includes a long-chain alkyl group. In particular, it is more preferable that the hydrophilic group includes a linear ethylene oxide group having 8 to 16 carbon atoms, and the hydrophobic group includes a long chain alkyl group having 10 to 16 carbon atoms. More preferably, the group and the hydrophobic group are branched in one molecule, and the branch point is a carbon atom ester-bonded to a phosphate group bonded to the surface of the nanoparticle.

また、非極性有機溶媒、極性有機溶媒のいずれに対しても平均凝集粒子径が200nm以下で分散することが好ましい。非極性有機溶媒、極性有機溶媒のいずれに対しても動的光散乱法による平均凝集粒子径が30nm以下で分散することがより好ましい。また、非極性有機溶媒、極性溶媒のいずれに分散させても透明性があることが好ましい。   Moreover, it is preferable to disperse | distribute with an average aggregated particle diameter below 200 nm with respect to any of a nonpolar organic solvent and a polar organic solvent. It is more preferable that the average aggregate particle diameter by the dynamic light scattering method is dispersed at 30 nm or less for both the nonpolar organic solvent and the polar organic solvent. Moreover, it is preferable that it is transparent even if it disperse | distributes to any of a nonpolar organic solvent and a polar solvent.

また、本発明の第3の態様は、上記第2の目的を達成するため、上記した本発明の第2の態様のナノ粒子体を、非極性有機溶媒又は極性有機溶媒中に分散する分散工程を含むことを特徴とするナノ粒子分散体製造方法を提供する。本発明の第3の態様によれば、溶媒に分散させるナノ粒子が凝集が極めて少なくしかも有機溶媒の極性の大小によらず分散性が高いナノ粒子体であるので、再度非極性有機溶媒や極性有機溶媒に分散させることによって、ナノ粒子が均一に分散された分散体を得られる。前記分散工程が、溶媒に超音波を照射しながらナノ粒子体を分散させる工程であることが好ましい。凝集を防止しながら分散されるので、より均一な分散体を得られる。   Moreover, the 3rd aspect of this invention is a dispersion | distribution process which disperse | distributes the nanoparticle body of the above-mentioned 2nd aspect of this invention in a nonpolar organic solvent or a polar organic solvent, in order to achieve the said 2nd objective. A method for producing a nanoparticle dispersion, comprising: According to the third aspect of the present invention, the nanoparticle dispersed in the solvent is a nanoparticle body with very little aggregation and high dispersibility regardless of the polarity of the organic solvent. By dispersing in an organic solvent, a dispersion in which nanoparticles are uniformly dispersed can be obtained. The dispersing step is preferably a step of dispersing the nanoparticle body while irradiating the solvent with ultrasonic waves. Since it is dispersed while preventing aggregation, a more uniform dispersion can be obtained.

また、本発明の第4の態様は、上記第2の目的を達成するため、上記した本発明の第2の態様のナノ粒子体と、非極性有機溶媒又は極性有機溶媒とを含有することを特徴とするナノ粒子分散体を提供する。本発明の第4の態様によれば、有機溶媒に分散されているのが、凝集が極めて少なくしかも有機溶媒の極性の大小によらず分散性が高いナノ粒子体であるので、分散体中のナノ粒子の分散均一性が高い。   Moreover, in order to achieve the second object, the fourth aspect of the present invention contains the above-described nanoparticle body of the second aspect of the present invention and a nonpolar organic solvent or a polar organic solvent. A nanoparticle dispersion is provided. According to the fourth aspect of the present invention, the dispersion in the organic solvent is a nanoparticle body with extremely low aggregation and high dispersibility regardless of the polarity of the organic solvent. High dispersion uniformity of nanoparticles.

また、前記ナノ粒子体が、分散体中で平均凝集粒子径200nm以下であることが好ましい。さらに、前記ナノ粒子体が、分散体中で平均凝集粒子径30nm以下であることが好ましい。さらに、透明性を有することが好ましい。   Moreover, it is preferable that the said nanoparticle body is an average aggregate particle diameter of 200 nm or less in a dispersion. Furthermore, the nanoparticle body preferably has an average aggregate particle diameter of 30 nm or less in the dispersion. Furthermore, it is preferable to have transparency.

上記したナノ粒子分散体は、前記有機溶媒が、エタノール、メタクリル酸メチル、トルエン又はテトラヒドロフランであることが好ましい。   In the above nanoparticle dispersion, the organic solvent is preferably ethanol, methyl methacrylate, toluene, or tetrahydrofuran.

また、本発明の第5の態様は、上記第3の目的を達成するため、上記した本発明の第4の態様のナノ粒子分散体に、樹脂溶液を添加して、溶媒を蒸発させて硬化させることを特徴とする複合材料の製造方法を提供する。   In addition, the fifth aspect of the present invention is cured by adding a resin solution to the above-described nanoparticle dispersion of the fourth aspect of the present invention and evaporating the solvent in order to achieve the third object. A method for producing a composite material is provided.

本発明の第1の態様のナノ粒子体の製造方法又は本発明の第2の態様のナノ粒子体によれば、極性有機溶媒に対しても非極性有機溶媒に対しても分散性に優れる。   According to the method for producing a nanoparticle body of the first aspect of the present invention or the nanoparticle body of the second aspect of the present invention, the dispersibility is excellent in both a polar organic solvent and a nonpolar organic solvent.

また、本発明の第3の態様のナノ粒子分散体製造方法又は本発明の第4の態様のナノ粒子分散体によれば、分散体中におけるナノ粒子の分散均一性に優れる。   Moreover, according to the nanoparticle dispersion manufacturing method of the 3rd aspect of this invention, or the nanoparticle dispersion of the 4th aspect of this invention, it is excellent in the dispersion uniformity of the nanoparticle in a dispersion.

また、本発明の第5の態様の複合材料の製造方法によれば、基材中におけるナノ粒子の分散均一性に優れる複合材料となる。   Moreover, according to the method for producing a composite material of the fifth aspect of the present invention, the composite material is excellent in dispersion uniformity of nanoparticles in the substrate.

本発明のナノ粒子体の実施例1A及び本発明のナノ粒子分散体の実施例1Aaの作製フロー図である。It is a preparation flowchart of Example 1A of the nanoparticle body of this invention, and Example 1Aa of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の実施例1Aa及び本発明のナノ粒子分散体の実施例1Aaの各作製段階における状態を示す図である。It is a figure which shows the state in each preparation step of Example 1Aa of the nanoparticle dispersion of this invention, and Example 1Aa of the nanoparticle dispersion of this invention. 本発明のナノ粒子体の実施例1A、実施例1A´、実施例1A´´、比較例1X及び界面活性剤P12−10のFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum of Example 1A of Example 1A of this invention, Example 1A ', Example 1A' ', Comparative example 1X, and surfactant P12-10. 本発明のナノ粒子体の実施例1B、実施例1B´、実施例1B´´、比較例1X及び界面活性剤P12−14のFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum of Example 1B of Example 1B of this invention, Example 1B ', Example 1B ", Comparative example 1X, and surfactant P12-14. 本発明のナノ粒子体の実施例1C、実施例1C´、実施例1C´´、比較例1X及び界面活性剤P8−10のFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum of Example 1C, Example 1C ', Example 1C ", Comparative Example 1X, and surfactant P8-10 of the nanoparticle body of this invention. 本発明のナノ粒子体の実施例1D、実施例1D´、実施例1D´´、比較例1X及び界面活性剤P16−10のFT−IRスペクトルを示す図である。It is a figure which shows FT-IR spectrum of Example 1D, Example 1D ′, Example 1D ″, Comparative Example 1X and surfactant P16-10 of the nanoparticle body of the present invention. 本発明のナノ粒子体の比較例2S、比較例2S´、比較例2S´´、比較例1X及び界面活性剤S10のFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum of the comparative example 2S of the nanoparticle body of this invention, comparative example 2S ', comparative example 2S ", comparative example 1X, and surfactant S10. 本発明のナノ粒子体の比較例3T、比較例3T´、比較例3T´´、比較例1X及び界面活性剤S0のFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum of the comparative example 3T of the nanoparticle body of this invention, comparative example 3T ', comparative example 3T ", comparative example 1X, and surfactant S0. 本発明のナノ粒子分散体の実施例1Aa〜d、実施例1A´a〜d、実施例1A´´a〜dの動的光散乱法による測定結果を示す図である。It is a figure which shows the measurement result by Example 1 Aa-d of Example 1Aa-d, Example 1A'a-d, and Example 1A''a-d of the nanoparticle dispersion by the dynamic light-scattering method. 本発明のナノ粒子分散体の実施例1Ba〜d、実施例1B´a〜d、実施例1B´´a〜dの動的光散乱法による測定結果を示す図である。It is a figure which shows the measurement result by the dynamic light-scattering method of Example 1Ba-d, Example 1B'a-d, and Example 1B "a-d of the nanoparticle dispersion of this invention. 発明のナノ粒子分散体の実施例1Ca〜d、実施例1C´a〜d、実施例1C´´a〜dの動的光散乱法による測定結果を示す図である。It is a figure which shows the measurement result by the dynamic light-scattering method of Example 1Ca-d, Example 1C'a-d, and Example 1C''a-d of the nanoparticle dispersion of invention. 本発明のナノ粒子分散体の実施例1Da〜d、実施例1D´a〜d、実施例1D´´a〜dの動的光散乱法による測定結果を示す図である。It is a figure which shows the measurement result by the dynamic light-scattering method of Example 1Da-d, Example 1D'a-d, and Example 1D''a-d of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の実施例1D´´a〜dについての分散直後及び数日後の動的光散乱法による測定結果を示す図である。It is a figure which shows the measurement result by the dynamic light-scattering method immediately after dispersion | distribution about Example 1D "a-d of the nanoparticle dispersion of this invention, and several days after. 本発明のナノ粒子分散体の比較例2Sa〜d、比較例2S´a〜d、比較例2S´´a〜dの動的光散乱法による測定結果を示す図である。It is a figure which shows the measurement result by the dynamic light-scattering method of Comparative Example 2Sa-d, Comparative Example 2S'a-d, and Comparative Example 2S "a-d of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の比較例3Ta〜d、比較例3T´a〜d、比較例3T´´a〜dの動的光散乱法による測定結果を示す図である。It is a figure which shows the measurement result by the dynamic light-scattering method of Comparative Example 3Ta-d, Comparative Example 3T'a-d, and Comparative Example 3T "a-d of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の実施例1Aa〜d、実施例1A´a〜dの透明性観察結果を示す図である。It is a figure which shows the transparency observation result of Example 1Aa-d and Example 1A'a-d of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の実施例1A´´a〜d、実施例1B´´a〜d、実施例1C´´a〜d、実施例1D´´a〜dの透明性観察結果を示す図である。The transparency observation results of Examples 1A ″ a to d, Example 1B ″ a to d, Example 1C ″ a to d, and Example 1D ″ a to d of the nanoparticle dispersion of the present invention are shown. FIG. 本発明のナノ粒子分散体の実施例2Aa〜dの透明性観察結果を示す図である。It is a figure which shows the transparency observation result of Example 2Aa-d of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の実施例3Aa〜dの透明性観察結果を示す図である。It is a figure which shows the transparency observation result of Example 3Aa-d of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の比較例2Sa〜d、比較例2S´a〜d、比較例2S´´a〜dの透明性観察結果を示す図である。It is a figure which shows the transparency observation result of Comparative Example 2Sa-d, Comparative Example 2S'a-d, and Comparative Example 2S "a-d of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の比較例3Ta〜d、比較例3T´a〜d、比較例3T´´a〜dの透明性観察結果を示す図である。It is a figure which shows the transparency observation result of Comparative Example 3Ta-d, Comparative Example 3T'a-d, and Comparative Example 3T "a-d of the nanoparticle dispersion of this invention. 本発明のナノ粒子分散体の実施例1A´a〜dの粒度分布図である。It is a particle size distribution figure of Example 1A'a-d of the nanoparticle dispersion of this invention. 本発明の複合材料の実施例1A´dFの透明性観察結果を示す図である。It is a figure which shows the transparency observation result of Example 1 A'dF of the composite material of this invention.

本発明者らは、金属酸化物又は金属のナノ粒子に、疎水基と親水基の両方を有するアニオン系の特定のリン酸系界面活性剤を作用させると、粒子表面が界面活性剤で被覆された、ナノ粒子体を得ることができることを見出した。さらに、このようなナノ粒子体は、容易に非極性溶媒から極性溶媒まで、広い範囲の溶媒に分散でき、平均凝集粒子径が極めて小さく、透明性、および分散安定性の良好なナノ粒子分散体を得ることができることを見出し、本発明を完成させた。   When the present inventors act on a metal oxide or a metal nanoparticle with a specific anionic phosphate surfactant having both a hydrophobic group and a hydrophilic group, the particle surface is coated with the surfactant. Moreover, it discovered that a nanoparticle body could be obtained. Further, such nanoparticle bodies can be easily dispersed in a wide range of solvents from nonpolar solvents to polar solvents, and the average aggregate particle diameter is extremely small, and the nanoparticle dispersion has excellent transparency and dispersion stability. And the present invention has been completed.

本発明の最良の実施形態は、金属又は金属酸化物のナノ粒子に、上記化学式(1)で示されるリン酸系の界面活性剤で表面を被覆するナノ粒子体及びその製造方法並びにかかるナノ粒子体を、非極性有機溶媒又は極性有機溶媒中に分散させたナノ粒子分散体及びその製造方法である。   BEST MODE FOR CARRYING OUT THE INVENTION The best embodiment of the present invention is a nanoparticle body in which a surface of a metal or metal oxide nanoparticle is coated with a phosphate-based surfactant represented by the above chemical formula (1), a method for producing the nanoparticle body, and the nanoparticle A nanoparticle dispersion in which a body is dispersed in a nonpolar organic solvent or a polar organic solvent, and a method for producing the nanoparticle dispersion.

(ナノ粒子)
ナノ粒子は金属又はその酸化物のナノ粒子であって、リン酸と錯体を形成するものであれば特に制限されるものではないが、遷移金属であることが好ましい。金属又はその酸化物としては、例えば、銀、酸化チタンや酸化鉄、酸化ジルコニウム、酸化鉄、酸化亜鉛などが挙げられるが、透明性の面からは、酸化チタンや酸化鉄、銀が好ましい。極性有機溶媒に分散させても非極性有機溶媒に分散させても、分散均一性が高く、透明性の高い分散液を得ることができる。なかでも、着色の少なさの面から、酸化チタンがより好ましい。
(Nanoparticles)
The nanoparticles are nanoparticles of metals or oxides thereof and are not particularly limited as long as they form a complex with phosphoric acid, but are preferably transition metals. Examples of the metal or oxide thereof include silver, titanium oxide, iron oxide, zirconium oxide, iron oxide, and zinc oxide. From the viewpoint of transparency, titanium oxide, iron oxide, and silver are preferable. Whether dispersed in a polar organic solvent or a nonpolar organic solvent, a dispersion with high dispersion uniformity and high transparency can be obtained. Of these, titanium oxide is more preferable from the viewpoint of little coloring.

ナノ粒子の一次粒子径は、100nm以下が好ましく、8nm以下がより好ましい。一次粒子径が100nmを超えると分散がしにくくなる。平均粒子径8nm以下のシングルナノ粒子であると、得られるナノ粒子体は、有機溶媒に分散させるとき、溶媒の極性を問わず、一次粒子のレベルで分散でき、かかるナノ粒子体を再分散させたナノ粒子分散体は、粒子が均一に分散されるので均一性が高い。粒子径は小さい方がよく、下限は技術的に可能な限り限定されない。   The primary particle diameter of the nanoparticles is preferably 100 nm or less, and more preferably 8 nm or less. When the primary particle diameter exceeds 100 nm, dispersion becomes difficult. When dispersed in an organic solvent, the resulting nanoparticle body having an average particle diameter of 8 nm or less can be dispersed at the primary particle level regardless of the polarity of the solvent, and the nanoparticle body can be redispersed. The nanoparticle dispersion is highly uniform because the particles are uniformly dispersed. The particle size should be small, and the lower limit is not limited as far as technically possible.

ナノ粒子の結晶構造は限定されないが、一次粒子径が比較的小さい方が分散性の点で優れるため、例えば酸化チタンであれば、粒子径が8nm以下を実現できるアナターゼ型が好ましい。   The crystal structure of the nanoparticle is not limited, but a relatively small primary particle diameter is superior in terms of dispersibility. Therefore, for example, titanium oxide is preferably an anatase type that can realize a particle diameter of 8 nm or less.

ナノレベルの粒子に均一に表面修飾をするために、例えば、酸化チタンの場合、酸化チタンのナノ粒子を水中に分散させゾル状態にした酸化チタンゾルを出発原料とすることが好ましい。酸化鉄の場合、硫酸鉄の水和物と塩化鉄の水和物の混合水溶液を出発原料とすることが好ましく、銀の場合、硝酸銀水溶液を出発原料とすることが好ましい。出発原料中の金属又は金属酸化物の濃度は限定されず、たとえば、5wt%の薄いものであっても30wt%の濃いものであってもよい。   In order to uniformly modify the nano-level particles, for example, in the case of titanium oxide, it is preferable to use a titanium oxide sol in which titanium oxide nanoparticles are dispersed in water to form a sol. In the case of iron oxide, a mixed aqueous solution of iron sulfate hydrate and iron chloride hydrate is preferably used as a starting material, and in the case of silver, an aqueous silver nitrate solution is preferably used as a starting material. The concentration of the metal or metal oxide in the starting material is not limited. For example, it may be as thin as 5 wt% or as thick as 30 wt%.

(界面活性剤)
界面活性剤としては、上記化学式(1)で表わされる界面活性剤が好ましい。本発明において、かかる界面活性剤は、粒子の表面を被覆する、表面被覆剤の役割を果たす。ナノ粒子の表面がかかる界面活性剤で覆われるため、極性のある有機溶媒にも非極性の有機溶媒にも分散可能で、しかも分散性に優れている。前記界面活性剤は、アニオン系の界面活性剤で、疎水基と親水基の両方を有するリン酸系界面活性剤であり、粒子表面に結合するリン酸基から疎水性を示すアルキル基と親水性を示すエチレンオキサイド基との枝分かれまでが近いので、ナノ粒子の表面を疎水基と親水基がバランスよく覆うため、得られるナノ粒子体は、極性のある有機溶媒にも非極性の有機溶媒にも分散性が高い。得られるナノ粒子体を、極性のある有機溶媒に分散させたときも、非極性の有機溶媒に分散させたときも、分散液の透明性が高い。したがって、得られるナノ粒子体は、従来利用できなかったり、十分に機能を発揮できなかったりした分野にもナノ粒子を利用可能となる。
(Surfactant)
As the surfactant, a surfactant represented by the above chemical formula (1) is preferable. In the present invention, such a surfactant serves as a surface coating agent for coating the surface of the particles. Since the surface of the nanoparticles is covered with such a surfactant, it can be dispersed in a polar organic solvent or a non-polar organic solvent and has excellent dispersibility. The surfactant is an anionic surfactant, and is a phosphate surfactant having both a hydrophobic group and a hydrophilic group. The surfactant has a hydrophobic alkyl group and a hydrophilic property from the phosphate group bonded to the particle surface. Since it is close to branching with ethylene oxide groups, the hydrophobic and hydrophilic groups cover the surface of the nanoparticles in a well-balanced manner, so the resulting nanoparticle bodies can be either polar or nonpolar organic solvents. High dispersibility. Whether the resulting nanoparticle body is dispersed in a polar organic solvent or a nonpolar organic solvent, the dispersion is highly transparent. Therefore, the obtained nanoparticle body can be used in fields where the conventional nanoparticle body cannot be used or cannot fully function.

上記化学式(1)において、Rは炭素数10〜16のアルキル基、n=8〜16の整数であるが、Rについては、炭素数10又は12のアルキル基、あるいは、炭素数14又は16のアルキル基が好ましい。R1は炭素数1〜3の直鎖又は分岐鎖の飽和又は不飽和の炭化水素基であるが、R1がアリル基であることは好ましい。なかでも、少ない量の界面活性剤でも高い分散性を実現できるナノ粒子体を得られる点において、また得られるナノ粒子体を各種有機溶媒に分散させたときの透明性の高さの点において、上記化学式(1)の界面活性剤が、Rが炭素数10又は12のアルキル基であることが好ましく、nについては、n=12であることが特に好ましい。得られるナノ粒子体は、極性有機溶媒にも非極性有機溶媒にも一次粒子レベルで極めて良好に分散することができる。溶媒の選択肢が広くなり、利便性が非常に高く、広い分野で利用できる。 In the chemical formula (1), R 2 is an alkyl group having 10 to 16 carbon atoms and an integer of n = 8 to 16, but R 2 is an alkyl group having 10 or 12 carbon atoms, or 14 or 14 carbon atoms. Sixteen alkyl groups are preferred. R 1 is a straight-chain or branched saturated or unsaturated hydrocarbon group having 1 to 3 carbon atoms, and R 1 is preferably an allyl group. Among them, in terms of obtaining a nanoparticle body that can realize high dispersibility even with a small amount of surfactant, and in terms of high transparency when the obtained nanoparticle body is dispersed in various organic solvents, In the surfactant represented by the chemical formula (1), R 2 is preferably an alkyl group having 10 or 12 carbon atoms, and n is particularly preferably n = 12. The resulting nanoparticle bodies can be very well dispersed at the primary particle level in both polar and non-polar organic solvents. The choice of solvent is widened, it is very convenient and can be used in a wide range of fields.

粒子に結合する基(上記化学式(1)ではリン酸基)に近いところで疎水基(上記化学式(1)では長鎖アルキル鎖)と親水基(エチレンオキサイド鎖)に分岐していることがより好ましい。   It is more preferable to branch into a hydrophobic group (long-chain alkyl chain in the chemical formula (1)) and a hydrophilic group (ethylene oxide chain) near the group bonded to the particles (the phosphoric acid group in the chemical formula (1)). .

(ナノ粒子体)
界面活性剤で被覆修飾した粒子は、極性有機溶媒への親和性を有する親水基と非極性有機溶媒への親和性を有する疎水基とを粒子表面に有することが好ましい。極性有機溶媒への分散を可能とする親水基と非極性有機溶媒への分散を可能とする疎水基の両方を有しているので、極性有機溶媒でも非極性有機溶媒でも分散時に凝集体を形成しにくく高い分散性を発揮できる。分散性の点から、前記親水基が長鎖エチレンオキサイド基を含むものであり、前記疎水基が長鎖アルキル基を含むものであることが好ましい。特に、前記親水基がn数が8〜16のポリオキシエチレン基を含むものであり、前記疎水基が炭素数10〜16の長鎖アルキル基を含むものであることがより好ましく、さらに、前記親水基と前記疎水基が1つの分子内で分岐したものであって、分岐点がナノ粒子の表面に結合したリン酸基にエステル結合した炭素原子であることがさらに好ましい。
(Nanoparticles)
The particles coated with a surfactant are preferably provided on the particle surface with a hydrophilic group having an affinity for a polar organic solvent and a hydrophobic group having an affinity for a nonpolar organic solvent. Since it has both a hydrophilic group that enables dispersion in polar organic solvents and a hydrophobic group that enables dispersion in nonpolar organic solvents, aggregates are formed during dispersion in both polar and nonpolar organic solvents. High dispersibility can be exhibited. From the viewpoint of dispersibility, it is preferable that the hydrophilic group includes a long-chain ethylene oxide group and the hydrophobic group includes a long-chain alkyl group. In particular, it is more preferable that the hydrophilic group includes a polyoxyethylene group having an n number of 8 to 16, the hydrophobic group includes a long chain alkyl group having a carbon number of 10 to 16, and the hydrophilic group. It is further preferable that the hydrophobic group is branched in one molecule, and the branch point is a carbon atom ester-bonded to a phosphate group bonded to the surface of the nanoparticle.

非極性有機溶媒、極性有機溶媒のいずれに対しても平均凝集粒子径が200nm以下で分散することが好ましい。溶媒を問わず粒子が凝集せずに微細な粒子で分散するため、かかるナノ粒子体を分散させて得られるナノ粒子分散体は、前記ナノ粒子体が、分散体中で平均凝集粒子径200nm以下である分散体となり、したがって、分散体の中の粒子の均一性が高くなる。非極性有機溶媒、極性有機溶媒のいずれに対しても平均凝集粒子径30nm以下で分散することがより好ましい。一次粒子レベルで分散するため、得られるナノ粒子分散体が、前記ナノ粒子体が、分散体中で平均凝集粒子径30nm以下である分散体となり、したがって分散体の中の粒子の均一性がさらに高くなる。また、非極性有機溶媒、極性溶媒のいずれに分散させても透明性があることが好ましい。得られるナノ粒子分散体は、有機溶媒の極性を問わず、透明性を有し、したがって、光学材料や化粧品など応用分野が広くなる。さらに、透明性が高いことがより好ましい。より高性能な材料として応用できる。   It is preferable that the average aggregated particle diameter is dispersed with a thickness of 200 nm or less with respect to both the nonpolar organic solvent and the polar organic solvent. Regardless of the solvent, the particles disperse as fine particles without agglomeration. Therefore, the nanoparticle dispersion obtained by dispersing the nanoparticle body has an average aggregate particle diameter of 200 nm or less in the dispersion. Thus, the uniformity of the particles in the dispersion is increased. It is more preferable to disperse with a non-polar organic solvent and a polar organic solvent at an average aggregated particle size of 30 nm or less. Since the dispersion is obtained at the primary particle level, the obtained nanoparticle dispersion becomes a dispersion in which the nanoparticle body has an average aggregate particle diameter of 30 nm or less in the dispersion, and thus the uniformity of the particles in the dispersion is further increased. Get higher. Moreover, it is preferable that it is transparent even if it disperse | distributes to any of a nonpolar organic solvent and a polar solvent. The obtained nanoparticle dispersion has transparency regardless of the polarity of the organic solvent, and thus the application fields such as optical materials and cosmetics are widened. Furthermore, it is more preferable that transparency is high. It can be applied as a higher performance material.

(溶媒)
ナノ粒子体を再分散させる溶媒としては、極性の大小を問わず、多様な有機溶媒が可能で、特に制限されない。たとえば、ペンタン、ヘキサンやオクタデカンなどの脂肪族飽和炭化水素、ドデセン、トリデセンやヘプタデセンなどの脂肪族不飽和炭化水素、トルエン、キシレンやベンゼンなどの芳香族炭化水素、また、これらのハロゲン化物(たとえばジクロロメタン、クロロホルムや四塩化炭素など)、また、エタノール、メタノールやブタノールなどのアルコール、アセトン、メチルエチルケトンやジエチルケトンなどのケトン、メタクリル酸メチル、サリチル酸メチルや酢酸エチルなどのエステル、テトラヒドロフランやジエチルエーテルなどのエーテル類、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAC)やN−メチルピロリドン(NMP)などのアミド類が挙げられる。
(solvent)
The solvent for redispersing the nanoparticle body is not particularly limited, and various organic solvents can be used regardless of the polarity. For example, pentane, aliphatic saturated hydrocarbons such as hexane and octadecane, aliphatic unsaturated hydrocarbons such as dodecene, tridecene and heptadecene, aromatic hydrocarbons such as toluene, xylene and benzene, and their halides (for example dichloromethane) , Chloroform and carbon tetrachloride), alcohols such as ethanol, methanol and butanol, ketones such as acetone, methyl ethyl ketone and diethyl ketone, esters such as methyl methacrylate, methyl salicylate and ethyl acetate, ethers such as tetrahydrofuran and diethyl ether And amides such as dimethylformamide (DMF), dimethylacetamide (DMAC) and N-methylpyrrolidone (NMP).

(有機ポリマー)
複合材料を形成する有機ポリマーは、特に制限されず、例えば、ポリオレフィン樹脂やアクリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂などが挙げられる。
(Organic polymer)
The organic polymer that forms the composite material is not particularly limited, and examples thereof include polyolefin resins, acrylate resins, polycarbonate resins, and polyester resins.

(ナノ粒子体の製造方法)
前記金属又は金属酸化物のナノ粒子が、酸化チタンのナノ粒子であって、前記ナノ粒子を含有する水溶液に、前記界面活性剤を含有する水溶液を混合する混合工程を含むことが好ましい。ナノ粒子と界面活性剤との混合性がよくなるので、ナノ粒子の各粒子表面を均一に被覆しやすい。前記混合工程が、攪拌を行いながら前記希釈水溶液に前記界面活性剤を含有する水溶液をすばやく添加し、さらに攪拌を行うものであることがより好ましい。粒子表面への界面活性剤による被覆がより均一にできる。また、混合後に回収した粒子を乾燥する乾燥工程を含むことが好ましい。乾燥した粉末としてナノ粒子体が得られるので、別の溶媒に再分散させやすい。また、取扱いや持ち運びが容易となる。また、ナノ粒子体の表面が被覆されているため、乾燥してもまとまりよく、粉末が飛散しにくい。したがって安全性にも優れる。
(Manufacturing method of nanoparticle body)
It is preferable that the metal or metal oxide nanoparticles include titanium oxide nanoparticles, and a mixing step of mixing the aqueous solution containing the surfactant with the aqueous solution containing the nanoparticles. Since the mixing property of the nanoparticles and the surfactant is improved, it is easy to uniformly coat each particle surface of the nanoparticles. More preferably, in the mixing step, an aqueous solution containing the surfactant is quickly added to the diluted aqueous solution while stirring, and the stirring is further performed. The surface of the particles can be more uniformly coated with the surfactant. Moreover, it is preferable to include the drying process which dries the particle | grains collect | recovered after mixing. Since the nanoparticle body is obtained as a dried powder, it can be easily redispersed in another solvent. Moreover, handling and carrying become easy. Moreover, since the surface of the nanoparticle body is coated, it is well-organized even if it is dried, and the powder is not easily scattered. Therefore, it is excellent also in safety.

前記混合工程において、界面活性剤の量を酸化チタン1gに対し1mmol以上3mmol以下とすることが好ましい。酸化チタン1gに対し3mmolを超えても高い分散性は有するが、表面修飾に寄与しない界面活性剤が多くなるため、コスト面では3mmol以下とすることが好ましい。また、界面活性剤が3mmolを超えると、界面活性剤同士が親水基を外側に向けた二分子層を形成しやすくなるので、ナノ粒子体の回収率の点でも3mmol以下とすることが好ましい。また、添加物はなるべく少ない方が不純物が少ないので好ましい。一方、1mmol未満であると、十分に粒子表面を被覆できないので、得られたナノ粒子体の分散性の点から1mmol以上とすることが好ましい。酸化チタン1gに対し1mmolでも十分に粒子表面の被覆を行うことができ高い分散性を有するが、酸化チタン1gに対し2mmol以上では、得られるナノ粒子体を有機溶媒に分散させたときの分散液の透明性が、溶媒の極性を問わず極めて高くなる。   In the mixing step, the amount of the surfactant is preferably 1 mmol or more and 3 mmol or less with respect to 1 g of titanium oxide. Even if it exceeds 3 mmol with respect to 1 g of titanium oxide, the surfactant has high dispersibility but does not contribute to surface modification. Therefore, in terms of cost, it is preferably 3 mmol or less. Further, when the surfactant exceeds 3 mmol, it becomes easy for the surfactants to form a bimolecular layer with the hydrophilic group facing outward. Therefore, it is preferably 3 mmol or less in terms of the recovery rate of the nanoparticle body. Further, it is preferable that the amount of the additive is as small as possible because there are few impurities. On the other hand, if the amount is less than 1 mmol, the particle surface cannot be sufficiently covered, and therefore, it is preferably 1 mmol or more from the viewpoint of dispersibility of the obtained nanoparticle body. Even if 1 mmol is sufficient for 1 g of titanium oxide, the particle surface can be sufficiently coated and has high dispersibility. However, if it is 2 mmol or more for 1 g of titanium oxide, a dispersion obtained by dispersing the resulting nanoparticle in an organic solvent. The transparency of is extremely high regardless of the polarity of the solvent.

あるいは、前記金属又は金属酸化物のナノ粒子が、酸化鉄のナノ粒子であって、水酸化鉄水溶液を加熱して水溶液中に酸化鉄を生成させた水溶液に前記界面活性剤を混合する混合工程を含むことが好ましい。界面活性剤でナノ粒子の各粒子表面を均一に被覆しやすい。また混合した液の中に生成される析出物を磁石で回収して、乾燥させ粉末にすることが好ましい。不純物を含みにくく、乾燥した粉末としてナノ粒子体が得られるので、別の溶媒に再分散させやすい。また、取扱いや持ち運びが容易となる。また、ナノ粒子体の表面が被覆されているため、乾燥してもまとまりよく、粉末が飛散しにくい。したがって安全性にも優れる。   Alternatively, the metal or metal oxide nanoparticles are iron oxide nanoparticles, and the surfactant is mixed in an aqueous solution in which an aqueous iron hydroxide solution is heated to produce iron oxide in the aqueous solution It is preferable to contain. It is easy to uniformly coat the surface of each nanoparticle with a surfactant. Moreover, it is preferable to collect the precipitate produced in the mixed liquid with a magnet and to dry it into a powder. Since it is hard to contain impurities and a nanoparticle body is obtained as a dry powder, it can be easily redispersed in another solvent. Moreover, handling and carrying become easy. Moreover, since the surface of the nanoparticle body is coated, it is well-organized even if it is dried, and the powder is not easily scattered. Therefore, it is excellent also in safety.

またあるいは、前記金属又は金属酸化物のナノ粒子が、銀のナノ粒子であって、硝酸銀水溶液に、前記界面活性剤と還元剤とを含有する水溶液を混合する混合工程を含むことが好ましい。銀コロイドを生成する段階で界面活性剤による被覆を同時に行うので、ナノ粒子の各粒子表面を均一に被覆しやすい。混合した液にトルエンを加えて有機層に粒子を抽出させ、かかる有機層を回収して、溶媒を蒸発乾固させ粉末にすることが好ましい。   Alternatively, it is preferable that the metal or metal oxide nanoparticles include silver nanoparticles, and a mixing step of mixing an aqueous solution containing the surfactant and the reducing agent in an aqueous silver nitrate solution. Since the coating with the surfactant is simultaneously performed at the stage of generating the silver colloid, it is easy to uniformly coat the surface of each nanoparticle. It is preferable to add toluene to the mixed liquid to extract particles in the organic layer, collect the organic layer, evaporate the solvent to dryness, and form a powder.

以下、本発明について実施例を用いて説明するが、本発明は何らこれに限定されるものではない。   Hereinafter, although the present invention is explained using an example, the present invention is not limited to this at all.

<ナノ粒子体の実施例1A及びナノ粒子分散体の実施例1Aaの作製>
図1は、本発明のナノ粒子体の実施例1A及び本発明のナノ粒子分散体の実施例1Aaの作製フロー図である。ナノ粒子分散体の実施例1Aaは、ナノ粒子体の実施例1Aから作製する。ナノ粒子体の実施例1Aの作製過程においては、ナノ粒子を含有する水溶液に、前記界面活性剤を含有する水溶液を混合する混合工程を含む。ナノ粒子分散体の実施例1Aaの作製過程においては、かかるナノ粒子体を、非極性有機溶媒又は極性有機溶媒中に分散する分散工程を含む。詳細には以下のように作製した。
<Preparation of Example 1A of Nanoparticles and Example 1Aa of Nanoparticle Dispersion>
FIG. 1 is a production flow diagram of Example 1A of the nanoparticle body of the present invention and Example 1Aa of the nanoparticle dispersion of the present invention. Nanoparticle dispersion example 1Aa is made from nanoparticle body example 1A. The manufacturing process of Example 1A of the nanoparticle body includes a mixing step of mixing the aqueous solution containing the surfactant with the aqueous solution containing nanoparticles. Nanoparticle Dispersion Example 1 Aa in the production process includes a dispersion step of dispersing the nanoparticle body in a nonpolar organic solvent or a polar organic solvent. In detail, it produced as follows.

(界面活性剤の合成例)
ナノ粒子体の実施例1Aでは、次の様に合成して得た界面活性剤を用いた。
(Synthesis example of surfactant)
In Example 1A of the nanoparticle body, a surfactant obtained by synthesis as follows was used.

攪拌機、還流冷却器、温度計を備えた反応容器に、ポリ(12モル)オキシエチレンアリルエーテル587g(1モル)及び三フッ化ホウ素エチルエーテル錯体1.2gを仕込み、60±5℃に保ちながらα−オレフィンオキサイド(炭素数12、14混合)205g(1モル)を2時間かけて滴下し、同温度にて2時間熟成した。   A reaction vessel equipped with a stirrer, a reflux condenser, and a thermometer was charged with 587 g (1 mol) of poly (12 mol) oxyethylene allyl ether and 1.2 g of boron trifluoride ethyl ether complex, and maintained at 60 ± 5 ° C. 205 g (1 mol) of α-olefin oxide (mixed of 12 and 14 carbon atoms) was added dropwise over 2 hours and aged at the same temperature for 2 hours.

次に、65℃以下を保ちながら無水リン酸71g(0.5g)を2〜3時間かけて投入し、その後60±5℃で3時間熟成し、イオン交換水10.8g(0.6モル)を加え、さらに80℃で5時間熟成することで界面活性剤P12−10を得た。   Next, 71 g (0.5 g) of phosphoric anhydride was added over 2 to 3 hours while maintaining the temperature at 65 ° C. or lower, and then aged at 60 ± 5 ° C. for 3 hours to obtain 10.8 g (0.6 mol of ion-exchanged water). ) Was added, and the mixture was further aged at 80 ° C. for 5 hours to obtain surfactant P12-10.

上記の様に合成された界面活性剤P12−10は、上記化学式(1)で示されるリン酸系の界面活性剤であって、化学式(1)中のn=12であって、R1がアリル基で、Rが炭素数10のアルキル基であるものとRが炭素数12のアルキル基であるものを中心とし、m=2かつk=1であるリン酸モノエステルとm=1かつk=2であるリン酸ジエステルとを主成分とする混合物である。界面活性剤P12−10は、電離している側が粒子表面に結合する官能基であるリン酸基に結合している炭素原子の箇所で炭素数12の直鎖のエチレンオキサイド基を含む親水基と、炭素数10又は12の長鎖アルキル基である疎水基に分岐している。 Surfactant P12-10 synthesized as described above is a phosphoric acid surfactant represented by the above chemical formula (1), where n = 12 in the chemical formula (1), and R 1 is A phosphoric acid monoester wherein m = 2 and k = 1, centering on an allyl group in which R 2 is an alkyl group having 10 carbon atoms and R 2 is an alkyl group having 12 carbon atoms, and m = 1 And it is a mixture which has as a main component the phosphoric acid diester whose k = 2. Surfactant P12-10 is a hydrophilic group containing a linear ethylene oxide group having 12 carbon atoms at the position of the carbon atom bonded to the phosphate group which is a functional group bonded to the particle surface on the ionized side. Branched into a hydrophobic group which is a long-chain alkyl group having 10 or 12 carbon atoms.

(ナノ粒子体の実施例1A)
最初にナノ粒子体の実施例1Aを作製した。まず、pH1.4の硝酸酸性の酸化チタンゾル(STS100、結晶子径5nm、平均粒子径6〜8nm、酸化チタン濃度20wt%、石原産業株式会社製)10gをイオン交換水80gで希釈した。出発原料がシングルナノ粒子の分散液であるため、得られるナノ粒子体が再分散する際に、分散が良ければ一次粒子のレベルで分散でき、均一性を高くできる。
(Example 1A of nanoparticle body)
First, a nanoparticle Example 1A was prepared. First, 10 g of nitric acid acidic titanium oxide sol having a pH of 1.4 (STS100, crystallite diameter of 5 nm, average particle diameter of 6 to 8 nm, titanium oxide concentration of 20 wt%, manufactured by Ishihara Sangyo Co., Ltd.) was diluted with 80 g of ion-exchanged water. Since the starting raw material is a dispersion of single nanoparticles, when the obtained nanoparticle body is redispersed, if the dispersion is good, it can be dispersed at the primary particle level, and the uniformity can be increased.

次に、希釈した溶液に、攪拌を施しながら界面活性剤P12−10の水溶液20gを加えた。ゾルの希釈水溶液に界面活性剤水溶液を混合することでナノ粒子と界面活性剤との混合性がよくなるので、ナノ粒子の各粒子表面を均一に被覆しやすい。実施例1Aにおいて、界面活性剤は、酸化チタン1gに対し1.0mmolの割合となるようにした。上記酸化チタンゾル10g中に2gの酸化チタンが含まれるため、上記界面活性剤は4.0mmolとした。攪拌を行いながら希釈水溶液に界面活性剤を含有する水溶液をすばやく添加し、さらに攪拌を行った。これにより、粒子表面への界面活性剤による被覆がより均一にできる。   Next, 20 g of an aqueous solution of surfactant P12-10 was added to the diluted solution while stirring. By mixing the surfactant aqueous solution with the dilute aqueous solution of the sol, the mixing property of the nanoparticles and the surfactant is improved, so that it is easy to uniformly coat the surface of each particle of the nanoparticles. In Example 1A, the surfactant was adjusted to a ratio of 1.0 mmol with respect to 1 g of titanium oxide. Since 2 g of titanium oxide was contained in 10 g of the titanium oxide sol, the surfactant was 4.0 mmol. While stirring, an aqueous solution containing a surfactant was quickly added to the diluted aqueous solution, and further stirred. As a result, the surface of the particles can be more uniformly coated with the surfactant.

攪拌は、ビーカー内でスターラーを用いて3時間行った。図2は、本発明のナノ粒子分散体の実施例1Aa及び本発明のナノ粒子分散体の実施例1Aaの各作製段階における状態を示す図である。図2(1)は、攪拌中の状態を示す。   Stirring was performed in a beaker using a stirrer for 3 hours. FIG. 2 is a diagram showing a state in each production stage of Example 1Aa of the nanoparticle dispersion of the present invention and Example 1Aa of the nanoparticle dispersion of the present invention. FIG. 2 (1) shows a state during stirring.

界面活性剤の水溶液を添加後、すぐに溶液は白濁し、白い凝集物が析出した。図2(2)は、溶液中で粒子が凝集している状態を示す。界面活性剤は、粒子表面を被覆して粒子の表面修飾を行う表面被覆剤の役割を果たす。析出したのは、界面活性剤により表面修飾された粒子である。析出した凝集物を遠心分離で回収し、4回純水で洗浄した。洗浄により、粒子に結合していない界面活性剤や硝酸が除去される。回収率は100%近かった。   Immediately after the addition of the surfactant aqueous solution, the solution became cloudy and white aggregates precipitated. FIG. 2 (2) shows a state where particles are aggregated in the solution. The surfactant serves as a surface coating agent that coats the particle surface to modify the surface of the particle. Precipitated particles were surface-modified with a surfactant. The precipitated aggregate was collected by centrifugation and washed 4 times with pure water. By washing, the surfactant and nitric acid which are not bonded to the particles are removed. The recovery was close to 100%.

次に、室温で一昼夜(17時間)真空乾燥を行った。これにより水分を除去し、粉末状態のナノ粒子体の実施例1Aを得た。図2(3)は、乾燥させた状態を示す。図2(3)において、丸く表わされた粒子の表面は、針状に突き出して表わされた界面活性剤で被覆されている。乾燥した粉末としてナノ粒子体が得られた。   Next, vacuum drying was performed at room temperature all day and night (17 hours). As a result, the water was removed, and Example 1A of the nanoparticulate body in a powder state was obtained. FIG. 2 (3) shows the dried state. In FIG. 2 (3), the surface of the rounded particle is coated with a surfactant that protrudes in a needle shape. Nanoparticles were obtained as a dry powder.

(ナノ粒子分散体の実施例1Aa)
作製したナノ粒子体の実施例1Aの粉末を粒子濃度が3wt%となるように2分間の超音波照射を5回行いながら、エタノール(EtOH:COH)(99.5%特級、関東化学株式会社製)に分散させて溶液状態とし、ナノ粒子分散体の実施例1Aaを得た。図2(4)は、ナノ粒子分散体の実施例1Aaで、ナノ粒子体の実施例1Aが分散されている状態を示す。超音波照射を行うことで、凝集を防止しながら分散されるので、より均一な分散体を得られる。
(Nanoparticle dispersion example 1Aa)
Ethanol (EtOH: C 2 H 5 OH) (99.5% special grade, while performing ultrasonic irradiation for 2 minutes 5 times so that the particle concentration of the powder of Example 1A of the produced nanoparticle body was 3 wt%, Example 1Aa of a nanoparticle dispersion was obtained by dispersing in Kanto Chemical Co., Ltd.). FIG. 2 (4) shows a state in which Example 1A of the nanoparticle dispersion is dispersed in Example 1Aa of the nanoparticle dispersion. By performing ultrasonic irradiation, the dispersion is performed while preventing aggregation, so that a more uniform dispersion can be obtained.

<ナノ粒子体の実施例1A´及び実施例1A´´の作製>
実施例1Aにおいて界面活性剤P12−10を酸化チタン1gに対し1.0mmolの割合となるようにしたが、変形例として、酸化チタン1gに対する界面活性剤P12−10の割合を、2.0mmolにしたものをナノ粒子体の実施例1A´とした。実施例1A´は、その他の点は上述したナノ粒子体の実施例1Aと同じように作製した。回収率は100%に近かった。酸化チタン1gに対する界面活性剤P12−10の割合を3.0mmolにしたものをナノ粒子体の実施例1A´´とした。実施例1A´´は、その他の点は上述したナノ粒子体の実施例1Aと同じように作製した。回収率は50%程度であった。界面活性剤の量が多くなりすぎると界面活性剤分子が親水基を外側に向けた二分子層を形成しやすくなり、回収率が少し下がったと考えられる。
<Production of Example 1A ′ and Example 1A ″ of Nanoparticles>
In Example 1A, the surfactant P12-10 was adjusted to a ratio of 1.0 mmol with respect to 1 g of titanium oxide. As a modification, the ratio of the surfactant P12-10 to 1 g of titanium oxide was changed to 2.0 mmol. This was designated as nanoparticle Example 1A ′. Example 1A ′ was produced in the same manner as Example 1A of the nanoparticle body described above, except for the other points. The recovery was close to 100%. Nanoparticles of Example 1A ″ were prepared by changing the ratio of the surfactant P12-10 to 1 g of titanium oxide to 3.0 mmol. Example 1A ″ was produced in the same manner as Example 1A of the nanoparticle body described above, except for the other points. The recovery rate was about 50%. When the amount of the surfactant becomes too large, it is considered that the surfactant molecules easily form a bimolecular layer with the hydrophilic group facing outward, and the recovery rate is slightly lowered.

<ナノ粒子体の実施例1B、実施例1B´及び実施例1B´´の作製>
別の変形例として、界面活性剤P12−10の代わりに、界面活性剤P12−14(α−オレフィンオキサイド(炭素数12、14混合)205g(1モル)をα−オレフィンオキサイド(炭素数16、18混合)271g(1モル)に変更した以外は合成方法は上述した界面活性剤P12−10の合成方法と同じで、上記化学式(1)におけるRが炭素数14のアルキル基であるものとRが炭素数16のアルキル基であるものを中心とした混合物である以外は界面活性剤P12−10と同様である混合物)としたものをナノ粒子体の実施例1Bとした。また、酸化チタン1gに対する界面活性剤P12−14の割合を、2.0mmolにしたものをナノ粒子体の実施例1B´、3.0mmolにしたものをナノ粒子体の実施例1B´´とした。上述した点以外はナノ粒子体の実施例1Aと同じように作製した。
<Preparation of Example 1B, Example 1B ′ and Example 1B ″ of Nanoparticles>
As another modification, in place of surfactant P12-10, surfactant P12-14 (α-olefin oxide (mixed of 12 and 14 carbon atoms), 205 g (1 mol) was replaced with α-olefin oxide (16 carbon atoms, 18 mixture) Except for changing to 271 g (1 mol), the synthesis method is the same as the synthesis method of the surfactant P12-10 described above, and R 2 in the chemical formula (1) is an alkyl group having 14 carbon atoms. Example 1B of a nanoparticle was obtained by using a mixture that was the same as surfactant P12-10 except that R 2 was a mixture centered on an alkyl group having 16 carbon atoms. Further, Example 1B ′ of the nanoparticle body was obtained by changing the ratio of the surfactant P12-14 to 1 g of titanium oxide to 2.0 mmol, and Example 1B ″ of the nanoparticle body was obtained by changing the ratio to 3.0 mmol. . Except for the points described above, the nanoparticle body was prepared in the same manner as in Example 1A.

<ナノ粒子体の実施例1C、実施例1C´及び実施例1C´´の作製>
また、別の変形例として、界面活性剤P12−10の代わりに、界面活性剤P8−10(ポリ(12モル)オキシエチレンアリルエーテル587g(1モル)をポリ(8モル)オキシエチレンアリルエーテル410g(1モル)に変更した以外は合成方法は上述した界面活性剤P12−10の合成方法と同じで、上記化学式(1)におけるn=8である以外は界面活性剤P12−10と同様である混合物)としたものをナノ粒子体の実施例1Cとした。酸化チタン1gに対する界面活性剤P8−10の割合を、2.0mmolにしたものをナノ粒子体の実施例1C´、3.0mmolにしたものをナノ粒子体の実施例1C´´とした。これらの実施例に用いた界面活性剤P8−10は、エチレンオキサイドの炭素数n以外の点は界面活性剤P12−10と同じである。上述した点以外はナノ粒子体の実施例1Aと同じように作製した。
<Production of Nanoparticle Example 1C, Example 1C ′ and Example 1C ″>
As another modification, instead of surfactant P12-10, surfactant P8-10 (poly (12 mole) oxyethylene allyl ether 587 g (1 mole) was replaced with poly (8 mole) oxyethylene allyl ether 410 g. The synthesis method is the same as the synthesis method of the surfactant P12-10 described above except that it is changed to (1 mol), and is the same as that of the surfactant P12-10 except that n = 8 in the chemical formula (1). The mixture was designated as nanoparticle Example 1C. Nanoparticles of Example 1C ′ were prepared by changing the ratio of surfactant P8-10 to 1 g of titanium oxide to 2.0 mmol, and Examples 1C ″ of Nanoparticles were obtained by changing the ratio to 3.0 mmol. Surfactant P8-10 used in these examples is the same as surfactant P12-10 except for the number of carbon atoms n of ethylene oxide. Except for the points described above, the nanoparticle body was prepared in the same manner as in Example 1A.

<ナノ粒子体の実施例1D、実施例1D´及び実施例1D´´の作製>
また、同様に、界面活性剤P12−10の代わりに、界面活性剤P16−10(ポリ(12モル)オキシエチレンアリルエーテル587g(1モル)をポリ(16モル)オキシエチレンアリルエーテル763g(1モル)に変更した以外は合成方法は上述した界面活性剤P12−10の合成方法と同じで、上記化学式(1)におけるn=16である以外は界面活性剤P12−10と同様である混合物)としたものをナノ粒子体の実施例1Dとした。酸化チタン1gに対する界面活性剤P16−10の割合を、2.0mmolにしたものをナノ粒子体の実施例1D´、3.0mmolにしたものをナノ粒子体の実施例1D´´とした。これらの実施例に用いた界面活性剤P16−10は、エチレンオキサイドの炭素数n以外の点は界面活性剤P12−10と同じである。上述した点以外はナノ粒子体の実施例1Aと同じように作製した。
<Production of Nanoparticle Example 1D, Example 1D ′ and Example 1D ″>
Similarly, instead of surfactant P12-10, surfactant P16-10 (poly (12 mol) oxyethylene allyl ether 587 g (1 mol) was replaced with poly (16 mol) oxyethylene allyl ether 763 g (1 mol). The synthetic method is the same as the synthetic method of the surfactant P12-10 described above except that it is changed to)), and the mixture is the same as the surfactant P12-10 except that n = 16 in the chemical formula (1). This was designated as nanoparticle Example 1D. Nanoparticles of Example 1D ′ were prepared by changing the ratio of surfactant P16-10 to 1 g of titanium oxide to 2.0 mmol, and Examples 1D ″ of Nanoparticles were obtained by changing the ratio to 3.0 mmol. Surfactant P16-10 used in these examples is the same as surfactant P12-10 except for the number of carbon atoms n of ethylene oxide. Except for the points described above, the nanoparticle body was prepared in the same manner as in Example 1A.

<ナノ粒子体の実施例2Aの作製>
また別の変形例として、実施例1Aにおいて粒子の種類を酸化チタンでなく酸化鉄としたものをナノ粒子体の実施例2Aとした。ナノ粒子体の実施例2Aは、界面活性剤量や製造方法も実施例1Aとは異なり、水酸化鉄水溶液を加熱して水溶液中に酸化鉄を生成させた水溶液に前記界面活性剤を混合する混合工程を含むものであって、詳細には以下のように作製した。
<Preparation of Example 2A of Nanoparticle Body>
As another modification, Example 1A in which the type of particles in Example 1A was changed to iron oxide instead of titanium oxide was used as Example 2A. Example 2A of the nanoparticulate body is different from Example 1A in the amount of surfactant and the production method, and the surfactant is mixed with an aqueous solution in which iron hydroxide is heated to produce iron oxide in the aqueous solution. A mixing step was included, and the details were prepared as follows.

硫酸第一鉄7水和物(FeSO・7HO)0.765gと塩化第二鉄6水和物(FeCl・6HO)1.23gを30mlのイオン交換水に溶解させた水溶液に、攪拌を施しながら25wt%アンモニア水(NHOH水溶液)を3.75ml滴下して中和し、水酸化鉄水溶液を得た。その水溶液を80℃に昇温したのち、その水溶液に界面活性剤P12−10を0.36g加え、フラスコ内でスターラーを用いて80℃で1時間攪拌を施して混合することによって、酸化第二鉄(Fe)粒子を生成させて界面活性剤で粒子表面を被覆修飾した。攪拌後、生成した粒子を磁石により回収し、室温で一昼夜(17時間)真空乾燥を行った。これにより水分を除去し、粉末状態の酸化鉄のナノ粒子体の実施例2Aを得た。 An aqueous solution in which 0.765 g of ferrous sulfate heptahydrate (FeSO 4 .7H 2 O) and 1.23 g of ferric chloride hexahydrate (FeCl 3 .6H 2 O) are dissolved in 30 ml of ion-exchanged water. Then, while stirring, 3.75 ml of 25 wt% aqueous ammonia (NH 4 OH aqueous solution) was dropped to neutralize to obtain an aqueous iron hydroxide solution. After raising the temperature of the aqueous solution to 80 ° C., 0.36 g of surfactant P12-10 was added to the aqueous solution, and the mixture was stirred and mixed at 80 ° C. for 1 hour in a flask with a second oxide. Iron (Fe 3 O 4 ) particles were generated and the particle surface was coated with a surfactant. After stirring, the generated particles were collected with a magnet and vacuum-dried at room temperature all day and night (17 hours). Thus, moisture was removed, and Example 2A of a powdered iron oxide nanoparticle body was obtained.

<ナノ粒子体の実施例3Aの作製>
またさらに別の変形例として、実施例1Aにおいて粒子の種類を酸化チタンでなく銀としたものをナノ粒子体の実施例3Aとした。ナノ粒子体の実施例3Aは、界面活性剤量や製造方法も実施例1Aとは異なり、硝酸銀水溶液に界面活性剤と還元剤とを含有する水溶液を混合する混合工程を含むものであって、詳細には以下のように作製した。
<Preparation of Example 3A of Nanoparticle Body>
As yet another modification, Example 3A in which the type of particles in Example 1A was changed to silver instead of titanium oxide was used as Example 3A. Example 3A of the nanoparticle body differs from Example 1A in the amount of surfactant and the production method, and includes a mixing step of mixing an aqueous solution containing a surfactant and a reducing agent in an aqueous silver nitrate solution, In detail, it produced as follows.

還元剤である水素化ホウ素ナトリウム(NaBH)18mgと、13mgの界面活性剤P12−10とを、25mlのイオン交換水に溶解させた水溶液を1液とし、硝酸銀(AgNO)21mgを25mlの超純水に溶解させた水溶液を2液とし、1液に2液を氷浴中で攪拌しながら滴下し、Agコロイドを調製した。さらに、このように調整したAgコロイドにトルエンを50ml加えたのち、攪拌しながら0.1mol/lのリン酸(HPO)水溶液を10ml程度加えることで、界面活性剤P12−10で表面修飾させた銀ナノ粒子を有機層に抽出した。その後、有機層を回収し、ロータリーエバポレーターで溶媒を蒸発乾固させて、粉末状態の銀のナノ粒子体の実施例3Aを得た。 An aqueous solution obtained by dissolving 18 mg of sodium borohydride (NaBH 4 ) as a reducing agent and 13 mg of surfactant P12-10 in 25 ml of ion-exchanged water is used as one solution, and 21 mg of silver nitrate (AgNO 3 ) is added in 25 ml. An aqueous solution dissolved in ultrapure water was used as two solutions, and two solutions were added dropwise to the first solution while stirring in an ice bath to prepare an Ag colloid. Further, 50 ml of toluene was added to the Ag colloid thus prepared, and then about 10 ml of 0.1 mol / l phosphoric acid (H 3 PO 4 ) aqueous solution was added while stirring, so that the surface of the surfactant P12-10 was increased. The modified silver nanoparticles were extracted into the organic layer. Thereafter, the organic layer was recovered, and the solvent was evaporated to dryness using a rotary evaporator to obtain Example 3A of a silver nanoparticle body in a powder state.

<ナノ粒子分散体の実施例1Aa−10%の作製>
また、ナノ粒子分散体の実施例1Aaの変形例として、粒子濃度が10wt%となるように分散させた、ナノ粒子分散体の実施例1Aa−10%を作製した。その他の条件はナノ粒子分散体の実施例1Aaと同じように作製した。ナノ粒子体の実施例1Aは、粒子濃度が10wt%という高濃度でも有機溶媒に分散した。
<Preparation of Nanoparticle Dispersion Example 1Aa-10%>
Further, as a modified example of the nanoparticle dispersion example 1Aa, nanoparticle dispersion example 1Aa-10% in which the particle concentration was 10 wt% was produced. Other conditions were the same as in Example 1Aa of the nanoparticle dispersion. The nanoparticle Example 1A was dispersed in an organic solvent even when the particle concentration was as high as 10 wt%.

<ナノ粒子分散体の実施例1Ab、実施例1Ac及び実施例1Adの作製>
また、ナノ粒子分散体の実施例1Aaの変形例として、ナノ粒子体の実施例1Aをエタノールに分散させる代わりに、テトラヒドロフラン(THF:CO)(安定剤含有脱水型有機合成用、和光純薬工業株式会社製)に分散させたものをナノ粒子分散体の実施例1Abとし、メタクリル酸メチル(MMA:CH=C(CH)COOCH)(モノマー、和光特級、和光純薬工業株式会社製)に分散させたものをナノ粒子分散体の実施例1Acとし、トルエン(Toluene:CH(C))(99.5%、和光純薬工業株式会社製)に分散させたものをナノ粒子分散体の実施例1Adとした。実施例1Ac、実施例1Ac、実施例1Acとも、その他の点は上述したナノ粒子分散体の実施例1Aaと同じように作製した。実施例1Aは、エタノール、THF、MMA、トルエンのいずれの有機溶媒にも容易に分散した。
<Preparation of Example 1Ab, Example 1Ac, and Example 1Ad of Nanoparticle Dispersion>
As a modification of Example 1Aa of the nanoparticle dispersion, instead of dispersing Example 1A of the nanoparticle body in ethanol, tetrahydrofuran (THF: C 4 H 8 O) (for stabilizer-containing dehydrated organic synthesis, The product dispersed in Wako Pure Chemical Industries, Ltd. was used as Example 1Ab of the nanoparticle dispersion, and methyl methacrylate (MMA: CH 2 ═C (CH 3 ) COOCH 3 ) (monomer, Wako Special Grade, Wako Pure Chemicals) The product dispersed in Kogyo Kogyo Co., Ltd. was used as Example 1Ac of the nanoparticle dispersion, and dispersed in toluene (Toluene: CH 3 (C 6 H 5 )) (99.5%, manufactured by Wako Pure Chemical Industries, Ltd.) This was designated as Example 1Ad of the nanoparticle dispersion. Example 1Ac, Example 1Ac, and Example 1Ac were each produced in the same manner as Example 1Aa of the nanoparticle dispersion described above. Example 1A was easily dispersed in any organic solvent such as ethanol, THF, MMA, and toluene.

<ナノ粒子分散体の1A´a、実施例1A´b、実施例1A´c及び実施例1A´dの作製>
別の変形例として、ナノ粒子体の実施例1A´を、エタノールに分散させたものをナノ粒子分散体の実施例1A´aとし、テトラヒドロフランに分散させたものをナノ粒子分散体の実施例1A´bとし、メタクリル酸メチルに分散させたものをナノ粒子分散体の実施例1A´cとし、トルエンに分散させたものをナノ粒子分散体の実施例1A´dとした。これらの実施例は、他の点については上述したナノ粒子分散体の実施例1Aaと同じように作製した。実施例1A´は、エタノール、THF、MMA、トルエンのいずれの有機溶媒にも容易に分散した。
<Production of Nanoparticle Dispersion 1A′a, Example 1A′b, Example 1A′c, and Example 1A′d>
As another modified example, Example 1A ′ of the nanoparticle dispersion was obtained by dispersing Example 1A ′ of the nanoparticle body in ethanol into Example 1A′a of the nanoparticle dispersion and Example 1A of the nanoparticle dispersion was dispersed in tetrahydrofuran. The sample dispersed in methyl methacrylate was designated as Example 1A′c of the nanoparticle dispersion, and the product dispersed in toluene was designated as Example 1A′d of the nanoparticle dispersion. These examples were prepared in the same manner as Example 1Aa of the nanoparticle dispersion described above in other respects. Example 1A ′ was easily dispersed in any organic solvent such as ethanol, THF, MMA, and toluene.

<ナノ粒子分散体の他の実施例の作製>
また、ナノ粒子体の実施例1A´´、実施例1B、実施例1B´、実施例1B´´、実施例1C、実施例1C´、実施例1C´´、実施例1D、実施例1D´、実施例1D´´、実施例2A、実施例3Aについても同様に、エタノールに分散させたものをそれぞれナノ粒子分散体の実施例1A´´a、実施例1Ba、実施例1B´a、実施例1B´´a、実施例1Ca、実施例1C´a、実施例1C´´a、実施例1Da、実施例1D´a、実施例1D´´a、実施例2Aa、実施例3Aaとし、テトラヒドロフランに分散させたものをそれぞれナノ粒子分散体の実施例1A´´b、実施例1Bb、実施例1B´b、実施例1B´´b、実施例1Cb、実施例1C´b、実施例1C´´b、実施例1Db、実施例1D´b、実施例1D´´b、実施例2Ab、実施例3Abとし、メタクリル酸メチルに分散させたものをそれぞれナノ粒子分散体の実施例1A´´c、実施例1Bc、実施例1B´c、実施例1B´´c、実施例1Cc、実施例1C´c、実施例1C´´c、実施例1Dc、実施例1D´c、実施例1D´´c、実施例2Ac、実施例3Acとし、トルエンに分散させたものをそれぞれナノ粒子分散体の実施例1A´´d、実施例1Bd、実施例1B´d、実施例1B´´d、実施例1Cd、実施例1C´d、実施例1C´´d、実施例1Dd、実施例1D´d、実施例1D´´d、実施例2Ad、実施例3Adとした。ナノ粒子分散体のこれらの実施例は、他の点については上述したナノ粒子分散体の実施例1Aaと同じように作製した。ナノ粒子体の実施例1A´´、実施例1B、実施例1B´、実施例1B´´、実施例1C、実施例1C´、実施例1C´´、実施例1D、実施例1D´、実施例1D´´、実施例2A、実施例3Aはいずれも、エタノール、THF、MMA、トルエンのいずれの有機溶媒にも容易に分散した。
<Preparation of other examples of nanoparticle dispersion>
In addition, Example 1A ″, Example 1B, Example 1B ′, Example 1B ″, Example 1C, Example 1C ′, Example 1C ″, Example 1D, Example 1D ′ of nanoparticle bodies Similarly, for Example 1D ″, Example 2A, and Example 3A, those dispersed in ethanol were used as Example 1A ″ a, Example 1Ba, and Example 1B′a, respectively. Example 1B ″ a, Example 1Ca, Example 1C′a, Example 1C′a, Example 1Da, Example 1D′a, Example 1D ″ a, Example 2Aa, Example 2Aa, Tetrahydrofuran Example 1A ″ b, Example 1Bb, Example 1B′b, Example 1B ″ b, Example 1Cb, Example 1C′b, and Example 1C ′ of nanoparticle dispersions respectively dispersed in 'B, Example 1Db, Example 1D'b, Example 1D'b, Example 2Ab, Example Ab and dispersed in methyl methacrylate were Example 1A ″ c, Example 1Bc, Example 1B′c, Example 1B ″ c, Example 1Cc, and Example 1C ′ of nanoparticle dispersions, respectively. c, Example 1C ″ c, Example 1Dc, Example 1D′c, Example 1D ″ c, Example 2Ac, and Example 3Ac, and examples of nanoparticle dispersions dispersed in toluene, respectively 1A ″ d, Example 1Bd, Example 1B′d, Example 1B ″ d, Example 1Cd, Example 1C′d, Example 1C ″ d, Example 1Dd, Example 1D′d, Example Example 1D ″ d, Example 2Ad, and Example 3Ad were used. These examples of nanoparticle dispersions were otherwise produced in the same manner as the nanoparticle dispersion Example 1Aa described above. Example 1A ″, Example 1B, Example 1B ′, Example 1B ″, Example 1C, Example 1C ′, Example 1C ″, Example 1D, Example 1D ′, Example of nanoparticle body Example 1D ″, Example 2A, and Example 3A were all easily dispersed in any organic solvent such as ethanol, THF, MMA, and toluene.

<ナノ粒子体の比較例及びナノ粒子分散体の比較例の作製>
硝酸酸性の酸化チタンゾル(STS100、結晶子径5nm、平均粒子径6〜8nm、酸化チタン濃度20wt%、石原産業株式会社製)を100℃で熱風乾燥を行い、ナノ粒子体の比較例1Xを得た。また、別の比較例として、硝酸酸性の酸化チタンゾル(STS100、結晶子径5nm、平均粒子径6〜8nm、酸化チタン濃度20wt%、石原産業株式会社製)10gをイオン交換水80gで希釈した分散液に、界面活性剤を添加せず、アセトンを加えて粒子を析出させ、上記実施例1Aと同様な遠心分離を行った後、100℃で熱風乾燥を行い、ナノ粒子体の比較例1Yを得た。比較例1Yは、他の点は上述したナノ粒子体の実施例1Aと同じように作製した。
<Production of comparative example of nanoparticle body and comparative example of nanoparticle dispersion>
A nitric acid acidic titanium oxide sol (STS100, crystallite diameter 5 nm, average particle diameter 6-8 nm, titanium oxide concentration 20 wt%, manufactured by Ishihara Sangyo Co., Ltd.) was dried with hot air at 100 ° C. to obtain Comparative Example 1X of nanoparticle body It was. As another comparative example, a dispersion obtained by diluting 10 g of nitric acid acidic titanium oxide sol (STS100, crystallite diameter 5 nm, average particle diameter 6 to 8 nm, titanium oxide concentration 20 wt%, manufactured by Ishihara Sangyo Co., Ltd.) with ion exchange water 80 g The surfactant was not added to the liquid, acetone was added to precipitate the particles, and the same centrifugal separation as in Example 1A was performed, followed by hot air drying at 100 ° C., and Comparative Example 1Y of the nanoparticle body was obtained. Obtained. Comparative Example 1Y was produced in the same manner as Example 1A of the nanoparticle body described above, except for the above points.

また、界面活性剤が異なる比較例として、実施例1Aにおいて界面活性剤を界面活性剤P12−10とした代わりに、下記化学式(2)   Further, as a comparative example in which the surfactant is different, instead of the surfactant P12-10 as the surfactant in Example 1A, the following chemical formula (2)

で示される、アニオン重合性界面活性剤(SE−10N、株式会社ADEKA製)(以下、界面活性剤S10という。)とし、酸化チタン1gに対し1.0mmolの割合となるようにしたものをナノ粒子体の比較例2S、酸化チタン1gに対する界面活性剤S10の割合を、2.0mmolにしたものをナノ粒子体の比較例2S´とし、3.0mmolにしたものをナノ粒子体の比較例2S´´とした。比較例2S、比較例2S´、比較例2S´´とも、その他の点は上述したナノ粒子体の実施例1Aと同じように作製した。界面活性剤S10は、粒子表面に結合する官能基に親水基であるエチレンオキサイド基を介してから分岐した疎水基を有する。   The anion polymerizable surfactant (SE-10N, manufactured by ADEKA Corporation) (hereinafter referred to as “surfactant S10”) represented by the formula (1) is a nanoparticle having a ratio of 1.0 mmol to 1 g of titanium oxide. Comparative Example 2S for Particles, Comparative Example 2S ′ for Nanoparticles with a Ratio of Surfactant S10 to 1 g of Titanium Oxide of 2.0 mmol, and Comparative Example 2S for Nanoparticles with 3.0 mmol ″. Comparative Example 2S, Comparative Example 2S ′, and Comparative Example 2S ″ were produced in the same manner as in Example 1A of the nanoparticle body described above. Surfactant S10 has a hydrophobic group branched from an ethylene oxide group, which is a hydrophilic group, in a functional group bonded to the particle surface.

また、界面活性剤が異なる別の比較例として、実施例1Aにおいて界面活性剤を界面活性剤P12−10とした代わりに、下記化学式(3)   Further, as another comparative example in which the surfactant is different, instead of the surfactant P12-10 as the surfactant in Example 1A, the following chemical formula (3)

(ただし、Rは、炭素数12〜14のアルキル基)で示される、アニオン重合性界面活性剤(エレミノールJS−20 有効成分38.7%、三洋化成工業株式会社製)(以下、界面活性剤S0という。)とし、酸化チタン1gに対し1.0mmolの割合となるようにしたものをナノ粒子体の比較例3T、酸化チタン1gに対する界面活性剤S0の割合を、2.0mmolにしたものをナノ粒子体の比較例3T´とし、3.0mmolにしたものをナノ粒子体の比較例3T´´とした。比較例3T、比較例3T´、比較例3T´´とも、その他の点は上述したナノ粒子体の実施例1Aと同じように作製した。界面活性剤S0は、粒子表面に結合する官能基に結合した炭素原子の箇所で分岐した疎水基を有する。   (However, R is an alkyl group having 12 to 14 carbon atoms) Anionic polymerizable surfactant (Eleminol JS-20 active ingredient 38.7%, manufactured by Sanyo Chemical Industries, Ltd.) (hereinafter referred to as surfactant) S0) and a ratio of 1.0 mmol with respect to 1 g of titanium oxide, a comparative example 3T of nanoparticle body, and a ratio of surfactant S0 with respect to 1 g of titanium oxide set to 2.0 mmol. The nanoparticle body Comparative Example 3T ′ was prepared, and the nanoparticle body Comparative Example 3T ″ was prepared as 3.0 mmol. Comparative Example 3T, Comparative Example 3T ′, and Comparative Example 3T ″ were prepared in the same manner as in Example 1A of the nanoparticle body described above. The surfactant S0 has a hydrophobic group branched at a carbon atom bonded to a functional group bonded to the particle surface.

また、ナノ粒子体の比較例2S、比較例2S´、比較例2S´´、比較例3T、比較例3T´、比較例3T´´についても同様に、エタノールに分散させたものをナノ粒子分散体の比較例2Sa、比較例2S´a、比較例2S´´a、比較例3Ta、比較例3T´a、比較例3T´´aとし、テトラヒドロフランに分散させたものをナノ粒子分散体の比較例2Sb、比較例2S´b、比較例2S´´b、比較例3Tb、比較例3T´b、比較例3T´´bとし、メタクリル酸メチルに分散させたものをナノ粒子分散体の比較例2Sc、比較例2S´c、比較例2S´´c、比較例3Tc、比較例3T´c、比較例3T´´cとし、トルエンに分散させたものをナノ粒子分散体の比較例2Sd、比較例2S´d、比較例2S´´d、比較例3Td、比較例3T´d、比較例3T´´dとした。これらの比較例は、他の点は上述したナノ粒子分散体の実施例1Aaと同じように作製した。   Similarly, Comparative Example 2S, Comparative Example 2S ′, Comparative Example 2S ″, Comparative Example 3T, Comparative Example 3T ′, and Comparative Example 3T ″, which are nanoparticle bodies, are dispersed in ethanol in the same manner. Comparative Example 2Sa, Comparative Example 2S′a, Comparative Example 2S′a, Comparative Example 3Ta, Comparative Example 3T′a, Comparative Example 3T ″ a, and Nanoparticle Dispersions Example 2Sb, Comparative Example 2S′b, Comparative Example 2S ″ b, Comparative Example 3Tb, Comparative Example 3T′b, and Comparative Example 3T ″ b, which were dispersed in methyl methacrylate and compared with a nanoparticle dispersion 2Sc, Comparative Example 2S′c, Comparative Example 2S ″ c, Comparative Example 3Tc, Comparative Example 3T′c, Comparative Example 3T ″ c, and what was dispersed in toluene, Comparative Example 2Sd of Nanoparticle Dispersion, Comparative Example 2S′d, Comparative Example 2S ″ d, Comparative Example 3Td, Comparative Example 3T′d It was a comparative example 3T''d. These comparative examples were produced in the same manner as Example 1Aa of the nanoparticle dispersion described above, except for the above points.

本発明の実施例1A等に用いた界面活性剤P12−10と、比較例2S等に用いた界面活性剤S10及び比較例3T等に用いた界面活性剤S0について、下記表1に詳細な情報を示す。   Detailed information on the surfactant P12-10 used in Example 1A and the like of the present invention, the surfactant S10 used in Comparative Example 2S and the surfactant S0 used in Comparative Example 3T and the like is shown in Table 1 below. Indicates.

P12−10とS0について、界面活性剤のアルキル基R、Rは複数の炭素数が混合しており、S0は炭素数が12のものが大部分であるので、表1中、分子量については、S0では上記化学式(3)においてR=C1225として算出し、P12−10では上記化学式(1)において、m=2、k=1、n=12、R1=CHCHCH、R=C1021として算出した。 For P12-10 and S0, the alkyl groups R 2 and R of the surfactant are a mixture of a plurality of carbon atoms, and S0 is mostly those having 12 carbon atoms. , S0 is calculated as R = C 12 H 25 in the chemical formula (3), and P12-10 is m = 2, k = 1, n = 12, R 1 = CH 2 CHCH 2 in the chemical formula (1), Calculated as R 2 = C 10 H 21 .

<ナノ粒子体の特性:定性分析>
各実施例及び比較例並びに界面活性剤についてのFT-IR(フーリエ変換赤外分光光度計;Fourier Transform Infrared Spectroscopy)でのスペクトル測定により、粒子表面の構造について定性分析を行った。サンプルは、各実施例については試料0.03gに臭化カリウム(KBr)0.4g、各比較例については試料0.5gにKBr0.05gの混合比で調整した。また界面活性剤であるP12−10については試料0.0034gにKBr0.3987g、P12−14については試料0.0027gにKBr0.3700g、P8−10については試料0.0051gにKBr0.4078g、P16−10については試料0.0042gにKBr0.3979gの混合比で調整した。
<Characteristics of nanoparticle bodies: qualitative analysis>
The structure of the particle surface was qualitatively analyzed by spectrum measurement with FT-IR (Fourier Transform Infrared Spectroscopy) for each of Examples and Comparative Examples and surfactants. For each example, the sample was adjusted at a mixing ratio of 0.03 g of sample to 0.4 g of potassium bromide (KBr) and each comparative example at a mixing ratio of 0.5 g of sample to 0.05 g of KBr. Further, for P12-10 as a surfactant, KBr 0.3987 g for 0.0034 g sample, KBr 0.3700 g for 0.0027 g sample for P12-14, KBr 0.4078 g for 0.0051 g sample for P8-10, P16- 10 was adjusted with a mixing ratio of KBr 0.3979 g to 0.0042 g of the sample.

図3は、本発明のナノ粒子体の実施例1A、実施例1A´、実施例1A´´、比較例1X及び界面活性剤P12−10のFT−IRスペクトルを示す図である。図3において、aは実施例1A´´、bは実施例1A´、cは実施例1A、dは比較例1X、eは界面活性剤P12−10のスペクトルを示す。実施例1A´´、実施例1A´、実施例1Aのスペクトルでは、界面活性剤由来と考えられる2800〜3000cm−1付近のC−H伸縮振動ピークが観察された。また、界面活性剤の親水基のP=O伸縮振動のピークが観察された。これらの結果によって、実施例1A、実施例1A´、実施例1A´´が界面活性剤P12−10で被覆されていることが確認された。 FIG. 3 is a diagram showing FT-IR spectra of Example 1A, Example 1A ′, Example 1A ″, Comparative Example 1X, and surfactant P12-10 of the nanoparticle body of the present invention. In FIG. 3, a is Example 1A ″, b is Example 1A ′, c is Example 1A, d is Comparative Example 1X, and e is the spectrum of surfactant P12-10. In the spectra of Example 1A ″, Example 1A ′, and Example 1A, a C—H stretching vibration peak in the vicinity of 2800 to 3000 cm −1 considered to be derived from the surfactant was observed. Moreover, the peak of P = O stretching vibration of the hydrophilic group of the surfactant was observed. From these results, it was confirmed that Example 1A, Example 1A ′, and Example 1A ″ were coated with the surfactant P12-10.

図4は、本発明のナノ粒子体の実施例1B、実施例1B´、実施例1B´´、比較例1X及び界面活性剤P12−14のFT−IRスペクトルを示す図である。図4において、aは実施例1B´´、bは実施例1B´、cは実施例1B、dは比較例1X、eは界面活性剤P12−14のスペクトルを示す。実施例1B´´、実施例1B´、実施例1Bのスペクトルでは、界面活性剤由来と考えられる2800〜3000cm−1付近のC−H伸縮振動ピークが観察された。また、界面活性剤の親水基のP=O伸縮振動のピークが観察された。これらの結果によって、実施例1B、実施例1B´が界面活性剤P12−14で被覆されていることが確認された。 FIG. 4 is a diagram showing FT-IR spectra of Example 1B, Example 1B ′, Example 1B ″, Comparative Example 1X, and surfactant P12-14 of the nanoparticle body of the present invention. In FIG. 4, a shows the spectrum of Example 1B ″, b shows Example 1B ′, c shows Example 1B, d shows Comparative Example 1X, and e shows the spectrum of surfactant P12-14. In the spectra of Example 1B ″, Example 1B ′, and Example 1B, a C—H stretching vibration peak in the vicinity of 2800 to 3000 cm −1 considered to be derived from the surfactant was observed. Moreover, the peak of P = O stretching vibration of the hydrophilic group of the surfactant was observed. From these results, it was confirmed that Example 1B and Example 1B ′ were coated with the surfactant P12-14.

図5は、本発明のナノ粒子体の実施例1C、実施例1C´、実施例1C´´、比較例1X及び界面活性剤P8−10のFT−IRスペクトルを示す図である。図5において、aは実施例1C´´、bは実施例1C´、cは実施例1C、dは比較例1X、eは界面活性剤P8−10のスペクトルを示す。実施例1C´´、実施例1C´、実施例1Cのスペクトルでは、界面活性剤由来と考えられる2800〜3000cm−1付近のC−H伸縮振動ピークが観察された。また、界面活性剤の親水基のP=O伸縮振動のピークが観察された。これらの結果によって、実施例1C、実施例1C´が界面活性剤P8−10で被覆されていることが確認された。 FIG. 5 is a diagram showing FT-IR spectra of Example 1C, Example 1C ′, Example 1C ″, Comparative Example 1X and surfactant P8-10 of the nanoparticle body of the present invention. In FIG. 5, a shows the spectrum of Example 1C ″, b shows Example 1C ′, c shows Example 1C, d shows Comparative Example 1X, and e shows the spectrum of surfactant P8-10. In the spectra of Example 1C ″, Example 1C ′, and Example 1C, a C—H stretching vibration peak in the vicinity of 2800 to 3000 cm −1 considered to be derived from the surfactant was observed. Moreover, the peak of P = O stretching vibration of the hydrophilic group of the surfactant was observed. From these results, it was confirmed that Example 1C and Example 1C ′ were coated with the surfactant P8-10.

図6は、本発明のナノ粒子体の実施例1D、実施例1D´、実施例1D´´、比較例1X及び界面活性剤P16−10のFT−IRスペクトルを示す図である。図6において、aは実施例1D´´、bは実施例1D´、cは実施例1D、dは比較例1X、eは界面活性剤P16−10のスペクトルを示す。実施例1D´´、実施例1D´、実施例1Dのスペクトルでは、界面活性剤由来と考えられる2800〜3000cm−1付近のC−H伸縮振動ピークが観察された。また、界面活性剤の親水基のP=O伸縮振動のピークが観察された。これらの結果によって、実施例1D、実施例1D´が界面活性剤P16−10で被覆されていることが確認された。 FIG. 6 is a diagram showing FT-IR spectra of Example 1D, Example 1D ′, Example 1D ″, Comparative Example 1X, and surfactant P16-10 of the nanoparticle body of the present invention. In FIG. 6, a is Example 1D ″, b is Example 1D ′, c is Example 1D, d is Comparative Example 1X, and e is the spectrum of the surfactant P16-10. In the spectra of Example 1D ″, Example 1D ′, and Example 1D, a C—H stretching vibration peak in the vicinity of 2800 to 3000 cm −1 considered to be derived from the surfactant was observed. Moreover, the peak of P = O stretching vibration of the hydrophilic group of the surfactant was observed. From these results, it was confirmed that Example 1D and Example 1D ′ were coated with the surfactant P16-10.

よって、これらの実施例は、極性有機溶媒への親和性を有する親水基と非極性有機溶媒への親和性を有する疎水基とを有する界面活性剤と同様のピークが現れていることから、極性有機溶媒への親和性を有する親水基と非極性有機溶媒への親和性を有する疎水基とを粒子表面に有するナノ粒子体と言える。界面活性剤の種類から、前記親水基が長鎖エチレンオキサイド基、詳細にはn数が8〜16のポリオキシエチレン基、を含むものであり、前記疎水基が長鎖アルキル基、詳細には炭素数10〜16の長鎖アルキル基、を含むものである。前記親水基と前記疎水基は1つの分子内で分岐したものであって、分岐点はナノ粒子の表面に結合したリン酸基にエステル結合した炭素原子である。   Therefore, these examples show the same peak as the surfactant having a hydrophilic group having an affinity for a polar organic solvent and a hydrophobic group having an affinity for a nonpolar organic solvent. It can be said that the nanoparticle body has a hydrophilic group having an affinity for an organic solvent and a hydrophobic group having an affinity for a nonpolar organic solvent on the particle surface. From the type of surfactant, the hydrophilic group includes a long-chain ethylene oxide group, specifically a polyoxyethylene group having an n number of 8 to 16, and the hydrophobic group is a long-chain alkyl group. A long-chain alkyl group having 10 to 16 carbon atoms. The hydrophilic group and the hydrophobic group are branched in one molecule, and the branch point is a carbon atom ester-bonded to a phosphate group bonded to the surface of the nanoparticle.

図7は、本発明のナノ粒子体の比較例2S、比較例2S´、比較例2S´´、比較例1X及び界面活性剤S10のFT−IRスペクトルを示す図である。図7において、aは比較例2S´´、bは比較例2S´、cは比較例2S、dは比較例1X、eは界面活性剤S10のスペクトルを示す。比較例2S´´、比較例2S´、比較例2Sのスペクトルでは、界面活性剤由来と考えられる2800〜3000cm−1付近のC−H伸縮振動ピークと、1461、1512、1609cm−1のフェニル環伸縮振動のピークが観察された。また、界面活性剤の親水基のO=S=O対称伸縮振動のピークが観察された。これらの結果によって、比較例2S、比較例2S´、比較例2S´´が界面活性剤S10で被覆されていることが確認された。 FIG. 7 is a diagram showing FT-IR spectra of Comparative Example 2S, Comparative Example 2S ′, Comparative Example 2S ″, Comparative Example 1X, and Surfactant S10 of the nanoparticle body of the present invention. In FIG. 7, a is the comparative example 2S ″, b is the comparative example 2S ′, c is the comparative example 2S, d is the comparative example 1X, and e is the spectrum of the surfactant S10. In the spectra of Comparative Example 2S ″, Comparative Example 2S ′, and Comparative Example 2S, C—H stretching vibration peaks in the vicinity of 2800 to 3000 cm −1 considered to be derived from the surfactant, and 1461, 1512, and 1609 cm −1 phenyl rings A peak of stretching vibration was observed. Moreover, the peak of O = S = O symmetrical stretching vibration of the hydrophilic group of the surfactant was observed. From these results, it was confirmed that Comparative Example 2S, Comparative Example 2S ′, and Comparative Example 2S ″ were coated with the surfactant S10.

図8は、本発明のナノ粒子体の比較例3T、比較例3T´、比較例3T´´、比較例1X及び界面活性剤S0のFT−IRスペクトルを示す図である。図8において、aは比較例3T´´、bは比較例3T´、cは比較例3T、dは比較例1X、eは界面活性剤S0のスペクトルを示す。比較例3T´´、比較例3T´、比較例3Tのスペクトルでは、界面活性剤由来と考えられる2800〜3000cm−1付近のC−H伸縮振動ピークと、1740cm−1のC=O伸縮振動のピークが観察された。また、界面活性剤の親水基のO=S=O対称伸縮振動のピークが観察された。これらの結果によって、比較例3T、比較例3T´、比較例3T´´が界面活性剤S0で被覆されていることが確認された。 FIG. 8 is a diagram showing FT-IR spectra of Comparative Example 3T, Comparative Example 3T ′, Comparative Example 3T ″, Comparative Example 1X, and Surfactant S0 of the nanoparticle body of the present invention. In FIG. 8, a is a comparative example 3T ″, b is a comparative example 3T ′, c is a comparative example 3T, d is a comparative example 1X, and e is a spectrum of the surfactant S0. Comparative Example 3T'', Comparative Example 3T', in the spectrum of Comparative Example 3T, a C-H stretching vibration peak near 2800 to 3000 cm -1, which is believed to be derived from the surfactant, the C = O stretching vibration of 1740 cm -1 A peak was observed. Moreover, the peak of O = S = O symmetrical stretching vibration of the hydrophilic group of the surfactant was observed. From these results, it was confirmed that Comparative Example 3T, Comparative Example 3T ′, and Comparative Example 3T ″ were coated with the surfactant S0.

<ナノ粒子体の特性:定量分析>
界面活性剤の定量分析は熱重量分析(TGA)でもできるが、例えば親水基がスルホン酸の界面活性剤の場合にはチタンの硫酸塩のような不揮発成分が残り不完全燃焼している可能性があるため正確な定量が困難となるなどの不具合があるので、有機元素分析による定量分析を行った。下記表2は、本発明のナノ粒子体の実施例1A、実施例1A´、比較例2S、比較例2S´、比較例2S´´、比較例3T、比較例3T´、比較例3T´´の有機元素分析による定量分析結果を示す。
<Characteristics of nanoparticle bodies: quantitative analysis>
Quantitative analysis of surfactants can also be done by thermogravimetric analysis (TGA). For example, when the hydrophilic group is a sulfonic acid surfactant, non-volatile components such as titanium sulfate may remain and burnt incompletely. Because there is a problem that accurate quantification is difficult, there was a quantitative analysis by organic elemental analysis. Table 2 below shows Example 1A, Example 1A ′, Comparative Example 2S, Comparative Example 2S ′, Comparative Example 2S ″, Comparative Example 3T, Comparative Example 3T ′, and Comparative Example 3T ″ of the nanoparticle body of the present invention. The quantitative analysis result by organic elemental analysis of is shown.

表中の結合量は、以下の数式(1)〜(3)によって算出したDの値である。   The bond amount in the table is the value of D calculated by the following mathematical formulas (1) to (3).

上記数式(1)中のAは表2の炭素含有量で、これは、実施例及び比較例の炭素含有量(wt%)である。例えば、比較例2Sの炭素含有量は21.35(wt%)、比較例2S´の炭素含有量は21.14(wt%)である。また、上記数式(1)中のBは、解離した界面活性剤の分子量(g/mol)である。Bの値は、上記表1の分子量(親水基が解離している場合)の値を用いた。また、上記数式(1)中のCは、各リン酸系の界面活性剤の炭素数(#)である。Cの値は、上記表1の一分子当たりの炭素原子数の値を用いた。上記数式(1)中のSは、界面活性剤で被覆による修飾を行った粒子の界面活性剤量(wt%)である。   A in the above formula (1) is the carbon content of Table 2, which is the carbon content (wt%) of the examples and comparative examples. For example, the carbon content of Comparative Example 2S is 21.35 (wt%), and the carbon content of Comparative Example 2S ′ is 21.14 (wt%). Further, B in the mathematical formula (1) is the molecular weight (g / mol) of the dissociated surfactant. As the value of B, the value of the molecular weight (when the hydrophilic group is dissociated) shown in Table 1 above was used. C in the formula (1) is the carbon number (#) of each phosphate surfactant. As the value of C, the value of the number of carbon atoms per molecule in Table 1 above was used. S in the above mathematical formula (1) is the amount of surfactant (wt%) of the particles modified by coating with the surfactant.

上記数式(2)中のTは、界面活性剤で被覆による修飾を行った粒子の酸化チタン量(wt%)である。   T in the above mathematical formula (2) is the amount of titanium oxide (wt%) of the particles modified by coating with a surfactant.

上記数式(3)中のDは結合量で、酸化チタン1g当たりの、界面活性剤で被覆による修飾を行った粒子表面における界面活性剤結合量(mmol/g)である。   D in the mathematical formula (3) is a binding amount, which is the binding amount (mmol / g) of the surfactant on the surface of the particle that has been modified by coating with a surfactant per 1 g of titanium oxide.

表2から、比較例2S、比較例2S´、比較例2S´´とも、酸化チタン1g当たりの界面活性剤S10の結合量は、0.68mmol程度で、添加量による差はほとんどなかった。界面活性剤S0の結合量は、添加量が2mmolである比較例3T´で飽和結合量に達した。界面活性剤P12−10では、最大1.13mmol結合した。水溶液中でのスルホン酸の解離状態の違いによるものか、界面活性剤S0の方が界面活性剤S10より反応性が高く、比較例3T、比較例3T´、比較例3T´´の方が、比較例2S、比較例2S´、比較例2S´´よりも結合量が多かった。比較例2S、比較例2S´、比較例2S´´では、スルホン酸1分子に対して粒子表面のTi-OH1分子が結合することから、これらの比較例では、粒子表面にかなりの未結合水酸基が残存していると考えられる。   From Table 2, in Comparative Example 2S, Comparative Example 2S ′, and Comparative Example 2S ″, the binding amount of surfactant S10 per gram of titanium oxide was about 0.68 mmol, and there was almost no difference depending on the addition amount. The binding amount of the surfactant S0 reached the saturation binding amount in Comparative Example 3T ′ in which the addition amount was 2 mmol. In surfactant P12-10, a maximum of 1.13 mmol was bound. Whether due to the difference in the dissociation state of the sulfonic acid in the aqueous solution, the surfactant S0 is more reactive than the surfactant S10, and Comparative Example 3T, Comparative Example 3T ′, and Comparative Example 3T ″ are more The amount of binding was larger than those of Comparative Example 2S, Comparative Example 2S ′, and Comparative Example 2S ″. In Comparative Example 2S, Comparative Example 2S ′, and Comparative Example 2S ″, one Ti—OH molecule on the particle surface is bonded to one molecule of sulfonic acid. In these Comparative Examples, a considerable amount of unbonded hydroxyl groups on the particle surface. Is considered to remain.

<ナノ粒子分散体の特性:平均凝集粒子径>
各ナノ粒子分散体について、各溶媒中での強度基準の平均凝集粒子径(50%径)を動的光散乱法(DLS)で分散直後に測定した。図9は、本発明のナノ粒子分散体の実施例1Aa〜d、実施例1A´a〜d、実施例1A´´a〜dの動的光散乱法による測定結果を示す図である。図9において、(a)はナノ粒子体の実施例1Aを分散させたナノ粒子分散体であって、溶媒がエタノールであるナノ粒子分散体の実施例1Aa、THFであるナノ粒子分散体の実施例1Ab、MMAであるナノ粒子分散体の実施例1Ac、トルエンであるナノ粒子分散体の実施例1Ad(これらの実施例をまとめて実施例1Aa〜dと表す。以下同様にまとめて表す)、(b)はナノ粒子分散体の実施例1A´a〜d、(c)はナノ粒子分散体の実施例1A´´a〜d、について測定された平均凝集粒子径を示す。実施例1Aaと実施例1A´aとは平均凝集粒子径はほぼ同じ値で、実施例1A´bと実施例1A´´bとは平均凝集粒子径はほぼ同じ値で、図9において、それぞれプロットが重なっている。
<Characteristics of nanoparticle dispersion: average agglomerated particle size>
For each nanoparticle dispersion, the strength-based average aggregated particle size (50% size) in each solvent was measured immediately after dispersion by dynamic light scattering (DLS). FIG. 9 is a diagram showing the measurement results obtained by the dynamic light scattering method of Examples 1Aa to d, Examples 1A′a to d, and Examples 1A′a to d of the nanoparticle dispersion of the present invention. In FIG. 9, (a) is a nanoparticle dispersion in which Example 1A of the nanoparticle body is dispersed, and Example 1Aa of the nanoparticle dispersion in which the solvent is ethanol, and Implementation of the nanoparticle dispersion in which THF is used. Example 1Ab, Example 1Ac of Nanoparticle Dispersion that is MMA, Example 1Ad of Nanoparticle Dispersion that is Toluene (These Examples are collectively referred to as Examples 1Aa to d. The following is also collectively expressed) (B) shows the average agglomerated particle size measured for Examples 1A′a to d of the nanoparticle dispersion and (c) shows Examples 1A′a to d of the nanoparticle dispersion. Example 1Aa and Example 1A′a have substantially the same average aggregate particle diameter, and Example 1A′b and Example 1A ″ b have approximately the same average aggregate particle diameter. The plots overlap.

図10は、本発明のナノ粒子分散体の実施例1Ba〜d、実施例1B´a〜d、実施例1B´´a〜dの動的光散乱法による測定結果を示す図である。図10において、(a)はナノ粒子分散体の実施例1Ba〜d、(b)はナノ粒子分散体の実施例1B´a〜d、(c)はナノ粒子分散体の実施例1B´´a〜d、について測定された平均凝集粒子径を示す。実施例1B´cと実施例1B´´cとは平均凝集粒子径はほぼ同じ値で、実施例1B´dと実施例1B´´dとは平均凝集粒子径はほぼ同じ値で、図10において、それぞれプロットが重なっている。   FIG. 10 is a diagram showing the measurement results obtained by the dynamic light scattering method of Examples 1Ba to d, Examples 1B′a to d, and Examples 1B ″ a to d of the nanoparticle dispersion of the present invention. 10A is a nanoparticle dispersion example 1Ba-d, FIG. 10B is a nanoparticle dispersion example 1B′a-d, and FIG. 10C is a nanoparticle dispersion example 1B ″. The average aggregate particle diameter measured about ad is shown. Example 1B′c and Example 1B ″ c have substantially the same average aggregate particle diameter, and Example 1B′d and Example 1B ″ d have the same average aggregate particle diameter. , The plots overlap each other.

図11は、本発明のナノ粒子分散体の実施例1Ca〜d、実施例1C´a〜d、実施例1C´´a〜dの動的光散乱法による測定結果を示す図である。図11において、(a)はナノ粒子分散体の実施例1Ca〜d、(b)はナノ粒子分散体の実施例1C´a〜d、(c)はナノ粒子分散体の実施例1C´´a〜d、について測定された平均凝集粒子径を示す。実施例1C´bと実施例1C´´bとは平均凝集粒子径はほぼ同じ値で、実施例1C´cと実施例1C´´cとは平均凝集粒子径はほぼ同じ値で、図11において、それぞれプロットが重なっている。   FIG. 11 is a diagram showing the measurement results obtained by the dynamic light scattering method of Examples 1Ca to d, Examples 1C′a to d, and Examples 1C′a to d of the nanoparticle dispersion of the present invention. 11A is a nanoparticle dispersion example 1Ca to d, FIG. 11B is a nanoparticle dispersion example 1C′a to d, and FIG. 11C is a nanoparticle dispersion example 1C ″. The average aggregate particle diameter measured about ad is shown. Example 1C′b and Example 1C ″ b have the same average aggregate particle diameter, and Example 1C′c and Example 1C ″ c have the same average aggregate particle diameter. , The plots overlap each other.

図12は、本発明のナノ粒子分散体の実施例1Da〜d、実施例1D´a〜d、実施例1D´´a〜dの動的光散乱法による測定結果を示す図である。図12において、(a)はナノ粒子分散体の実施例1Da〜d、(b)はナノ粒子分散体の実施例1D´a〜d、(c)はナノ粒子分散体の実施例1D´´a〜d、について測定された平均凝集粒子径を示す。実施例1D´bと実施例1D´´bとは平均凝集粒子径はほぼ同じ値で、実施例1D´cと実施例1D´´cとは平均凝集粒子径はほぼ同じ値で、図12において、それぞれプロットが重なっている。   FIG. 12 is a diagram showing the measurement results obtained by the dynamic light scattering method of Examples 1Da to d, Example 1D′a to d, and Example 1D ″ a to d of the nanoparticle dispersion of the present invention. 12A is a nanoparticle dispersion example 1Da-d, FIG. 12B is a nanoparticle dispersion example 1D′a-d, and FIG. 12C is a nanoparticle dispersion example 1D ″. The average aggregate particle diameter measured about ad is shown. Example 1D′b and Example 1D ″ b have substantially the same average aggregate particle diameter, and Example 1D′c and Example 1D ″ c have the same average aggregate particle diameter. , The plots overlap each other.

図9〜図12に示したように、ナノ粒子分散体の実施例1Aa〜d、実施例1A´a〜d、実施例1A´´a〜d、実施例1Ba〜d、実施例1B´a〜d、実施例1B´´a〜d、実施例1Ca〜d、実施例1C´a〜d、実施例1C´´a〜d、実施例1Da〜d、実施例1D´a〜d、実施例1D´´a〜dは、いずれも、動的光散乱法による平均凝集粒子径が200nm以下で粒子が分散していた。したがって、ナノ粒子分散体のこれらの実施例では、粒子の分散性がよく、均一性に優れている。また、ナノ粒子体の実施例1A、実施例1A´、実施例1A´´、実施例1B、実施例1B´、実施例1B´´、実施例1C、実施例1C´、実施例1C´´、実施例1D、実施例1D´、実施例1D´´のいずれも、エタノール、THF、MMA、トルエンのいずれの溶媒に対しても高い分散性を有するといえる。   As shown in FIGS. 9-12, nanoparticle dispersion examples 1Aa-d, 1A′a-d, 1A′′a-d, 1Ba-d, 1B′a. -D, Example 1B "a-d, Example 1Ca-d, Example 1C'a-d, Example 1C" a-d, Example 1Da-d, Example 1D'a-d, Implementation In all of Examples 1D ″ a to d, the average aggregated particle diameter by the dynamic light scattering method was 200 nm or less, and the particles were dispersed. Therefore, in these examples of nanoparticle dispersions, the dispersibility of the particles is good and the uniformity is excellent. In addition, Example 1A, Example 1A ′, Example 1A ″, Example 1B, Example 1B ′, Example 1B ″, Example 1C, Example 1C ′, and Example 1C ″ of nanoparticulate bodies. In addition, it can be said that all of Examples 1D, 1D ′, and 1D ″ have high dispersibility in any solvent of ethanol, THF, MMA, and toluene.

図9〜図12に示したいずれのナノ粒子体の実施例も、エチレンオキサイドと長鎖アルキル基を両方有したリン酸系の界面活性剤で粒子表面を被覆修飾されている。したがって、これらの実施例は粒子表面に親水基と疎水基を両方有し、溶媒に再分散させたとき、図9〜図12に示したように、極性の高い溶媒から低い溶媒まで幅広い溶媒中で優れた分散性を有する。これらの実施例において、粒子表面の被覆に用いる界面活性剤P12−10、P12−14、P8−10、P16−10は、いずれもが親水性を示すエチレンオキサイドと疎水性を示す長鎖アルキル基を両方有したリン酸系であり、親水基と疎水基を両方有することがナノ粒子体の分散性を向上させた。これらの界面活性剤は粒子表面に結合するリン酸基からアルキル基とエチレンオキサイド基との枝分かれまでが近いので、極性溶媒にも非極性溶媒にも極めて良好に分散可能となった。   In any of the nanoparticle examples shown in FIGS. 9 to 12, the particle surface is coated with a phosphate surfactant having both ethylene oxide and a long-chain alkyl group. Therefore, these examples have both hydrophilic groups and hydrophobic groups on the particle surface, and when redispersed in a solvent, as shown in FIGS. 9 to 12, in a wide range of solvents from a high polarity solvent to a low solvent. And has excellent dispersibility. In these examples, surfactants P12-10, P12-14, P8-10, and P16-10 used for coating the particle surface are both ethylene oxide having hydrophilicity and long-chain alkyl group having hydrophobicity. And having both a hydrophilic group and a hydrophobic group improved the dispersibility of the nanoparticle body. Since these surfactants are close to the branching of the alkyl group and the ethylene oxide group from the phosphate group bonded to the particle surface, they can be dispersed extremely well in both polar and nonpolar solvents.

これらの実施例において、粒子表面の被覆に用いる界面活性剤がP12−10、P12−14、P8−10、P16−10のいずれでも、図9〜図12に示したように、界面活性剤の量が、酸化チタン1gに対し1.0mmol〜3.0mmolで高い分散性を示した。これらの実施例において、界面活性剤がP16−10である場合を除き、酸化チタン1gに対し3.0mmolで、平均凝集粒子径が50nm以下で、一次粒子径近くまで溶媒に再分散しており、極めて高い分散性を示した。したがって、エチレンオキサイド基について上記化学式(1)でn=8〜12のとき、分散性の面でより好ましい。   In these examples, the surfactant used for coating the particle surface is any of P12-10, P12-14, P8-10, and P16-10, as shown in FIGS. The amount was 1.0 mmol to 3.0 mmol with respect to 1 g of titanium oxide, and high dispersibility was shown. In these examples, except when the surfactant is P16-10, it is 3.0 mmol with respect to 1 g of titanium oxide, the average aggregate particle size is 50 nm or less, and is redispersed in the solvent to near the primary particle size. It showed extremely high dispersibility. Therefore, the ethylene oxide group is more preferable in terms of dispersibility when n = 8 to 12 in the above chemical formula (1).

これらの実施例において、粒子表面の被覆に用いる界面活性剤がP12−14又はP8−10である場合は、図10及び図11に示したように、界面活性剤の量が、酸化チタン1gに対し1.0mmolよりも2mmol以上の方が分散性は良かった。したがって、界面活性剤量を2mmol以上に増やすことが、分散性の面でより好ましい。   In these examples, when the surfactant used for coating the particle surface is P12-14 or P8-10, as shown in FIGS. 10 and 11, the amount of the surfactant is 1 g of titanium oxide. On the other hand, the dispersibility was better at 2 mmol or more than 1.0 mmol. Therefore, it is more preferable in terms of dispersibility to increase the amount of the surfactant to 2 mmol or more.

一方、図9に示したように、界面活性剤のエチレンオキサイド基について上記化学式(1)でn=8〜12である界面活性剤P12−10を用いた被覆をしたナノ粒子体である実施例1A、実施例1A´及び実施例1A´´では、いずれも溶媒の極性の有無によらず極めて高い分散性を示した。   On the other hand, as shown in FIG. 9, an example is a nanoparticle body coated with a surfactant P12-10 in which n = 8 to 12 in the above chemical formula (1) for the ethylene oxide group of the surfactant In each of 1A, Example 1A ′ and Example 1A ″, extremely high dispersibility was exhibited regardless of the polarity of the solvent.

図9に示されたように、界面活性剤P12−10を用いた被覆では、界面活性剤の量が酸化チタン1gに対し1.0mmolである実施例1Aでも、十分に粒子表面が被覆され、溶媒の極性の有無によらず高い分散性を示した。酸化チタン1gに対し2.0mmol以上の割合とすることが分散性をより向上させた。   As shown in FIG. 9, in the coating using the surfactant P12-10, even in Example 1A where the amount of the surfactant is 1.0 mmol with respect to 1 g of titanium oxide, the particle surface is sufficiently coated, High dispersibility was exhibited regardless of the polarity of the solvent. Dispersibility was further improved by setting the ratio to 2.0 mmol or more with respect to 1 g of titanium oxide.

界面活性剤の量が少なくてすむ方がコスト面では好ましい。また、添加物が増えると不純物が増えるので、純度の点からも、界面活性剤の量が少なくてすむ方が好ましい。また量が多すぎると表面修飾に寄与しない界面活性剤が多くなり二分子層を形成しやすくなるため、回収率の点でも、界面活性剤の量が適量であることが好ましい。しかし界面活性剤の量が粒子を被覆するのに少なすぎて得られた粒子の分散性が悪いと好ましくない。界面活性剤P12−10を用いた表面被覆では、酸化チタン1gに対し1mmolという少量添加の実施例1Aでも高い分散性を示すので、コスト、純度、回収率の点でも極めて効果が高い。   In terms of cost, it is preferable that the amount of the surfactant is small. Moreover, since impurities increase as the amount of additives increases, it is preferable to reduce the amount of the surfactant from the viewpoint of purity. Further, if the amount is too large, the amount of the surfactant that does not contribute to the surface modification increases and it becomes easy to form a bimolecular layer. Therefore, it is preferable that the amount of the surfactant is an appropriate amount from the viewpoint of the recovery rate. However, it is not preferable if the amount of the surfactant is too small to coat the particles and the dispersibility of the particles obtained is poor. In the surface coating using the surfactant P12-10, even Example 1A added in a small amount of 1 mmol with respect to 1 g of titanium oxide shows high dispersibility, so that it is extremely effective in terms of cost, purity, and recovery.

界面活性剤がP12−10では、いずれの溶媒でも少量添加の実施例1Aでも平均凝集粒子径が50nm以下と極めて高い分散性を示した。したがって、界面活性剤がP12−10であるナノ粒子体の実施例においては、溶媒の極性を問わず、分散体中で、ナノ粒子の凝集が少なく均一性に優れている。特に、ナノ粒子分散体の実施例1A´a〜d及び実施例1A´´a〜dでは、動的光散乱法による平均凝集粒子径が30nm以下で、一次粒子径程度であった。したがって、界面活性剤がP12−10であって界面活性剤の量が酸化チタン1gに対し2mmol以上であるナノ粒子体の実施例では、溶媒の極性を問わず、分散体中で、ナノ粒子の凝集が極めて少なく極めて均一性に優れている。   When the surfactant was P12-10, Example 1A, which was added in a small amount in any solvent, showed extremely high dispersibility with an average aggregated particle size of 50 nm or less. Therefore, in the example of the nanoparticle body in which the surfactant is P12-10, there is little aggregation of the nanoparticles in the dispersion regardless of the polarity of the solvent, and the uniformity is excellent. In particular, in Examples 1A′a to d and Examples 1A′a to d of the nanoparticle dispersion, the average aggregated particle size by the dynamic light scattering method was 30 nm or less, which was about the primary particle size. Therefore, in the example of the nanoparticle body in which the surfactant is P12-10 and the amount of the surfactant is 2 mmol or more with respect to 1 g of titanium oxide, the nanoparticle in the dispersion regardless of the polarity of the solvent. There is very little aggregation and excellent uniformity.

図13は、本発明のナノ粒子分散体の実施例1D´´a〜dについての分散直後及び数日後の動的光散乱法による測定結果を示す図である。実施例1D´´も溶媒に分散後、数日間静置することで、全ての溶媒に良好に一次粒子径近くまで再分散した。したがって、粒子表面の被覆に用いる界面活性剤がP16−10であるナノ粒子体の実施例においても、溶媒の極性を問わず、分散体中で、ナノ粒子の凝集が少なく均一性に優れている。   FIG. 13: is a figure which shows the measurement result by the dynamic light-scattering method immediately after dispersion | distribution about Example 1D''a-d of the nanoparticle dispersion of this invention, and several days after. Example 1D ″ was also dispersed in the solvent and allowed to stand for several days, so that it was redispersed well in all the solvents to near the primary particle size. Therefore, even in the example of the nanoparticle body in which the surfactant used for coating the particle surface is P16-10, the aggregation of the nanoparticles is small and excellent in uniformity in the dispersion regardless of the polarity of the solvent. .

ナノ粒子体の実施例2A及び実施例3Aも、エタノール、THF、MMA、トルエンのいずれの溶媒に対しても容易に分散し、ナノ粒子分散体の実施例2Aa〜d、実施例3Aa〜dを得られた。   Example 2A and Example 3A of nanoparticle bodies are also easily dispersed in any solvent of ethanol, THF, MMA, and toluene, and Examples 2Aa to d and Examples 3Aa to d of nanoparticle dispersions are dispersed. Obtained.

図14は、本発明のナノ粒子分散体の比較例2Sa〜d、比較例2S´a〜d、比較例2S´´a〜dの動的光散乱法による測定結果を示す図である。図14において、(a)はナノ粒子分散体の比較例2Sa〜d、(b)はナノ粒子分散体の比較例2S´a〜d、(c)はナノ粒子分散体の比較例2S´´a〜d、について測定された平均凝集粒子径を示す。ナノ粒子体の比較例2Sと比較例2S´と比較例2S´´のいずれも、溶媒がエタノールでは高い分散性を示したが、極性が小さくなると分散性が悪くなり、溶媒が、THFでは平均凝集粒子径が50nm以上、MMAでは平均凝集粒子径が100nm程度、トルエンでは平均凝集粒子径が100nm以上であった。界面活性剤S10の添加量による分散性の違いは見られなかった。ナノ粒子体の比較例2Sと比較例2S´と比較例2S´´では、未結合の残留水酸基が多く残っているが、溶媒の極性が下がるにつれ、水酸基同士の引力の働きが大きくなるため、極性の小さい溶媒で分散性が低くなったと考えられる。   FIG. 14 is a diagram showing measurement results of Comparative Example 2Sa to d, Comparative Example 2S′a to d, and Comparative Example 2S ″ a to d of the nanoparticle dispersion of the present invention by a dynamic light scattering method. In FIG. 14, (a) is a nanoparticle dispersion comparative example 2Sa-d, (b) is a nanoparticle dispersion comparative example 2S′a-d, and (c) is a nanoparticle dispersion comparative example 2S ″. The average aggregate particle diameter measured about ad is shown. Nanoparticles Comparative Example 2S, Comparative Example 2S ′ and Comparative Example 2S ″ all showed high dispersibility when the solvent was ethanol. However, when the polarity was reduced, the dispersibility deteriorated. The aggregated particle diameter was 50 nm or more, MMA had an average aggregate particle diameter of about 100 nm, and toluene had an average aggregate particle diameter of 100 nm or more. There was no difference in dispersibility depending on the amount of surfactant S10 added. In Comparative Example 2S, Comparative Example 2S ′ and Comparative Example 2S ″ of the nanoparticle body, many unbonded residual hydroxyl groups remain, but as the polarity of the solvent decreases, the attractive force between the hydroxyl groups increases. It is thought that dispersibility became low with a solvent having a small polarity.

したがって、界面活性剤S10を粒子表面に被覆させたナノ粒子体では、非極性溶媒で分散性が悪く、溶媒の極性によって分散性に差があり、溶媒の極性を問わずに高い分散性を示すことはできなかった。   Therefore, in the nanoparticle body which coat | covered surfactant S10 on the particle | grain surface, a dispersibility is bad with a nonpolar solvent, and there exists a difference in dispersibility by the polarity of a solvent, and shows high dispersibility irrespective of the polarity of a solvent. I couldn't.

図15は、本発明のナノ粒子分散体の比較例3Ta〜d、比較例3T´a〜d、比較例3T´´a〜dの動的光散乱法による測定結果を示す図である。図15において、(a)はナノ粒子分散体の比較例3Ta〜d、(b)はナノ粒子分散体の比較例3T´a〜d、(c)はナノ粒子分散体の比較例3T´´a〜d、について測定された平均凝集粒子径を示す。ナノ粒子体の比較例3Tと比較例3T´と比較例3T´´のいずれも、溶媒がTHFでは分散性が良いが、溶媒がエタノールの場合、動的光散乱法による平均凝集粒子径が約1000nm付近以上と、分散性が非常に悪かった。溶媒がMMA、トルエンではやや分散性が悪く、特に、界面活性剤の添加量が酸化チタン1gに対し1.0mmolでは、平均凝集粒子径が200nm以上で、分散性が極めて悪かった。溶媒がTHF、MMA、トルエンの場合は界面活性剤S0の添加量が増えると分散性は向上した。逆に、溶媒がエタノールの場合は、界面活性剤S0の添加量が増えると凝集が大きくなり、分散性が悪くなった。   FIG. 15 is a diagram showing the measurement results by the dynamic light scattering method of Comparative Examples 3Ta to d, Comparative Examples 3T′a to d, and Comparative Examples 3T ″ a to d of the nanoparticle dispersion of the present invention. 15A is a nanoparticle dispersion comparative example 3Ta to d, FIG. 15B is a nanoparticle dispersion comparative example 3T′a to d, and FIG. 15C is a nanoparticle dispersion comparative example 3T ″. The average aggregate particle diameter measured about ad is shown. In all of Comparative Examples 3T, 3T ′ and 3T ″ of the nanoparticle bodies, the solvent is THF and the dispersibility is good. However, when the solvent is ethanol, the average aggregated particle diameter by the dynamic light scattering method is about Dispersibility was very poor at around 1000 nm or more. When the solvent was MMA or toluene, the dispersibility was slightly poor. In particular, when the addition amount of the surfactant was 1.0 mmol with respect to 1 g of titanium oxide, the average aggregated particle size was 200 nm or more, and the dispersibility was extremely poor. When the solvent was THF, MMA, or toluene, the dispersibility improved as the amount of surfactant S0 added increased. On the other hand, when the solvent was ethanol, the aggregation was increased and the dispersibility was deteriorated as the addition amount of the surfactant S0 was increased.

ナノ粒子体の比較例3Tと比較例3T´と比較例3T´´では、THFでは高い分散性を示したが、界面活性剤S0が極性の高いエステル基を有するので、MMA、トルエンといった低極性の溶媒では凝集がやや生じ、さらに、界面活性剤S0が親水基のエチレンオキサイドを有さないため、ナノ粒子体の粒子表面が疎水化され極性溶媒であるエタノール中では分散性が悪かったと考えられる。   In Comparative Example 3T, Comparative Example 3T ′ and Comparative Example 3T ″ of nanoparticle bodies, THF showed high dispersibility, but since surfactant S0 has a highly polar ester group, it has low polarity such as MMA and toluene. Aggregation occurs slightly in this solvent, and since the surfactant S0 does not have hydrophilic ethylene oxide, the particle surface of the nanoparticle is hydrophobized, and the dispersibility is poor in ethanol, which is a polar solvent. .

したがって、界面活性剤S0を粒子表面に被覆させたナノ粒子体では、極性有機溶媒で分散性が悪く、溶媒の極性によって分散性に差があり、溶媒の極性を問わずに高い分散性を示すことはできなかった。   Therefore, in the nanoparticle body in which the surfactant S0 is coated on the particle surface, the dispersibility is poor with a polar organic solvent, the dispersibility varies depending on the polarity of the solvent, and the dispersibility is high regardless of the polarity of the solvent. I couldn't.

<ナノ粒子分散体の特性:透明性>
各ナノ粒子分散体について、分散後、24時間静置させた後の透明性を観察した。詳細には、それぞれの分散体を作成直後に透明な容器(直径18mmのサンプル瓶)に入れ、白地に黒の横文字柄があるボードの前に置いて24時間静置させ、容器のまま、背面にある横文字模様が透けるかどうか、また沈降するかを観察し撮影した。
<Characteristics of nanoparticle dispersion: transparency>
Each nanoparticle dispersion was observed for transparency after being allowed to stand for 24 hours after dispersion. Specifically, immediately after each dispersion is placed in a transparent container (18 mm diameter sample bottle), placed in front of a board with black horizontal letters on a white background and allowed to stand for 24 hours. The film was observed and photographed to see if the horizontal text pattern on the screen was transparent and if it settled down.

図16は、本発明のナノ粒子分散体の実施例1Aa〜d、実施例1A´a〜dの透明性観察結果を示す図である。   FIG. 16 is a diagram showing the results of transparency observation of Examples 1Aa to d and Examples 1A′a to d of the nanoparticle dispersion of the present invention.

ナノ粒子分散体の実施例1Aa〜d、実施例1A´a〜dは、いずれも沈降がなく、透明性が高かった。また、着色もほとんどなく、したがって無色度が高かった。特に、ナノ粒子分散体の実施例1Aa〜c、実施例1A´a〜dでは、また容器の後ろにあるボードの文字がはっきり見える程度に非常に高い透明性を示した。ナノ粒子体の実施例1A、実施例1A´では、再分散させる有機溶媒の極性の有無によらず、極めて高い透明性及び高い無色度のTiOナノ粒子/有機溶媒サスペンジョンであるナノ粒子分散体を得られる。透明性について、溶媒の極性による差がないという点において、実施例1A´がより好ましい。 In Examples 1Aa to d and Example 1A′a to d of the nanoparticle dispersion, there was no sedimentation and transparency was high. Moreover, there was almost no coloring and therefore the colorlessness was high. In particular, Examples 1Aa to c and Examples 1A'a to d of the nanoparticle dispersion showed very high transparency so that the characters on the board behind the container were clearly visible. In Example 1A and Example 1A ′ of nanoparticle bodies, a nanoparticle dispersion that is a highly transparent and highly colorless TiO 2 nanoparticle / organic solvent suspension regardless of the polarity of the organic solvent to be redispersed. Can be obtained. In terms of transparency, Example 1A ′ is more preferable in that there is no difference due to the polarity of the solvent.

図17は、本発明のナノ粒子分散体の実施例1A´´a〜d、実施例1B´´a〜d、実施例1C´´a〜d、実施例1D´´a〜dの透明性観察結果を示す図である。   FIG. 17 shows the transparency of Example 1A ″ a-d, Example 1B ″ a-d, Example 1C ″ a-d, and Example 1D ″ a-d of the nanoparticle dispersion of the present invention. It is a figure which shows an observation result.

ナノ粒子分散体の実施例1A´´a〜d、実施例1B´´a〜d、実施例1C´´a〜d、実施例1D´´a〜dは、いずれも沈降がなく、容器の後ろにあるボードの文字がはっきり見える程度に非常に高い透明性を示した。また、着色もほとんどなく、したがって無色度が高かった。また、特に、ナノ粒子分散体の実施例1A´´a〜d、実施例1B´´a〜d、実施例1C´´a〜d、実施例1D´´dでは、透明性が特に高かった。ナノ粒子体の実施例1A´´は、再分散させる溶媒の極性の有無によらず、実施例1A´と同程度に、極めて高い透明性及び高い無色度のTiOナノ粒子/有機溶媒サスペンジョンを得られる。したがって、透明性について、溶媒の極性による差がないという点において、実施例1A´も実施例1A´´も同程度に好ましい。 Examples 1A "a-d, Example 1B" a-d, Example 1C "a-d, and Example 1D" a-d of the nanoparticle dispersion are all free from sedimentation and It was so transparent that the characters on the board behind it were clearly visible. Moreover, there was almost no coloring and therefore the colorlessness was high. In particular, in Examples 1A ″ a to d, Example 1B ″ a to d, Example 1C ″ a to d, and Example 1D ″ d of the nanoparticle dispersion, the transparency was particularly high. . Example 1A ″ of the nanoparticle body has TiO 2 nanoparticles / organic solvent suspension with extremely high transparency and high colorlessness, similar to Example 1A ′, regardless of the polarity of the solvent to be redispersed. can get. Accordingly, in terms of transparency, Example 1A ′ and Example 1A ″ are equally preferred in that there is no difference due to the polarity of the solvent.

ナノ粒子体の実施例1B´´、実施例1C´´、実施例1D´´も、再分散させる溶媒の極性の有無によらず、高い透明性及び高い無色度のTiOナノ粒子/有機溶媒サスペンジョンを得られる。特にナノ粒子体の実施例1B´´、実施例1C´´では、再分散させる溶媒の極性の有無によらず、実施例1A´´と同程度に、極めて高い透明性及び高い無色度の酸化チタンナノ粒子/有機溶媒サスペンジョンであるナノ粒子分散体を得られる。 Example 1B ″, Example 1C ″, and Example 1D ″ of nanoparticle bodies also have high transparency and high colorlessness of TiO 2 nanoparticles / organic solvent regardless of the polarity of the solvent to be redispersed. Suspension can be obtained. In particular, in Example 1B ″ and Example 1C ″ of nanoparticulate bodies, oxidation with extremely high transparency and high colorlessness is the same as in Example 1A ″ regardless of the polarity of the solvent to be redispersed. A nanoparticle dispersion that is titanium nanoparticle / organic solvent suspension can be obtained.

上記化学式(1)に示される界面活性剤で被覆された酸化チタンナノ粒子体は、再分散させる溶媒の極性によらず、透明性の高いナノ粒子分散体を得られる。   The titanium oxide nanoparticle coated with the surfactant represented by the chemical formula (1) can obtain a highly transparent nanoparticle dispersion regardless of the polarity of the solvent to be redispersed.

図18は、本発明のナノ粒子分散体の実施例2Aa〜dの透明性観察結果を示す図である。エタノール、THF、MMA、トルエンのいずれの有機溶媒においても、茶色に着色したが、沈降もなく透明性が高かった。有色ながら、背面にある横文字模様が透けるほど透明であった。透明性が高いナノ粒子分散体は、ナノ粒子体の分散性が極めて高い。したがって、上記化学式(1)に示される界面活性剤で被覆された酸化鉄ナノ粒子体は、再分散させる溶媒の極性によらず、透明性の高いナノ粒子分散体を得られる。   FIG. 18 is a diagram showing the results of transparency observation of Examples 2Aa to d of the nanoparticle dispersion of the present invention. In any organic solvent such as ethanol, THF, MMA, and toluene, the color was brown, but there was no precipitation and the transparency was high. Although it was colored, it was so transparent that the horizontal text pattern on the back was transparent. A highly transparent nanoparticle dispersion has extremely high dispersibility of the nanoparticle body. Therefore, the iron oxide nanoparticle coated with the surfactant represented by the chemical formula (1) can obtain a highly transparent nanoparticle dispersion regardless of the polarity of the solvent to be redispersed.

図19は、本発明のナノ粒子分散体の実施例3Aa〜dの透明性観察結果を示す図である。エタノール、THF、MMA、トルエンのいずれの有機溶媒においても、黄色に着色したが、沈降もなく透明性が高かった。有色ながら、背面にある横文字模様が透けるほど透明であった。上記化学式(1)に示される界面活性剤で被覆された銀ナノ粒子体は、再分散させる溶媒の極性によらず、透明性の高いナノ粒子分散体を得られる。   FIG. 19 is a diagram showing the results of transparency observation of Examples 3Aa to d of the nanoparticle dispersion of the present invention. In any organic solvent such as ethanol, THF, MMA, and toluene, it was colored yellow, but it had no sedimentation and was highly transparent. Although it was colored, it was so transparent that the horizontal text pattern on the back was transparent. The silver nanoparticle coated with the surfactant represented by the chemical formula (1) can obtain a highly transparent nanoparticle dispersion regardless of the polarity of the solvent to be redispersed.

図20は、本発明のナノ粒子分散体の比較例2Sa〜d、比較例2S´a〜d、比較例2S´´a〜dの透明性観察結果を示す図である。比較例2Sa〜d、比較例2S´a〜d、比較例2S´´a〜dは、いずれも沈降はなく、透明性は、溶媒がエタノールでは高かったが、THF、MMA、トルエンの順に透明性は低くなり、白濁した。分散性が悪いと、ナノ粒子分散体の透明性も低かった。界面活性剤S10の添加量による分散性の違いは見られなかった。   FIG. 20 is a diagram illustrating the results of transparency observation of Comparative Examples 2Sa to d, Comparative Examples 2S′a to d, and Comparative Examples 2S ″ a to d of the nanoparticle dispersion of the present invention. Comparative Examples 2Sa to d, Comparative Examples 2S′a to d, and Comparative Examples 2S ″ a to d were all free from sedimentation, and the transparency was high when the solvent was ethanol, but transparent in the order of THF, MMA, and toluene. The nature became low and became cloudy. When the dispersibility was poor, the transparency of the nanoparticle dispersion was also low. There was no difference in dispersibility depending on the amount of surfactant S10 added.

図21は、本発明のナノ粒子分散体の比較例3Ta〜d、比較例3T´a〜d、比較例3T´´a〜dの透明性観察結果を示す図である。比較例3Tdでは沈降が見られたが、比較例3Ta〜c、比較例3T´a〜d、比較例3T´´a〜dは、いずれも沈降がなかった。しかし、透明性は、ナノ粒子分散体の比較例3Ta〜c、比較例3T´a、比較例3T´c〜d、比較例3T´´a、比較例3T´´c〜dで悪く、白濁した。分散性が悪いと、ナノ粒子分散体の透明性も低かった。   FIG. 21 is a diagram showing the results of transparency observation of Comparative Examples 3Ta to d, Comparative Examples 3T′a to d, and Comparative Examples 3T ″ a to d of the nanoparticle dispersion of the present invention. In Comparative Example 3Td, sedimentation was observed, but Comparative Examples 3Ta to c, Comparative Examples 3T′a to d, and Comparative Examples 3T ″ a to d did not sediment. However, the transparency was poor in Comparative Examples 3Ta to c, Comparative Examples 3T′a, Comparative Examples 3T′c to d, Comparative Examples 3T ″ a and Comparative Examples 3T ″ c to d of the nanoparticle dispersion. did. When the dispersibility was poor, the transparency of the nanoparticle dispersion was also low.

したがって、界面活性剤S0又はS10で被覆させたナノ粒子体の比較例は、有機溶媒の極性によっては透明性が低くなってしまう。一方、界面活性剤P12−10、P12−14、P8−10、又はP16−10で被覆させたナノ粒子体の実施例では、有機溶媒の極性によらず透明性が高かった。   Therefore, the comparative example of the nanoparticle body coated with the surfactant S0 or S10 has low transparency depending on the polarity of the organic solvent. On the other hand, in the Example of the nanoparticle body coat | covered with surfactant P12-10, P12-14, P8-10, or P16-10, transparency was high irrespective of the polarity of the organic solvent.

<ナノ粒子分散体の特性:粒度分布>
図22は、本発明のナノ粒子分散体の実施例1A´a〜dの粒度分布図である。実施例1A´a〜dにおいて、酸化チタンナノ粒子が一次粒子近くまで分散していることが確認された。
<Characteristics of nanoparticle dispersion: particle size distribution>
FIG. 22 is a particle size distribution diagram of Examples 1A′a to d of the nanoparticle dispersion of the present invention. In Examples 1A′a to d, it was confirmed that the titanium oxide nanoparticles were dispersed to near the primary particles.

本発明のナノ粒子体の実施例1A、実施例1A´、実施例1A´´、実施例1B、実施例1B´、実施例1B´´、実施例1C、実施例1C´、実施例1C´´、実施例1D、実施例1D´、実施例1D´´、実施例2A、実施例3Aによれば、極性有機溶媒に対しても非極性有機溶媒に対しても分散性に優れる。ナノ粒子の分散液から作製したナノ粒子体を再分散させることは非常に困難であるが、これらの実施例によれば、溶媒の極性によらず再分散可能である。しかも、完全に再分散させることができる。有機溶媒に3wt%、10wt%と高濃度で再分散させることができる。   Example 1A, Example 1A ′, Example 1A ″, Example 1B, Example 1B ′, Example 1B ″, Example 1C, Example 1C ′, Example 1C ′ of the nanoparticle body of the present invention ', Example 1D, Example 1D', Example 1D ", Example 2A, Example 3A are excellent in dispersibility in both polar and nonpolar organic solvents. Although it is very difficult to redisperse a nanoparticle body prepared from a nanoparticle dispersion, according to these examples, redispersion is possible regardless of the polarity of the solvent. Moreover, it can be completely redispersed. It can be redispersed at a high concentration of 3 wt% and 10 wt% in an organic solvent.

界面活性剤P12−10、P12−14、又はP8−10で被覆させたナノ粒子体の実施例では、有機溶媒の極性によらず分散性が極めて高く、透明性が極めて高かった。界面活性剤P16−10で被覆させたナノ粒子体の実施例も、分散して数日経過後には、有機溶媒の極性によらず分散性が極めて高くなった。   In the examples of the nanoparticle bodies coated with the surfactant P12-10, P12-14, or P8-10, the dispersibility was extremely high regardless of the polarity of the organic solvent, and the transparency was extremely high. Also in Examples of nanoparticle bodies coated with the surfactant P16-10, dispersibility became extremely high regardless of the polarity of the organic solvent after several days had passed after dispersion.

界面活性剤P12−10、P12−14、又はP8−10で被覆させたナノ粒子体の実施例のなかでも、界面活性剤の量を酸化チタン1gに対し2.0mmol以上の割合としたナノ粒子体の実施例によれば、再分散させたナノ粒子分散体の実施例が、極めて高い分散性と透明性を有し、一次粒子程度で再分散させることができた。   Among the examples of nanoparticle bodies coated with the surfactant P12-10, P12-14, or P8-10, nanoparticles in which the amount of the surfactant is 2.0 mmol or more with respect to 1 g of titanium oxide. According to the example of the body, the example of the redispersed nanoparticle dispersion had extremely high dispersibility and transparency, and could be redispersed with about the primary particles.

界面活性剤P12−10で被覆したナノ粒子体の実施例では、再分散させたナノ粒子分散体の実施例が、分散性、透明性の点で優れていた。粒子の種類が酸化チタンであるナノ粒子体の実施例によれば、再分散させたナノ粒子分散体の実施例が、透明性だけでなく無色度が高かった。   In the example of the nanoparticle body coated with the surfactant P12-10, the example of the redispersed nanoparticle dispersion was superior in terms of dispersibility and transparency. According to the example of the nanoparticle body in which the type of particles is titanium oxide, the example of the redispersed nanoparticle dispersion was not only transparent but also highly colorless.

界面活性剤P12−10で被覆したナノ粒子体の実施例では、界面活性剤の量が酸化チタン1gに対し1.0mmolの割合でも、極めて高い分散性と透明性を有し、一次粒子程度で再分散させることができた。   In the example of the nanoparticle body coated with the surfactant P12-10, even when the amount of the surfactant is 1.0 mmol with respect to 1 g of titanium oxide, it has extremely high dispersibility and transparency, and is about the primary particle. It could be redispersed.

本発明のナノ粒子体の実施例では、再分散させる溶媒を問わず分散可能で、しかもいずれの溶媒にも分散性が高く、本発明のナノ粒子分散体の実施例は、分散体中におけるナノ粒子の分散均一性に優れる分散体であり、均一性だけでなく透明性も高い。したがって、光学材料や化粧品など応用分野が広くなる。   In the example of the nanoparticle body of the present invention, it can be dispersed regardless of the solvent to be redispersed, and the dispersibility is high in any solvent. It is a dispersion excellent in particle dispersion uniformity and has high transparency as well as uniformity. Therefore, application fields such as optical materials and cosmetics are widened.

本発明のナノ粒子体の実施例によれば、いずれも、乾燥した粉末であるので、別の溶媒に再分散させやすい。また、取扱いや持ち運びが容易となる。また、ナノ粒子体の表面が被覆されているため、乾燥してもまとまりよく、粉末が飛散しにくい。したがって安全性にも優れる。また、本発明のナノ粒子体の上述した実施例によれば、溶媒の選択肢が広くなり、利便性が非常に高く、広い分野で利用できる。   According to the examples of the nanoparticle body of the present invention, since all are dry powders, they are easily redispersed in another solvent. Moreover, handling and carrying become easy. Moreover, since the surface of the nanoparticle body is coated, it is well-organized even if it is dried, and the powder is not easily scattered. Therefore, it is excellent also in safety. Further, according to the above-described embodiment of the nanoparticle body of the present invention, the choice of solvent is widened, the convenience is very high, and it can be used in a wide field.

本発明のナノ粒子体の上述した実施例によれば、いずれも、従来利用できなかったり、十分に機能を発揮できなかった分野にもナノ粒子を利用可能となる。   According to the above-described embodiments of the nanoparticle body of the present invention, none of the conventional nanoparticle bodies can be used, or the nanoparticle can be used in fields where the functions could not be sufficiently exhibited.

本発明のナノ粒子体の製造方法によれば、ナノ粒子と界面活性剤との混合性がよくなるので、ナノ粒子の各粒子表面を均一に被覆しやすい。また、粒子表面への界面活性剤による被覆がより均一にできる。また、乾燥した粉末としてナノ粒子体が得られるので、別の溶媒に再分散させやすい。また、取扱いや持ち運びが容易となる。また、ナノ粒子体の表面が被覆されているため、乾燥してもまとまりよく、粉末が飛散しにくい。したがって安全性にも優れる。   According to the method for producing a nanoparticle body of the present invention, the mixing property between the nanoparticles and the surfactant is improved, so that it is easy to uniformly coat the surfaces of the nanoparticles. In addition, the surface of the particles can be more uniformly coated with the surfactant. Moreover, since a nanoparticle body is obtained as a dry powder, it can be easily redispersed in another solvent. Moreover, handling and carrying become easy. Moreover, since the surface of the nanoparticle body is coated, it is well-organized even if it is dried, and the powder is not easily scattered. Therefore, it is excellent also in safety.

本発明のナノ粒子分散体の製造方法によれば、凝集が極めて少なくしかも疎水基と親水基を表面に有する分散性の高いナノ粒子体が、凝集を防止しながら再分散されるので、ナノ粒子が分散体中に均一に分散される。また、分散体中におけるナノ粒子の分散均一性に優れるナノ粒子分散体を得られる。また、透明性の高いナノ粒子分散体を得られる。   According to the method for producing a nanoparticle dispersion of the present invention, a highly dispersible nanoparticle body having very little aggregation and having a hydrophobic group and a hydrophilic group on the surface is redispersed while preventing aggregation. Is uniformly dispersed in the dispersion. Moreover, the nanoparticle dispersion excellent in the dispersion uniformity of the nanoparticles in the dispersion can be obtained. Moreover, a highly transparent nanoparticle dispersion can be obtained.

<複合材料>
本発明の複合材料の実施例1A´dFは、ナノ粒子体の実施例1A´とエポキシ樹脂との複合材料で、詳細には、以下のように作製した。
<Composite material>
Example 1A′dF of the composite material of the present invention is a composite material of Example 1A ′ of the nanoparticle body and an epoxy resin, and was produced in detail as follows.

まず、本発明のナノ粒子分散体の実施例1A´d(粒子0.1056g+トルエン3.50g)に液状エポキシ樹脂のトルエン溶液(液状エポキシ2.0g+トルエン1.5g)を添加したのち、エバポレーターでトルエンを蒸発させ、液状エポキシ/TiO複合物を作製した。かかる液状エポキシ/TiO複合物は、高い透明性を示した。次に、かかる液状エポキシ/TiO複合物に、硬化剤としてポリエーテルイミド(PEI)0.1gを添加し、混合したのち、真空脱泡させ、その後、120℃で2時間、160℃で1.5時間硬化させることで、実施例1A´dFであるエポキシ/TiO複合体(5wt%)が得られた。 First, after adding a toluene solution of liquid epoxy resin (liquid epoxy 2.0 g + toluene 1.5 g) to Example 1A′d (particles 0.1056 g + toluene 3.50 g) of the nanoparticle dispersion of the present invention, Toluene was evaporated by an evaporator to prepare a liquid epoxy / TiO 2 composite. Such a liquid epoxy / TiO 2 composite showed high transparency. Next, 0.1 g of polyetherimide (PEI) is added to the liquid epoxy / TiO 2 composite as a curing agent, mixed and vacuum degassed, and then at 120 ° C. for 2 hours and at 160 ° C. for 1 hour. By curing for 5 hours, an epoxy / TiO 2 composite (5 wt%) as Example 1A′dF was obtained.

図23は、本発明の複合材料の実施例1A´dFの透明性観察結果を示す図である。図23は、複合材料の実施例1A´dFを入れた透明な容器(直径18mmのサンプル瓶)を上から見た図で、複合材料の実施例1A´dFの厚みは3mmで、サンプル瓶の下には、白地に黒の横文字柄があるボードを置いた。3mm厚の実施例1A´dFを通しても、下に置いたボードの横文字柄がよく見えた。すなわち、複合材料の実施例1A´dFは、極めて高い透明性を示した。透明性が高いことから粒子が実施例1A´dFの中に極めて均一に分散していることが分かる。   FIG. 23 is a diagram showing the results of transparency observation of Example 1A′dF of the composite material of the present invention. FIG. 23 is a top view of a transparent container (sample bottle with a diameter of 18 mm) containing Example 1A′dF of the composite material, and the thickness of Example 1A′dF of the composite material is 3 mm. A board with a horizontal black pattern on a white background was placed below. Even through the 3 mm thick Example 1A'dF, the horizontal pattern of the board placed underneath was clearly visible. That is, Example 1A′dF of the composite material showed extremely high transparency. From the high transparency, it can be seen that the particles are very uniformly dispersed in Example 1A'dF.

本発明の実施例1A´dFの複合材料によれば、透明性を有するので、光学材料等、広範な分野で利用可能となる。   Since the composite material of Example 1A′dF of the present invention has transparency, it can be used in a wide range of fields such as optical materials.

なお、本発明は、上記実施の形態に限定されず、その発明の趣旨を逸脱しない範囲で種々と変形実施が可能である。また、上記各実施の形態の構成要素を発明の趣旨を逸脱しない範囲で任意に組み合わせることができる。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. In addition, the constituent elements of the above embodiments can be arbitrarily combined without departing from the spirit of the invention.

近年大量合成可能となったナノ粒子を、材料や医薬品等様々な分野で応用する際に問題となる、有機溶媒中での凝集現象を、その溶媒が極性を有していてもいなくても防止することができる。様々な溶媒に一次粒子レベルで極めて均一に分散させることができる。したがって、化粧品、医薬、顔料、複合材料、光学材料、電磁材料などの分野で利用できる。たとえば、ナノ粒子が酸化チタンのとき、均一に分散させることにより解像度が高くなることが期待されるインク材料、均一に分散させることにより高屈折率の実現が期待される光学用プラスチックレンズ及びピックアップレンズなどに利用できる。ナノ粒子が酸化鉄のとき、均一に分散させることによって、電磁波吸収能が高くなることが期待される電磁波吸収体材料などに利用できる。ナノ粒子が銀のとき、均一に分散させることによって、抗菌作用が大きくなることが期待される抗菌材料などに利用できる。   Prevents the agglomeration phenomenon in organic solvents, which is a problem when applying nanoparticles that can be synthesized in large quantities in recent years in various fields such as materials and pharmaceuticals, regardless of whether the solvent is polar or not. can do. It can be dispersed very uniformly in various solvents at the primary particle level. Therefore, it can be used in the fields of cosmetics, medicines, pigments, composite materials, optical materials, electromagnetic materials and the like. For example, when the nanoparticles are titanium oxide, an ink material that is expected to have high resolution by being uniformly dispersed, and an optical plastic lens and a pickup lens that are expected to have a high refractive index by being uniformly dispersed. It can be used for When the nanoparticles are iron oxide, it can be used as an electromagnetic wave absorber material that is expected to have high electromagnetic wave absorbing ability by being uniformly dispersed. When the nanoparticles are silver, they can be used for antibacterial materials and the like that are expected to have a large antibacterial action by being uniformly dispersed.

Claims (15)

金属又は金属酸化物のナノ粒子に、下記化学式(1)
(ただし、R1は炭素数1〜3の直鎖又は分岐鎖の飽和又は不飽和の炭化水素基、Rは炭素数10〜16のアルキル基であり、n=8〜16の整数、m+k=3であり且つm=1又は2、k=1又は2である。)
で示されるリン酸系の界面活性剤で表面を被覆することを特徴とするナノ粒子体の製造方法。
The following chemical formula (1) is applied to the metal or metal oxide nanoparticles:
(Wherein, R 1 is a hydrocarbon group of a saturated or unsaturated straight-chain or branched-chain having 1 to 3 carbon atoms, R 2 is an alkyl group having 10 to 16 carbon atoms, n = 8 to 16 integer, m + k = 3 and m = 1 or 2, k = 1 or 2.)
A method for producing a nanoparticle body, wherein the surface is coated with a phosphate-based surfactant represented by the formula:
前記金属又は金属酸化物のナノ粒子が、銀、酸化チタン又は酸化鉄のナノ粒子であることを特徴とする請求項1に記載のナノ粒子体の製造方法。 The method for producing a nanoparticle body according to claim 1, wherein the metal or metal oxide nanoparticles are silver, titanium oxide, or iron oxide nanoparticles. 前記金属又は金属酸化物のナノ粒子が、酸化チタンのナノ粒子であって、前記ナノ粒子を含有する水溶液に、前記界面活性剤を含有する水溶液を混合する混合工程を含むことを特徴とする請求項2に記載のナノ粒子体の製造方法。 The metal or metal oxide nanoparticles are titanium oxide nanoparticles, and the method includes a mixing step of mixing an aqueous solution containing the surfactant with an aqueous solution containing the nanoparticles. Item 3. A method for producing a nanoparticle according to Item 2. 前記混合工程において、界面活性剤の量を酸化チタン1gに対し1mmol以上3mmol以下とすることを特徴とする請求項3に記載のナノ粒子体の製造方法。 The method for producing a nanoparticle body according to claim 3, wherein in the mixing step, the amount of the surfactant is 1 mmol or more and 3 mmol or less with respect to 1 g of titanium oxide. 前記ナノ粒子が、平均粒子径8nm以下のシングルナノ粒子であることを特徴とする請求項3又は請求項4に記載のナノ粒子体の製造方法。 The said nanoparticle is a single nanoparticle with an average particle diameter of 8 nm or less, The manufacturing method of the nanoparticle body of Claim 3 or Claim 4 characterized by the above-mentioned. 前記金属又は金属酸化物のナノ粒子が、酸化鉄のナノ粒子であって、水酸化鉄水溶液を加熱して水溶液中に酸化鉄を生成させた水溶液に前記界面活性剤を混合する混合工程を含むことを特徴とする請求項2に記載のナノ粒子体の製造方法。 The metal or metal oxide nanoparticles are iron oxide nanoparticles, and include a mixing step of mixing the surfactant in an aqueous solution in which an iron hydroxide aqueous solution is heated to generate iron oxide in the aqueous solution. The manufacturing method of the nanoparticle body of Claim 2 characterized by the above-mentioned. 前記金属又は金属酸化物のナノ粒子が、銀のナノ粒子であって、硝酸銀水溶液に、前記界面活性剤と還元剤とを含有する水溶液を混合する混合工程を含むことを特徴とする請求項2に記載のナノ粒子体の製造方法。 The metal or metal oxide nanoparticles are silver nanoparticles, and the method includes a mixing step of mixing an aqueous solution containing the surfactant and a reducing agent in an aqueous silver nitrate solution. The manufacturing method of the nanoparticle body of description. 金属又は金属酸化物のナノ粒子に、下記化学式(1)
(ただし、R1は炭素数1〜3の直鎖又は分岐鎖の飽和又は不飽和の炭化水素基、Rは炭素数10〜16のアルキル基であり、n=8〜16の整数、m+k=3であり且つm=1又は2、k=1又は2である。)
で示されるリン酸系の界面活性剤で表面に被覆を施した粉末であることを特徴とするナノ粒子体。
The following chemical formula (1) is applied to the metal or metal oxide nanoparticles:
(Wherein, R 1 is a hydrocarbon group of a saturated or unsaturated straight-chain or branched-chain having 1 to 3 carbon atoms, R 2 is an alkyl group having 10 to 16 carbon atoms, n = 8 to 16 integer, m + k = 3 and m = 1 or 2, k = 1 or 2.)
Nanoparticles characterized by being a powder having a surface coated with a phosphate-based surfactant represented by
前記金属又は金属酸化物のナノ粒子が、酸化チタン、酸化鉄又は銀のナノ粒子であることを特徴とする請求項8記載のナノ粒子体。 9. The nanoparticle body according to claim 8, wherein the metal or metal oxide nanoparticles are titanium oxide, iron oxide, or silver nanoparticles. 前記金属又は金属酸化物のナノ粒子が、酸化チタンのナノ粒子であって、平均粒子径8nm以下のシングルナノ粒子であることを特徴とする請求項9に記載のナノ粒子体。 The nanoparticle body according to claim 9, wherein the metal or metal oxide nanoparticle is a titanium oxide nanoparticle and is a single nanoparticle having an average particle diameter of 8 nm or less. 極性有機溶媒への親和性を有する親水基と非極性有機溶媒への親和性を有する疎水基とを粒子表面に有することを特徴とする請求項8から請求項10のいずれかに記載のナノ粒子体。 The nanoparticle according to any one of claims 8 to 10, which has a hydrophilic group having an affinity for a polar organic solvent and a hydrophobic group having an affinity for a nonpolar organic solvent on the particle surface. body. 非極性有機溶媒、極性有機溶媒のいずれに対しても平均凝集粒子径が200nm以下で分散することを特徴とする請求項8から請求項11のいずれかに記載のナノ粒子体。 The nanoparticle body according to any one of claims 8 to 11, wherein the average aggregated particle diameter is dispersed at 200 nm or less with respect to both the nonpolar organic solvent and the polar organic solvent. 請求項8から請求項12のいずれかに記載のナノ粒子体を、非極性有機溶媒又は極性有機溶媒中に分散する分散工程を含むことを特徴とするナノ粒子分散体製造方法。 A method for producing a nanoparticle dispersion, comprising a dispersion step of dispersing the nanoparticle body according to any one of claims 8 to 12 in a nonpolar organic solvent or a polar organic solvent. 請求項8から請求項12のいずれかに記載のナノ粒子体と、非極性有機溶媒又は極性有機溶媒とを含有することを特徴とするナノ粒子分散体。 A nanoparticle dispersion comprising the nanoparticle body according to any one of claims 8 to 12 and a nonpolar organic solvent or a polar organic solvent. 前記ナノ粒子体が、分散体中で平均凝集粒子径200nm以下であることを特徴とする請求項14に記載のナノ粒子分散体。 The nanoparticle dispersion according to claim 14, wherein the nanoparticle body has an average aggregate particle diameter of 200 nm or less in the dispersion.
JP2009002999A 2009-01-08 2009-01-08 Nanoparticle body and method for producing the same Expired - Fee Related JP5369310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002999A JP5369310B2 (en) 2009-01-08 2009-01-08 Nanoparticle body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002999A JP5369310B2 (en) 2009-01-08 2009-01-08 Nanoparticle body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010159464A JP2010159464A (en) 2010-07-22
JP5369310B2 true JP5369310B2 (en) 2013-12-18

Family

ID=42576846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002999A Expired - Fee Related JP5369310B2 (en) 2009-01-08 2009-01-08 Nanoparticle body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5369310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066087B2 (en) 2014-01-24 2018-09-04 Nippon Shokubai Co., Ltd. Dispersion containing metal oxide particles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377903B2 (en) 2014-06-30 2019-08-13 Sekisui Plastics Co., Ltd. Nanoparticle-containing solution and use thereof
KR101563343B1 (en) 2014-07-22 2015-10-26 한국과학기술원 Iron oxide-graphene oxide composite and the method for preparing the same
TW202335967A (en) 2021-10-18 2023-09-16 日商日產化學股份有限公司 Metal oxide particle-containing composition with reduced occurrence of volatile aldehydes
WO2023181158A1 (en) * 2022-03-23 2023-09-28 ソニーグループ株式会社 Structure and manufacturing method of structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663934B2 (en) * 2001-06-11 2011-04-06 東邦化学工業株式会社 New phosphate ester type surfactant
WO2006057348A1 (en) * 2004-11-29 2006-06-01 Dainippon Ink And Chemicals, Inc. Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066087B2 (en) 2014-01-24 2018-09-04 Nippon Shokubai Co., Ltd. Dispersion containing metal oxide particles

Also Published As

Publication number Publication date
JP2010159464A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
Li et al. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA
JP5886631B2 (en) Assembly of magnetically tunable photonic crystals in nonpolar solvents
JP5369310B2 (en) Nanoparticle body and method for producing the same
Chitte et al. Synthesis and characterization of polymeric composites embeded with silver nanoparticles
Karimzadeh et al. Amino acid coated superparamagnetic iron oxide nanoparticles for biomedical applications through a novel efficient preparation method
JP2019509975A (en) Method for producing superparamagnetic nanocomposite and superparamagnetic nanocomposite produced using the same
CN113004753B (en) Water-based composite extreme black optical coating and preparation method and use method thereof
Ali et al. Key synthesis of magnetic Janus nanoparticles using a modified facile method
Colombo et al. Highly transparent nanocomposite films from water-based poly (2-ethyl-2-oxazoline)/TiO 2 dispersions
CN105513741A (en) Magnetic nanoparticle/macromolecular Janus microparticle and preparation method and application thereof
TW201422528A (en) Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
Yu et al. Highly dispersible and charge-tunable magnetic Fe 3 O 4 nanoparticles: facile fabrication and reversible binding to GO for efficient removal of dye pollutants
Zhou et al. Preparation of superparamagnetic γ-Fe2O3@ LS@ PS composite latex particles through pickering miniemulsion polymerization
Waseem et al. Physical properties of α-Fe 2 O 3 nanoparticles fabricated by modified hydrolysis technique
Nguyen et al. Templated synthesis of magnetic nanoparticles through the self-assembly of polymers and surfactants
Lu et al. Facile synthesis of superparamagnetic magnetite nanoflowers and their applications in cellular imaging
Yang et al. CuS-poly (N-isopropylacrylamide-co-acrylic acid) composite microspheres with patterned surface structures: Preparation and characterization
JP4499962B2 (en) Composition of metal oxide ultrafine particles and polymer
Pich et al. Composite polymeric particles with ZnS shells
Zhang et al. Miniemulsion-based assembly of iron oxide nanoparticles and synthesis of magnetic polymer nanospheres
Roy et al. Sonochemically synthesized iron-doped zinc oxide nanoparticles: influence of precursor composition on characteristics
CN110787743A (en) Magnetic-response photonic crystal, and simple large-scale preparation method and application thereof
Taufiq et al. Structural and Magnetic Behaviours of Magnetite/Polyvinyl Alcohol Composite Nanofibers
Shen et al. Preparation and characterization of Fe 3 O 4@ TiO 2 shell on polystyrene beads
CN1298791C (en) Superparamagnetic Fe3O4 nanometer particle with synthetic polymer modification from one-step method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5369310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees