TW200540191A - Use of random copolymers - Google Patents

Use of random copolymers Download PDF

Info

Publication number
TW200540191A
TW200540191A TW094102252A TW94102252A TW200540191A TW 200540191 A TW200540191 A TW 200540191A TW 094102252 A TW094102252 A TW 094102252A TW 94102252 A TW94102252 A TW 94102252A TW 200540191 A TW200540191 A TW 200540191A
Authority
TW
Taiwan
Prior art keywords
emulsion
group
polymer
particles
structural unit
Prior art date
Application number
TW094102252A
Other languages
Chinese (zh)
Inventor
Matthias Koch
Victor Khrenov
Markus Klapper
Klaus Muellen
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004004209A external-priority patent/DE102004004209A1/en
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Publication of TW200540191A publication Critical patent/TW200540191A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/046Making microcapsules or microballoons by physical processes, e.g. drying, spraying combined with gelification or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/003Organic compounds containing only carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/007Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/14Derivatives of phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/18Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Abstract

The invention relates to the use of random copolymers containing at least one structural unit containing hydrophobic radicals and at least one structural unit containing hydrophilic radicals as emulsifiers, in particular in the synthesis of nanoparticles, and to processes for the production of such particles in which, in a step (a), an inverse emulsion comprising one or more water-soluble precursors of the nanoparticles or a melt is prepared with the aid of a random copolymer of at least one monomer containing hydrophobic radicals and at least one monomer containing hydrophilic radicals, and, in a step (b), particles are produced.

Description

200540191 九、發明說明: 【發明所屬之技術領域】 ▲本發明係、關於作為乳化劑之隨機共聚物之用途,特定而 s為在奈米顆粒之合成中,卩及關於t造該顆粒之方法。200540191 IX. Description of the invention: [Technical field to which the invention belongs] ▲ The present invention relates to the use of random copolymers as emulsifiers, specifically, in the synthesis of nano particles, and the method for making the particles .

將無機奈米顆粒合併人—聚合物基f中不只影響該基質 之:械性質,例如舉例來說其衝擊強度’亦可改造其光學 性質’舉例來說依賴波長之傳輸、色彩(吸收光譜)和折射 率、。在光學應用之混合物中,顆粒大小扮演一重要角色, 因為加入一具有不同於基質折射率之物質,會不可逆地造 成光的散射且最終造成不透光性。—定義之波長在通過— 基質時’其輻射強度降低顯示其高度依賴無機顆粒之直徑。 適用於散佈在聚合物中之奈米材料的發展不只需要控制 顆粒大小’亦需要控制顆粒之表面性質。簡單地混合親水 性顆粒和-疏水性聚合物基質(例如擠出成型)將造成顆粒 在整個聚合物中之不均勾分佈’更將造成其聚集成塊。為 了使無機顆粒均質併入聚合物令,該等表面因此至少必須 經過疏水性改造。此外特定而言’由於奈米顆粒材料表現 出極大之傾向會形成附聚物’因此亦可在後續之表面處理 中存活下來。 令人驚訝地’目前已經發現’如果使用特定之隨機Μ 物作為乳化劑,該奈米顆粒可直接利用_適當之改造而由 乳化液中沉澱得到,並在實質上不含有附聚物。 本發明因此係首先關於隨機共聚物作為乳化劑之用途, 該共聚物包含至少-種含有疏水性基之結構單元 985W.doc 200540191 至少一種含有親水性基團之結構皁元’特定而言’為用於 乳化液中奈米顆粒之合成。 本發明另關於製造聚合物-改造奈米顆粒之方法,其特徵 係為於步驟a)中,利用隨機共聚物之輔助,製備一包含一 或多種奈米顆粒水溶性前驅物之逆乳化液或一熔融物,該 隨機共聚物包含至少一種含有疏水性基團之單體和至少一 種含有親水性基團之單體,以及在步驟b)中,製備顆粒。 【先前技術】 基本上,製造奈米顆粒之乳化技術係已知,因此M. P· Pileni; J. Phys. Chem. 1993, 97, 6961-6973描述在逆乳化液中製造半導體 顆粒,例如CdSe、CdTe和ZnS 〇 然而,無機材料之合成經常需要乳化液中高鹽濃度之前 驅物質,且其濃度會隨著反應之進行而變化。低分子量之 界面活性劑會反應至該高鹽濃度,並因此使得乳化液之穩 定性出現危機(Paul Kent and Brian R· Saunders; Journal of Colloid and Interface Science 242, 437-442 (2001))。特定而言,顆粒大小只能 控制到一受限之範圍(M.-H. Lee,C· Υ· Tai,C· Η· Lu, Korean J· Chem· Eng· 16, 1999, 818-822)。 K. Landfester (Adv. Mater. 2001,13, No. 10, 765-768)提出高分子量 界面活性劑之用途(PEO-PS嵌段共聚物),並結合超音波以 從金屬鹽類中製造出顆粒大小之範圍從約150至約300 nm 之奈米顆粒。 【發明内容】 選擇含有至少一種包含疏水性基團之單體以及至少一種 98510.doc 200540191 包含親水性基團之單體之隨機共聚物,現在已經能夠提供 -種乳化劑’其可促進無機奈米顆粒在逆乳化液中之產 生,以控制顆粒大小及粒度分佈。同時,由於該等新賴乳 化劑之使用,使得奈米顆粒能夠由實質上不帶有附聚物之 散佈液中分離出來,因為個別顆粒會隨著聚合物塗佈而直 接形成。 此外,利用該方法得到之奈米顆粒可特定、簡單且一致 地散佈在聚合物中,特定而言,其實質上可能會在可見光 中避免該聚合物之透明度產生不期望之損害。 在該隨機共聚物中,根據本發明所使用之隨機共聚物較 佳地將表現出,含有疏水性基團之結構單元和含有親水性 基團之結構單元之重量比範圍從1:2至500:1,較佳地範圍為 從1:1至10(M,且特別佳之範圍從7:3至1〇:卜該隨機共聚物 之重里平均分子量通常之範圍為從Mw=1〇〇〇s 卜較 佳地範圍為從1500至100 000 g/m〇1且特別佳之範圍為從 2000至 40·〇〇〇 g/咖卜 特疋而言,本文中已經發現該共聚物如式j所示:Incorporating inorganic nano particles into the human-polymer base f not only affects the matrix: mechanical properties, such as its impact strength 'can also modify its optical properties', such as wavelength-dependent transmission, color (absorption spectrum) And refractive index. In mixtures for optical applications, particle size plays an important role because the addition of a substance with a refractive index different from that of the matrix will cause irreversible scattering of light and eventually opacity. —The defined wavelength passes through the substrate—its reduced radiation intensity indicates that it is highly dependent on the diameter of the inorganic particles. The development of nanomaterials suitable for interspersing polymers requires not only controlling particle size 'but also controlling the surface properties of the particles. Simply mixing hydrophilic particles with a hydrophobic polymer matrix (such as extrusion) will cause uneven distribution of the particles throughout the polymer 'and will cause them to agglomerate. In order for the inorganic particles to be homogenously incorporated into the polymer, these surfaces must therefore be at least hydrophobically modified. In addition, in particular, 'because nanoparticulate materials show a great tendency to form agglomerates', they can also survive the subsequent surface treatment. Surprisingly, 'it has now been found' that if a specific random M is used as an emulsifier, the nano particles can be directly obtained from the emulsion by appropriate modification and contain substantially no agglomerates. The present invention therefore relates first to the use of random copolymers as emulsifiers, the copolymers comprising at least one structural unit containing a hydrophobic group 985W.doc 200540191 at least one structural saponin containing a hydrophilic group 'specifically' is For the synthesis of nano particles in emulsion. The present invention also relates to a method for manufacturing polymer-modified nano particles, which is characterized in that in step a), an inverse emulsion or one or more water-soluble precursors of nano particles are prepared with the aid of a random copolymer. A melt, the random copolymer comprises at least one monomer containing a hydrophobic group and at least one monomer containing a hydrophilic group, and in step b), granules are prepared. [Prior art] Basically, the emulsification technology for making nano particles is known, so M.P. Pileni; J. Phys. Chem. 1993, 97, 6961-6973 describe the production of semiconductor particles in an inverse emulsion, such as CdSe , CdTe, and ZnS. However, the synthesis of inorganic materials often requires precursors with high salt concentrations in the emulsion, and their concentrations will change as the reaction proceeds. Low molecular weight surfactants will react to this high salt concentration, and as a result, the stability of the emulsion will be in crisis (Paul Kent and Brian R. Saunders; Journal of Colloid and Interface Science 242, 437-442 (2001)). In particular, the particle size can only be controlled to a limited range (M.-H. Lee, C.Υ. Tai, C.Η. Lu, Korean J. Chem. Eng. 16, 1999, 818-822) . K. Landfester (Adv. Mater. 2001, 13, No. 10, 765-768) proposed the use of high molecular weight surfactants (PEO-PS block copolymers), and combined with ultrasound to manufacture from metal salts Particle size ranges from about 150 to about 300 nm. [Summary of the Invention] Random copolymers containing at least one monomer containing a hydrophobic group and at least one monomer containing a hydrophilic group of 98510.doc 200540191 are now able to provide an emulsifier 'which can promote inorganic nano Rice granules are produced in inverse emulsions to control particle size and particle size distribution. At the same time, due to the use of these new emulsifiers, nano particles can be separated from the dispersion liquid without substantial agglomerates, because individual particles will form directly as the polymer is applied. In addition, the nano particles obtained by this method can be specifically, simply and uniformly dispersed in the polymer, and in particular, it may substantially avoid undesired damage to the transparency of the polymer in visible light. In the random copolymer, the random copolymer used according to the present invention will preferably exhibit a weight ratio of structural units containing a hydrophobic group and structural units containing a hydrophilic group ranging from 1: 2 to 500 : 1, preferably in the range from 1: 1 to 10 (M, and particularly preferably in the range from 7: 3 to 10: the average molecular weight of the random copolymer is usually in the range from Mw = 1000s The preferred range is from 1500 to 100,000 g / m01 and the particularly preferred range is from 2000 to 40.000 g / cabuter. The copolymer has been found herein as shown by formula j :

其中 x和Y係為習知之非離子型或離子型單體基團,且 R代表氫或一疏水性側基’較佳為選自具有至少4個碳原 985l0.doc 200540191 子之为枝或無分枝的烧基基團,其中一或多個(較佳為全 部)Η原子可經氟原子取代,且 R2代表一親水性側基,其較佳地具有一膦酸鹽、磺酸鹽、 聚醇或聚醚基團, 且其-X-R1和-γ-R2可能在一分子内各具有一不同意義之 多元性(plurality),以滿足根據本發明在一特定方法上之需 求。 根據本發明所提供之特別佳之聚合物為-Y-R2代表一甜 菜鹼(betaine)結構。 接著’特別佳之式I聚合物為X和γ係分別代表 -C(=0)-,_C(=0)_NH_,-(CH2)n-、苯基(phenyl)、萘基或吼啶 基。再者,聚合物中至少有一個結構單元含有至少一個四 級氮原子’其R2較佳地代表一 -(CH2)m-(N+(CH3)2MCH2)n-S03-側基 或一 ·(CH2)m-(N+(CH3)2HCH2)n_P〇32-側基,其中 m代表一整 數’範圍從1至30,較佳為範圍從1至6,特別佳為2,且n 代表一整數,範圍從1至30,較佳為範圍從1至8,特別佳為 3,以便有利且方便地使用該聚合物。 所使用之隨機共聚物特別佳為根據下列流程圖來製備:Where x and Y are conventional non-ionic or ionic monomer groups, and R represents hydrogen or a hydrophobic side group, 'is preferably selected from the group consisting of a branch having at least 4 carbon atoms 985l0.doc 200540191 Unbranched alkynyl groups in which one or more (preferably all) fluorene atoms may be substituted by fluorine atoms, and R2 represents a hydrophilic side group, which preferably has a phosphonate, sulfonate , A polyhydric alcohol or a polyether group, and -X-R1 and -γ-R2 of each of which may have a plurality of different meanings in a molecule, so as to meet the requirements of a specific method according to the present invention. A particularly preferred polymer provided according to the present invention is that -Y-R2 represents a betaine structure. Next, the polymer of the formula I is particularly preferably X and γ which represent -C (= 0)-, _C (= 0) _NH_,-(CH2) n-, phenyl, naphthyl or azidinyl. Furthermore, at least one structural unit in the polymer contains at least one quaternary nitrogen atom. Its R2 preferably represents a-(CH2) m- (N + (CH3) 2MCH2) n-S03- side group or a-(CH2 ) m- (N + (CH3) 2HCH2) n_P〇32- side group, where m represents an integer 'ranging from 1 to 30, preferably ranging from 1 to 6, particularly preferably 2 and n represents an integer, range From 1 to 30, preferably in the range from 1 to 8, particularly preferably 3 in order to use the polymer advantageously and conveniently. The random copolymer used is particularly preferably prepared according to the following flow chart:

98510.doc -9- 200540191 將期望量之甲基丙稀酸月桂酯(lauryl methacrylate ; LMA) 和甲基丙晞酸二甲基胺乙基酯(dimethyl-aminoethyl methacrylate ; DMAEMA)在此用已知方法共聚合化,較佳 為以曱苯中之自由基經由AIBN之加成來進行。接著,一甜 菜鹼結構可利用已知方法藉由胺和1,3-丙烷磺酸内酯 (l,3-pro-panesultone)反應而得到。 所使用之另一共聚物可包含苯乙烯、乙烯吡咯烷酮、乙 烯吼啶、i化苯乙烯或甲氧基苯乙烯,該等實例並非為一 種限制。另外,同樣較佳之本發明具體實例為使用一聚合 物,其特徵為至少有一結構單元為一寡聚物或聚合物,較 佳地為一巨分子單體,其中聚醚類、聚烯烴類和聚丙烯酸 酯為特別佳之巨分子單體。 可用於無機奈米顆粒之前驅物為水溶性金屬化合物,較 佳為石夕、飾、始、鉻、鎳、辞、鈦、鐵、記和/或锆化合物, 其中該等前驅物較佳為和一酸或鹼液反應,以產生對應之 金屬-氧化物顆粒。混合之氧化物在此可利用一簡單之方法 藉由適當地混合對應之前驅物而得到。熟習此項技藝者對 於適用前驅物之選擇將毫無困難;適用之化合物為所有該 等能夠使對應目標化合物從水溶液沉澱出來之化合物。可 用於氧化物沉澱之適用前驅物概觀描述在例如K. Osseo-Asare "Microemulsion-mediated Synthesis of nanosize Oxide Materials” in: Kumar P., Mittal KL? (editors), Handbook of microemulsion science and technology, New York: Marcel Dekker,Inc·,pp· 559-573 之表 6 中,其含量明確地 揭示在本申請案之内容中。 98510.doc -10- 200540191 親水性炼融物在本發明中同樣可作為奈米 物。用於製造奈米顆粒之化學 别驅 反應在该例中並非絕對必要。 特疋而吕’作為前驅物之鹼金屬或驗土金屬石夕酸 佳為石夕酸納,亦可和酸或驗液反應以得到二氧化石夕。風又 同樣地在本發明較佳之且骰皆 八體貧例中,可利用貴重金屬之 广種y溶性化合物’較佳為確酸銀,和一還原劑反應, 較佳為檸檬酸,以得到該金屬。 ^98510.doc -9- 200540191 The desired amounts of lauryl methacrylate (LMA) and dimethyl-aminoethyl methacrylate (DMAEMA) are known here The method of copolymerization is preferably performed by addition of free radicals in toluene with AIBN addition. Next, a betaine structure can be obtained by a known method by reacting an amine with 1,3-propanesultone (l, 3-pro-panesultone). Another copolymer used may include styrene, vinylpyrrolidone, vinylidene, i-styrene, or methoxystyrene, and these examples are not a limitation. In addition, an equally preferred embodiment of the present invention is the use of a polymer, which is characterized in that at least one structural unit is an oligomer or polymer, preferably a macromonomer, of which polyethers, polyolefins, and Polyacrylates are particularly preferred macromonomers. The precursors that can be used for inorganic nano particles are water-soluble metal compounds, preferably Shi Xi, decorative, starting, chromium, nickel, titanium, titanium, iron, zirconium and / or zirconium compounds. Reacts with an acid or lye to produce corresponding metal-oxide particles. The mixed oxide can be obtained here by a simple method by appropriately mixing the corresponding precursors. Those skilled in the art will have no difficulty in selecting suitable precursors; the applicable compounds are all such compounds that can precipitate the corresponding target compound from an aqueous solution. An overview of suitable precursors that can be used for oxide precipitation is described in, for example, K. Osseo-Asare " Microemulsion-mediated Synthesis of nanosize Oxide Materials "in: Kumar P., Mittal KL? (Editors), Handbook of microemulsion science and technology, New York: Marcel Dekker, Inc., pp. 559-573 in Table 6, its content is clearly disclosed in the content of this application. 98510.doc -10- 200540191 Hydrophilic smelts can also be used in the present invention as Nano-particles. The chemically-dispelled reaction used to make nano-particles is not absolutely necessary in this example. The alkali metal or soil test metal that is the precursor is Lithium sulphate, which is also sodium sulphate. React with acid or test solution to obtain stone dioxide. In the same way, in the preferred embodiment of the present invention and the diastolic body is poor, a wide variety of y-soluble compounds that can use precious metals are preferably silver acetate, and A reducing agent reaction, preferably citric acid, to obtain the metal.

為了製備奈米金屬硫化物,同#地如本發明較佳地 -可溶性金屬化合物,較佳為—可溶性抑、灿化合 物,和硫化氫反應,以得到該金屬硫化物。 在本發明另-具體實例中,可利用一可溶性金屬化合 物’例如較佳地為氯化每’和二氧化碳反應’以得到奈米 顆粒之金屬碳酸鹽。 製得之奈米顆粒特別佳為該等本質上包切、鋅、始、 鉻鎳、辞、鈦、鐵、紀和/或錯之氧化物或氯氧化物。 依動態光散射或穿透式電子顯微鏡之決定,較佳之顆粒 具有一平均顆粒大小從3至綱nm,特定而言為從2〇至8〇細, 且極為特定且較佳為從3G践nm。特定而言,同樣地在本 發明之較佳具體實例中,粒度分佈是很狹窄的,即變異範 圍低於1GG%之平均值,特別佳為平均值5()%之最大值。 本文中使用於?{合物州呆護之該等奈米顆粒的用途中,特 別佳的疋如果奈米顆粒具有最大吸收範圍3⑻·· ,較 佳為最网400 nm之範圍,特別佳之奈米顆粒可吸收輻射 線’特別而言為在UV-A區中。 98510.doc 200540191 乳化過程在此可以各種方式進行: 如前所述,顆粒通常以步驟b) 用則驅物之反應式刹用 熔融物之冷卻而製得。前驅物在此可一 & ^ 一酉夂、'一驗液、'一 還原劑或一氧化劑進行反應,視所 优所璉用之過程變數而定。 為了製造期望粒度範圍之顆粒,特 ^ 将別有利的是如果乳化 反應中乳化小滴大小之範圍從5至5〇n ” Α 至500 nm,較佳為範圍從l〇 至200 nm。在特定系統巾,乳化小滴大小在此可由孰習此 項技藝者已知之方法自行設定,其油相可由熟習此項技藝 者個自選擇以配合其反應系統。例如為了製造Zn〇顆粒, 甲苯和環己烷經證實可成功作為油相。 在特定案例中,&了隨機共聚物外,使用另一共乳化劑 可能有幫助,較佳地為一非離子型界面活性劑。較佳之共 乳化劑可視情況進行乙氧基化或丙氧基化反應,相對地長 鏈之烧醇類或烧基苯齡類具有各種不同程度之乙氧基化或 丙氧基化反應(例如具有從〇至50 m〇l氧化烯之鍵結物)。 使用散佈輔助物亦可能有用,較佳為水溶性、高分子量、 有機化合物,包含極性基團,例如聚乙烯吡咯烷酮、丙酸 乙烯酯或醋酸和乙烯吡咯烷酮之共聚物、一經部分皂化之 丙烯酸和丙烯腈共聚物,以及聚乙烯醇類皆具有各種殘留 醋酸内含物、纖維素醚類、明膠、嵌段共聚物改造澱粉、 低分子量聚合物、含有羧基和/或磺基聚合物,或該等物質 之混合物。 特別佳之具保護性膠體為聚乙烯醇類,其具有低於40 mol%之殘留醋酸鹽含量,特定而言從5至39 mol%,和/或乙 98510.doc -12- 200540191 烯吡咯烷酮-丙酸乙烯酯共聚物,其具有低於3 5%重量比之 乙烯酯含量,特定而言從5至30%重量比。 必要奈米顆粒之期望性質組合可依給定方法視反應情況 之调整而没疋’例如反應溫度、壓力和反應時間。該等朱 數之對應設定對於熟習此項技藝者將絕對毫無困難。例如 反應可依各種不同目的而在大氣壓和室溫下進行。 在一較佳之反應變體中,可將一含有作為前驅物且為乳 化形式之反應物的第二乳化液,在步驟b)中和來自步驟a) 之前驅物乳化液混合。這兩次乳化過程使得產生之顆粒具 有一特別窄的粒度分佈。在此對於二乳化液特別有利的是 利用超音波之作用使兩者混合。 另一方面,同樣地在較佳之反應變體中,可在步驟b)中 使前驅物乳化液和一可溶於乳化反應連續相之沉澱劑混 合。之後藉由沉殿物擴散至含有前驅物之微胞而發生沉澱 反應。例如,二氧化鈦顆粒可藉由吡啶擴散入鈦氧基含氣 化物微胞中而得到’或是銀顆粒可利用長鏈醛類擴散入銀 含硝酸鹽微胞中而得到。 特定而言,根據本發明之奈米顆粒可用在聚合物中。根 據本發明可使奈米顆粒良好合併入之聚合物,特定而言, 為雇奴酸酯、聚乙烯對苯二甲酸酯(PETP)、聚亞醯胺 (PI)、I笨乙烯(PS)、聚甲基丙烯酸甲脂(PMMA)或包含該 聚合物之一中至少一種成分之共聚物。 在此可利用製備聚合物組合物習知之方法使該合併反應 毛生例如’聚合物材料可和根據本發明之奈米顆粒混合, 98510.doc -13 - 200540191 較佳為在一擠製機中或配料機中混合。 視所使用之聚合物而定,亦可使用配料機。 根據本發明之顆粒有一特別之優點就是 較起來,其只需要认+ , ^ 0 先則技藝比 均質分佈。 便來&物中之顆粒 在此之聚合物亦可為聚合物之散佈液,例如塗料… 併之發生在此可利用習知之混合方式進行。 / 口In order to prepare nano metal sulfide, the same as the present invention is preferred-a soluble metal compound, preferably-a soluble, bright compound, and hydrogen sulfide to obtain the metal sulfide. In another embodiment of the present invention, a soluble metal compound 'such as preferably chlorinated per' and carbon dioxide is used to obtain metal carbonates of nano particles. The nano granules produced are particularly preferably such oxides or chlorine oxides that are essentially cut, zinc, starting, chrome-nickel, titanium, titanium, iron, period and / or wrong. Depending on the decision of dynamic light scattering or transmission electron microscope, the preferred particles have an average particle size from 3 to 3 nm, specifically from 20 to 80 micron, and very specific and preferably from 3G to nm . In particular, also in the preferred embodiment of the present invention, the particle size distribution is very narrow, that is, the variation range is lower than the average value of 1GG%, and particularly preferably the maximum value of the average value of 5 ()%. This article is used in the application of these nano particles in the compound state, especially if the nano particles have a maximum absorption range of 3⑻ ·, preferably in the range of up to 400 nm, particularly good. The rice particles can absorb radiation, in particular in the UV-A region. 98510.doc 200540191 The emulsification process can be carried out in various ways here: As mentioned before, the granules are usually prepared by cooling the melt in step b) using a reactive brake for flooding. The precursors can be reacted at this time with & ^ a test solution, a test solution, a reducing agent or an oxidant, depending on the process variables used. In order to manufacture particles of the desired size range, it would be particularly advantageous if the emulsified droplet size in the emulsification reaction ranged from 5 to 500 nm, Α to 500 nm, preferably in the range of 10 to 200 nm. The size of the emulsified droplets of the system towel can be set here by methods known to those skilled in the art, and the oil phase can be selected by those skilled in the art to match the reaction system. For example, to produce ZnO particles, toluene and ring Hexane has proven to be successful as an oil phase. In certain cases, in addition to random copolymers, the use of another co-emulsifier may be helpful, preferably a non-ionic surfactant. The preferred co-emulsifier is visible In the case of ethoxylation or propoxylation, relatively long-chain alcohols or alcohols have various degrees of ethoxylation or propoxylation (for example, from 0 to 50 m). 〇1 alkylene oxide bond). It may also be useful to use dispersing aids, preferably water-soluble, high molecular weight, organic compounds containing polar groups such as polyvinylpyrrolidone, vinyl propionate or acetic acid and Copolymers of vinylpyrrolidone, partially saponified acrylic and acrylonitrile copolymers, and polyvinyl alcohols all have various residual acetic acid inclusions, cellulose ethers, gelatin, block copolymer modified starch, low molecular weight polymers, Contains carboxyl and / or sulfopolymers, or mixtures of these. Particularly preferred protective colloids are polyvinyl alcohols, which have a residual acetate content of less than 40 mol%, specifically from 5 to 39 mol %, And / or ethylene 98510.doc -12- 200540191 enopyrrolidone-vinyl propionate copolymer, which has a vinyl ester content of less than 3 5% by weight, specifically from 5 to 30% by weight. The desired combination of properties of rice granules can be adjusted according to the given method according to the reaction conditions without such as reaction temperature, pressure and reaction time. The corresponding setting of these numbers will be absolutely no difficulty for those skilled in the art. For example, reaction It can be carried out at atmospheric pressure and room temperature for various purposes. In a preferred reaction variant, a second emulsion containing a reactant as a precursor and in an emulsified form, In step b), the precursor emulsion from step a) is mixed. The two emulsification processes give the resulting particles a particularly narrow particle size distribution. Here, it is particularly advantageous for the second emulsion to use the effect of ultrasound to make On the other hand, in the same preferred reaction variant, the precursor emulsion can be mixed with a precipitant soluble in the continuous phase of the emulsification reaction in step b). After that, it can be diffused by the sink. Precipitation reaction occurs to the microspheres containing precursors. For example, titanium dioxide particles can be obtained by diffusion of pyridine into titaniumoxy gas-containing microspheres, or silver particles can be diffused into silver nitrate using long chain aldehydes It can be obtained in microcells. In particular, nano particles according to the present invention can be used in polymers. Polymers in which nano particles can be well incorporated according to the present invention, in particular, ferric esters, polyethylene Terephthalate (PETP), polyimide (PI), ethylene (PS), polymethylmethacrylate (PMMA), or a copolymer containing at least one component of one of the polymers. Here, conventional methods for preparing polymer compositions can be used to make the combined reaction hair, for example, 'the polymer material can be mixed with the nano particles according to the present invention, 98510.doc -13-200540191, preferably in an extruder. Or mix in a batching machine. Depending on the polymer used, a batcher can also be used. A special advantage of the particles according to the present invention is that, compared to that, they only need to recognize +, ^ 0 prior art ratios are uniformly distributed. The particles in the amp & substance The polymer here can also be a polymer dispersion liquid, such as a coating ... and the occurrence thereof can be performed by a conventional mixing method. / mouth

用==含!奈米顆粒之聚合物組合物亦更加特別適 用於表面塗佈。該方法可讓表面或材料位在塗佈表面下而 文到保護,例如可抗紫外線輻射。 【實施方式】 下列實例將以更詳細之方式解釋本發明,但非加以限制 實例 實例1 ··巨分子界面活性劑之合成 第一步包含十二烷基丙烯酸甲酯(月桂基丙烯酸甲酯,· LMA)和一甲基胺乙基丙烯酸甲酯 methacrylate ; DMAEMA)之隨機共聚物的合成。分子量之 控制可利用疏基乙醇(乙基硫醇;mercapt〇ethan〇l)之加成而 達到。以該種方式得到之共聚物可利用丨,3_丙烷磺酸内酯之 改造’提供飽和基團。 為此,將7g〇fLMA和DMAEMA(以符合下列表1之量)於 開始時先加到12 g甲苯令,並在氬氣下7〇。〇時利用〇 〇33 g AIBN於1 ml甲苯溶液之加成進行起始反應,之後進行自由 基聚合反應。鏈增長反應在此可利用2-巯基乙醇之加成(見 98510.doc -14- 200540191 表1)而加以控制。將粗聚合物清洗、冷凍乾燥並接著和1,3-丙烧石黃酸内酯反應,如 V. Butun,C. Ε· Ben nett,Μ· Vamvakaki,Α· Β· Lowe,Ν· C. Billingham,S. R Armes,J. Mater· Chem·,1997, 7(9),1693-1695 中所描述。 生成物聚合物之性質描述在表1。 表1 :使用之單體量和生成物聚合物之性質 DMAEMA [g] 聚合物中之 DMAEMA [mol%] 1-M基 -乙醇 [g] Mn [g/mol] Mw [g/mol] 甜菜驗 基團 [mol%] E1 1.08 19 0.033 18000 31000 16 E2 1.08 19 0.011 28000 51000 19 E3 1.08 21 0.066 13000 21000 21 E4 1.09 20 — 59000 158000 14.6 E5 0.48 10.7 52000 162000 7.5The polymer composition containing = nanoparticle is also more suitable for surface coating. This method allows the surface or material to be protected underneath the coated surface, such as resistance to ultraviolet radiation. [Embodiment] The following examples will explain the present invention in a more detailed manner, but without limitation. Example 1. Synthesis of a macromolecular surfactant. The first step includes methyl dodecyl acrylate (methyl lauryl acrylate, · LMA) and methacrylate (DMAEMA) random copolymers. The molecular weight can be controlled by the addition of mercaptoethanol (mercaptoethanol). The copolymer obtained in this way can be modified by using 3-propane sultone to provide a saturated group. To this end, 7 g of fLMA and DMAEMA (in an amount in accordance with Table 1 below) were initially added to 12 g of toluene, and 70 under argon. At 0 o'clock, the addition reaction of 0 33 g of AIBN in 1 ml of a toluene solution was used for the initial reaction, and then a radical polymerization reaction was performed. The chain extension reaction can be controlled here by the addition of 2-mercaptoethanol (see Table 1 of 98510.doc -14- 200540191). The crude polymer is washed, freeze-dried and then reacted with 1,3-propane lutein lactone, such as V. Butun, C. E. Bennett, M. Vamvakaki, A.B. Lowe, N.C. Billingham, S. R Armes, J. Mater Chem., 1997, 7 (9), 1693-1695. The properties of the resulting polymer are described in Table 1. Table 1: Amount of monomers used and properties of the resulting polymer DMAEMA [g] DMAEMA [mol%] 1-M-based-ethanol [g] Mn [g / mol] Mw [g / mol] sugar beet in the polymer Test group [mol%] E1 1.08 19 0.033 18000 31000 16 E2 1.08 19 0.011 28000 51000 19 E3 1.08 21 0.066 13000 21000 21 E4 1.09 20 — 59000 158000 14.6 E5 0.48 10.7 52000 162000 7.5

實例2 : ZnO顆粒之沉澱 利用下列方法使ZnO顆粒沉澱: 1 ·在每個案例中,0·4 g Zn(Ac0)2*2H20在1 · 1 g水 '中(乳化液 1)和0·15 g NaOH在1.35 g水中(乳化液2)之水溶液之逆乳化 液可利用超音波製備。乳化液1和乳化液2各包含150 mg之 隨機共聚物El-E5(表1)。 2. 將乳化液1和乳化液2之混合物進行超音波處理,接著 進行乾燥。 3. 醋酸鈉之純化可利用水清洗生成物固體。 4. 乾燥,並在表面上利用乳化劑並在甲苯中攪拌之方 式,將官能基化之粉末進行再散佈。 FT-IR光譜儀和X-光繞射顯示ZnO之形成。再者,在X-光 圖中沒有看見醋酸鈉之反射。 98510.doc -15- 200540191 因此,從實例2可得到一產物,包含合成之巨分子界面活 性劑和氧化辞顆粒。 共聚物 直徑[nm] (光散射) 變異[nm] ZnO之比例 (wt-%) E1 37 30 30.3 E2 66 53 30.5 E3 50 41 32 比較實例2a :乳化劑ABIL EM 90®之用途 實例2所描述之方法中,以市售可得之乳化劑ABIL EM 90®(錄躐地美司康共聚醇(cetyl dimethicone copolyol),Goldschmidt 公司)取代實例1之隨機共聚物將無法得到一穩定乳化液。 得到之顆粒直徑介於500和4000 nm之間。 實例3 :二氧化矽之沉澱Example 2: Precipitation of ZnO particles The following methods were used to precipitate ZnO particles: 1 · In each case, 0 · 4 g of Zn (Ac0) 2 * 2H20 in 1 · 1 g of water '(emulsion 1) and 0 · An inverse emulsion of 15 g of NaOH in 1.35 g of water (emulsion 2) can be prepared using ultrasound. Emulsion 1 and Emulsion 2 each contained 150 mg of a random copolymer El-E5 (Table 1). 2. Ultrasonic treatment was performed on the mixture of Emulsion 1 and Emulsion 2, followed by drying. 3. Purification of sodium acetate can use water to wash the resulting solid. 4. Dry and re-dispers the functionalized powder by emulsifying it on the surface and stirring in toluene. FT-IR spectrometer and X-ray diffraction show the formation of ZnO. Furthermore, no reflection of sodium acetate was seen in the X-ray picture. 98510.doc -15- 200540191 Therefore, a product can be obtained from Example 2 including a synthetic macromolecular surfactant and an oxide particle. Copolymer diameter [nm] (light scattering) Variation [nm] Proportion of ZnO (wt-%) E1 37 30 30.3 E2 66 53 30.5 E3 50 41 32 Comparative Example 2a: Use of Emulsifier ABIL EM 90® as described in Example 2 In this method, a commercially available emulsifier ABIL EM 90® (cetyl dimethicone copolyol, Goldschmidt) was used instead of the random copolymer of Example 1 to obtain a stable emulsion. The resulting particle diameter is between 500 and 4000 nm. Example 3: Precipitation of silica

Si02顆粒之沉澱可依下列方法進行: 1·在每個案例中,Na2Si03 (乳化液1)和H2S04 (乳化液2) 之水溶液之逆乳化液可利用超音波製備(符合表2之濃度)。 2.將乳化液1和乳化液2之混合物進行超音波處理,接著 進行乾燥。 3 ·利用水清洗生成物固體而進行純化。 4·乾燥,並將得到之粉末進行再散佈。 FT-IR光譜和X-光繞射顯示Si02之形成,且沒有矽酸鈉存 在。 因此,從該步驟可得一產物,包含合成之巨分子界面活 性劑和二氧化矽顆粒。 表2 :乳化液之組成和產物之性質 98510.doc -16- 200540191 實驗 乳化液El 乳化液E2 奈米顆粒之 顆粒大小 inm] 標準 偏差 inm] 3a 0.15 g之聚合物界面 活性劑(E4); 11.7g甲苯; 1.25g水; 1.25gNa2Si03 0.15 g聚合物界面活 性劑(E4); ll.7g甲苯 2.2 g水 0.3 g H2SO4 59 19 3b 0.15 g聚合物界面活 性劑(E4); ll.7g甲苯; 1.25 g水; 1.00 gNa2Si03 0.15 g聚合物界面活 性劑(E4); 11.7g甲苯; 1.76 g水; 0.24 g H2SO4 40 15 3c 0.15 g聚合物界面活 性劑(E4); 11.7g甲苯; 0.75 g水; 0.75 g Na2Si03 0.15 g聚合物界面活 性劑(E4); 11.7g甲苯; 1.32 g水 0.18gH2SO4 50 20 3d 0.15 g聚合物界面活 性劑(E5); 11.7g甲苯; 0.75 g水; 0.75gNa2SiO3 0.15 g聚合物界面活 性劑(E5); 11.7g甲苯; 1.32 g水; 0.18 g H2SO4 43 15 3e 0.15 g聚合物界面活 性劑(E5); 11.7g甲苯; 1.25 g水; 1.25gNa2Si03 0.15 g聚合物界面活 性劑(E5); 11.7g甲苯; 2.2 g水; 0.3 g H2S04 53 12 3f 0.15 g聚合物界面活 性劑(E5); 11.7g甲苯; 1.0 g水; 1.0gNa2SiO3 0.15 g聚合物界面活 性劑(E5); 11.7g甲苯; 1.76 g水; 0.24 g H2S04 93 30 實例4 :聚合物組合物 從實例2-E1中得到之顆粒在PMMA塗漆中之散佈可利用 混合方式製備,並放置到玻璃基質上加以乾燥。乾燥後之 ZnO含量為10%重量比。薄膜顯示出實質上有些微模糊,可 98510.doc -17- 200540191 利用UV-VIS光譜儀之測量確認該印象。樣品顯示出下列吸 收值,其可視薄層厚度而定(顯示出傳送過程中入射光的百 分比)。 薄層厚度 UV-A (350 nm) VIS (400 nm) 1 ·2 μm 3 5% 4% 1.6 μηι 40% 5% 2.2 μπι 45% 7% 比較:The precipitation of Si02 particles can be carried out according to the following methods: 1. In each case, the inverse emulsion of the aqueous solution of Na2Si03 (emulsion 1) and H2S04 (emulsion 2) can be prepared by ultrasound (concentrations in accordance with Table 2). 2. Ultrasonic treatment was performed on the mixture of Emulsion 1 and Emulsion 2, followed by drying. 3. Purification of the product solids by washing with water. 4. Dry and re-spread the obtained powder. FT-IR spectrum and X-ray diffraction showed the formation of SiO2 and no sodium silicate was present. Therefore, a product can be obtained from this step, which includes a synthetic macromolecular surfactant and silica particles. Table 2: Emulsion composition and product properties 98510.doc -16- 200540191 experimental emulsion El emulsion E2 nanoparticle particle size inm] standard deviation inm] 3a 0.15 g polymer surfactant (E4); 11.7 g toluene; 1.25 g water; 1.25 g Na2Si03 0.15 g polymer surfactant (E4); ll. 7 g toluene 2.2 g water 0.3 g H2SO4 59 19 3b 0.15 g polymer surfactant (E4); ll. 7 g toluene; 1.25 g water; 1.00 g Na2Si03 0.15 g polymer surfactant (E4); 11.7 g toluene; 1.76 g water; 0.24 g H2SO4 40 15 3c 0.15 g polymer surfactant (E4); 11.7 g toluene; 0.75 g water; 0.75 g Na2Si03 0.15 g polymer surfactant (E4); 11.7 g toluene; 1.32 g water 0.18 g H2SO4 50 20 3d 0.15 g polymer surfactant (E5); 11.7 g toluene; 0.75 g water; 0.75 g Na2SiO3 0.15 g polymerization Surfactant (E5); 11.7g toluene; 1.32 g water; 0.18 g H2SO4 43 15 3e 0.15 g polymer surfactant (E5); 11.7 g toluene; 1.25 g water; 1.25 g Na2Si03 0.15 g polymer surfactant (E5); 11.7g toluene; 2.2 g water; 0.3 g H2S04 53 12 3f 0.15 g polymer interfacial activity (E5); 11.7 g toluene; 1.0 g water; 1.0 g Na2SiO3 0.15 g polymer surfactant (E5); 11.7 g toluene; 1.76 g water; 0.24 g H2S04 93 30 Example 4: Polymer composition from Example 2 The dispersion of the particles obtained in -E1 in PMMA paint can be prepared by mixing and placed on a glass substrate and dried. After drying, the ZnO content was 10% by weight. The film showed a slight blur in nature, and the impression can be confirmed by measurement with 98510.doc -17- 200540191 using a UV-VIS spectrometer. The sample shows the following absorption values, which depend on the thickness of the thin layer (showing the percentage of incident light during transmission). Thin layer thickness UV-A (350 nm) VIS (400 nm) 1 · 2 μm 3 5% 4% 1.6 μηι 40% 5% 2.2 μπι 45% 7% Compare:

(在ΡΜΜΑ塗漆中之ΖηΟ(特純,Merck公司),如上所示) 2 μπι 64% 46%(ZηΟ (Special Pure, Merck) in PMMA paint, as shown above) 2 μm 64% 46%

98510.doc 18-98510.doc 18-

Claims (1)

200540191 十、申請專利範圍: 1 · 一種隨機共聚物作為乳化劑之用途,該共聚物包含至少 一種含有疏水性基團之結構單元,以及至少一種含有親 水性基團之結構單元。 2·如請求項丨之用途,其特徵為該共聚物可在自乳化液合成 奈米顆粒中作為乳化劑。 3·如請求項1或2之用途,其特徵為在隨機共聚物中含有疏 水性基團之結構單元與含有親水性基團之結構單元之重 里比範圍從1:2至500··1,較佳為範圍從1:1至1〇〇:1,且特 別佳為範圍從7:3至10:1。 4·如請求項1或2之用途,其特徵為隨機共聚物之重量平均 分子量範圍從]^=1〇〇〇至looo’ooo g/m〇卜較佳為範圍從 1500至1 〇〇,〇〇〇 g/mol,且特別佳為範圍從2〇〇〇至⑼〇 g/mo 卜 5·如請求項1或2之用途,其特徵為該共聚物如式丨所示:200540191 10. Scope of patent application: 1. The use of a random copolymer as an emulsifier. The copolymer contains at least one structural unit containing a hydrophobic group and at least one structural unit containing a hydrophilic group. 2. The use as claimed in claim 1, characterized in that the copolymer can be used as an emulsifier in synthesizing nano particles from a self-emulsifying liquid. 3. The use as claimed in claim 1 or 2, characterized in that the weight ratio of the structural unit containing a hydrophobic group and the structural unit containing a hydrophilic group in the random copolymer ranges from 1: 2 to 500 ... 1, It is preferably in a range from 1: 1 to 100: 1, and particularly preferably in a range from 7: 3 to 10: 1. 4. The use as claimed in claim 1 or 2, characterized in that the weight average molecular weight range of the random copolymer is from ^ = 1OO00 to looo'ooo g / m0. The preferred range is from 1500 to 10.00, 〇g / mol, and particularly preferably in the range from 2000 to 100 g / mo. 5. The use as claimed in claim 1 or 2, characterized in that the copolymer is as shown in formula 丨: 其中 X和Y係為習知之非離子型或離子型單體基團,且 R1代表氫或一疏水性側基,較佳為選自具有至少4個碳 原子之分枝或無分枝的烷基基團,其中一或多個(較佳為 全部)Η原子可經氟原子取代,且 R2代表一親水性側基,其較佳地具有一膦酸鹽、磺酸 鹽、聚醇或聚醚基團, 98510.doc 200540191 且其-Χ-R1和-Υ-R2可在一分子内各具有許多不同意義。 6·如請求項5之用途,其特徵為X和γ係分別代表_〇_, -c(K))-0-,-C(=0)_NH_,-(CH2)n_、伸苯基(phenyiene)或 吼σ定基。 7·如請求項5之用途,其特徵為至少有一個結構單元含有至少一 個四級氮原子,其R2較佳地代表一仰丄销卿士(cH2)n_s〇3. 側基或一 ·(CfUCN^CHAHCmPO32-側基,其中則戈表一整 數,範圍從1至30,較佳為範圍從1至6,特別佳為2,且n 代表整數,範圍從1至30,較佳為範圍從丨至8,特別佳 為3。 8. 如請求項1或2之用途,其特徵為至少有一結構單元為一 募聚物或聚合物,較佳地為一巨分子單體,其中聚醚類、 聚烯烴類和聚丙烯酸酯為特別佳之巨分子單體。 9. -種製造聚合物改造奈米顆粒之方法,其特徵為,在步Where X and Y are conventional nonionic or ionic monomer groups, and R1 represents hydrogen or a hydrophobic side group, preferably selected from branched or unbranched alkanes having at least 4 carbon atoms Group, in which one or more (preferably all) fluorene atoms may be substituted by fluorine atoms, and R2 represents a hydrophilic side group, which preferably has a phosphonate, sulfonate, polyalcohol or poly Ether group, 98510.doc 200540191 and its -X-R1 and -Υ-R2 can each have many different meanings in one molecule. 6. The use as claimed in claim 5, characterized in that X and γ represent _〇_, -c (K))-0-, -C (= 0) _NH_,-(CH2) n_, phenylene ( phenyiene) or sigma. 7. The use as claimed in claim 5, characterized in that at least one of the structural units contains at least one quaternary nitrogen atom, and R2 thereof preferably represents a supporter (cH2) n_s03. A side group or a · ( CfUCN ^ CHAHCmPO32-Side group, in which the table represents an integer ranging from 1 to 30, preferably ranging from 1 to 6, particularly preferably 2 and n represents an integer ranging from 1 to 30, preferably ranging from丨 to 8, particularly preferably 3. 8. The use of claim 1 or 2 is characterized in that at least one structural unit is a polymer or polymer, preferably a macromonomer, of which polyethers Polyolefins and polyacrylates are particularly good macromolecular monomers. 9. A method for manufacturing polymer-modified nano particles, characterized in that 驟a)中,利用隨機共聚物之辅助而製備—包含—或多種奈 米顆粒水溶性前驅物之逆乳化液或—熔融物,該隨機共 聚物包含至少一種含有疏水性基團之單體和至少一種含 有親水性基團之單體’以及在步驟b)中,製備顆粒。 10. 如請求項9之方法,其特徵為在步驟b)中㈣前驅物之反 應或利用熔融物之冷卻製造出顆粒。 11. 如a月求項10之方法,其特徵為該前驅物與一酸、一驗液、 一還原劑或一氧化劑進行反應。 12. 如請求項11之方法: 和一酸或鹼液反應, 其特徵為利用作為前驅物之矽酸鈉 以得到二氧化矽。 98510.doc 200540191 13·如請求項11之方法,其特徵為利用貴重金屬之至少一種 可溶性化合物,較佳為硝酸銀,和一還原劑反應,較佳 為檸檬酸,以得到該金屬。 14·如請求項11之方法,其特徵為利用一可溶性金屬化合 物,較佳為一可溶性Pb、Cd4Zn化合物,和硫化氫反應, 以得到該金屬硫化物。 15.如請求項u之方法,其特徵為利用一可溶性金屬化合 物,例如較佳地為氯化鈣,和二氧化碳反應,以得到奈 米顆粒之金屬碳酸鹽。 16·如請求項9至丨5之任一方法,其特徵為在乳化液中乳化小 滴大小之範圍從5至500 nm,較佳為範圍從1〇至2〇() nm。 17.如請求項9至15之任一方法,其特徵為將一含有作為前驅 物且為乳化形式之反應物的第二乳化液,在步驟…中和來 自步驟a)之前驅物乳化液混合。 汝叫求項17之方法,其特徵為將二乳化液利用超音波之 作用互相混合。 19.如請求項9至15之任一方法,其特徵為從水溶性金屬化合 物中’較佳為石夕、飾、銘 '鉻、錄、辞、欽、鐵、纪或 錯化合物,選出一或多種前驅物’且該等前驅物較佳為 和一酸或鹼液反應。 2〇.如請求項9至15之任-方法’其特徵為可使用一共乳化 ’較佳為非離子型界面活性劑。 98510.doc 200540191 七、指定代表圖: (一) 本案指定代表圖為:(無)。 (二) 本代表圖之元件符號簡單說明·· 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無)In step a), an inverse emulsion or a melt containing—or a plurality of nanoparticle water-soluble precursors—is prepared with the aid of a random copolymer comprising at least one monomer containing a hydrophobic group and At least one hydrophilic group-containing monomer 'and in step b), particles are prepared. 10. The method of claim 9, characterized in that granules are produced by reacting the precursor in step b) or by cooling the melt. 11. The method of item 10 in month a, characterized in that the precursor reacts with an acid, a test solution, a reducing agent or an oxidant. 12. The method of claim 11: reacting with an acid or lye, characterized by using sodium silicate as a precursor to obtain silicon dioxide. 98510.doc 200540191 13. The method according to claim 11, characterized by using at least one soluble compound of a precious metal, preferably silver nitrate, and reacting with a reducing agent, preferably citric acid, to obtain the metal. 14. The method according to claim 11, characterized in that a soluble metal compound is used, preferably a soluble Pb, Cd4Zn compound, and hydrogen sulfide are reacted to obtain the metal sulfide. 15. A method according to claim u, characterized in that a soluble metal compound, such as preferably calcium chloride, is reacted with carbon dioxide to obtain metal carbonates of nano particles. 16. The method according to any one of claims 9 to 5, characterized in that the emulsion droplet size in the emulsion ranges from 5 to 500 nm, preferably from 10 to 20 nm. 17. The method according to any one of claims 9 to 15, characterized in that a second emulsion containing a reactant as a precursor and in an emulsified form is mixed in step ... with the precursor emulsion from step a) . The method of claim 17 is characterized in that the two emulsions are mixed with each other by the action of ultrasound. 19. The method according to any one of claims 9 to 15, characterized in that one of the water-soluble metal compounds is preferably 'Shi Xi, Shi, Ming' Chromium, Lu, Ci, Qin, Iron, Ji or Wuji. Or more precursors' and these precursors are preferably reacted with an acid or lye. 20. The method according to any one of claims 9 to 15, characterized in that a co-emulsification can be used, and a nonionic surfactant is preferred. 98510.doc 200540191 7. Designated Representative Map: (1) The designated representative map in this case is: (none). (II) Simple explanation of the component symbols in this representative drawing. 8. If there is a chemical formula in this case, please disclose the chemical formula that can best show the characteristics of the invention: (none) 98510.doc98510.doc
TW094102252A 2004-01-27 2005-01-26 Use of random copolymers TW200540191A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004004209A DE102004004209A1 (en) 2004-01-27 2004-01-27 Use of random copolymer with hydrophobic and hydrophilic groups in different structural units as emulsifier is useful for producing polymer-modified nanoparticles, e.g. of silica, silver or metal sulfide or carbonate for use in polymer
EP04023002 2004-09-28

Publications (1)

Publication Number Publication Date
TW200540191A true TW200540191A (en) 2005-12-16

Family

ID=34809608

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094102252A TW200540191A (en) 2004-01-27 2005-01-26 Use of random copolymers

Country Status (6)

Country Link
EP (1) EP1709092A1 (en)
JP (1) JP2007519786A (en)
KR (1) KR20070004599A (en)
CA (1) CA2554335A1 (en)
TW (1) TW200540191A (en)
WO (1) WO2005070979A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1835808E (en) 2004-12-30 2014-02-11 Rhodia Chimie Sa Herbicidal composition comprising a glyphosate salt and a betaine
DE102005019391A1 (en) * 2005-04-25 2006-10-26 Merck Patent Gmbh Method for fabricating metal polymer-modified nano-particles, requires inverse emulsion containing one or more water-soluble precursors
WO2007059107A2 (en) 2005-11-14 2007-05-24 Rhodia Inc. Agricultural adjuvant compositions, pesticide compositions, and methods for using such compositions
DE102005056621A1 (en) * 2005-11-25 2007-05-31 Merck Patent Gmbh Modified zinc oxide nano-particles with a specific average particle size, obtained by converting nano-particle precursor to nano-particles and terminating the growth of nano-particles, useful for UV-stabilization of polymer
WO2008066611A2 (en) 2006-10-16 2008-06-05 Rhodia Inc. Agricultural adjuvant compositions. pesticide compositions. and methods for using such compositions
FR2914647B1 (en) 2007-04-05 2011-10-21 Rhodia Recherches Et Tech COPOLYMER COMPRISING BETAINIC UNITS AND HYDROPHOBIC AND / OR AMPHIPHILIC UNITS, PREPARATION METHOD, AND USES.
DE102007032189A1 (en) 2007-06-22 2008-12-24 Merck Patent Gmbh curing
DE102007029283A1 (en) 2007-06-22 2008-12-24 Merck Patent Gmbh hardening accelerator
US9399075B2 (en) 2008-12-29 2016-07-26 General Electric Company Nanoparticle contrast agents for diagnostic imaging
US8748344B2 (en) 2009-07-14 2014-06-10 Rhodia Operations Agricultural adjuvant compositions, pesticide compositions, and methods for using such compositions
DE102010018073A1 (en) 2010-04-20 2011-10-20 Aesculap Ag Copolymer-modified nanoparticles, in particular for use in medical articles
EP2603075B1 (en) 2010-08-10 2017-07-12 Rhodia Operations Agricultural pesticide compositions
CN103282388B (en) 2010-10-19 2017-02-15 马克斯·普朗克科学促进学会 Ultra fast process for the preparation of polymer nanoparticles
WO2012052147A1 (en) 2010-10-19 2012-04-26 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Process for the modification of polymers, in particular polymer nanoparticles
ITPA20110012A1 (en) * 2011-08-30 2013-03-01 Salvo Santina Di INNOVATIVE SONOCHIMIC PROCESS THAT EMPLOYS THE ULTRASONIC CAVITATION FOR THE SYNTHESIS OF NANOPARTICELLE MONODISPERSE AMORPHES OF SILICON DIOXIDE AND METHOD FOR PREPARING A LOTION OF HYDRO-SOLUBLE LITHIUM COMPOUND FOR HIGH PERFORMANCE, TO BE APPLIED IN SIT
WO2019092036A1 (en) 2017-11-07 2019-05-16 Clariant Plastics & Coatings Ltd Dispersion agent for pigments in non-aqueous colourant preparations

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1817309A1 (en) * 1968-12-28 1970-07-02 Hoechst Ag Basic and cationic ethylene copolymers
DE2612886A1 (en) * 1976-03-26 1977-10-06 Henkel & Cie Gmbh WATER-IN-OIL TYPE COSMETIC EMULSIONS AND THEIR PRODUCTION
JPH11140133A (en) * 1997-11-04 1999-05-25 Asahi Denka Kogyo Kk Styrene oligomer and its production
FR2774096B1 (en) * 1998-01-29 2000-04-07 Virsol NOVEL SURFACTANT COPOLYMERS BASED ON METHYLIDENE MALONATE
CA2352104C (en) * 1998-11-23 2010-11-16 Schlumberger Canada Limited Invertible emulsions stabilised by amphiphilic polymers and application to bore fluids
DE10003297C2 (en) * 2000-01-27 2003-08-21 Clariant Gmbh Explosives containing modified copolymers of polyisobutylene, vinyl esters and maleic anhydride as emulsifiers

Also Published As

Publication number Publication date
CA2554335A1 (en) 2005-08-04
KR20070004599A (en) 2007-01-09
WO2005070979A1 (en) 2005-08-04
EP1709092A1 (en) 2006-10-11
JP2007519786A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
TW200540191A (en) Use of random copolymers
TW200534918A (en) Nanoparticles
Balmer et al. Colloidal nanocomposite particles: quo vadis?
Zhang et al. A novel route to prepare pH-and temperature-sensitive nanogels via a semibatch process
CN101720335A (en) Composite material granular and preparation method thereof
TW201527456A (en) Process for making an anti-reflective coating composition and a porous coating made therefrom
Balan et al. Controlling the morphology of gold nanoparticles synthesized photochemically in a polymer matrix through photonic parameters
Liras et al. QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart luminescent nanogels and hydrogels
CN100420708C (en) Photon crystal film of ultraviolet polymer colloid with photon band gap and its prepn and use
US20070282075A1 (en) Use Of Statistical Copolymers
Zhao et al. Self-assembly of positively charged polymer patchy micelles in organic solutions and the reversible ultrasound responsivity of the assemblies
Gong et al. Preparation of ATO-incorporated composite latex with tailored structure and controllable size for highly spectrum-selective applications
Suma et al. Studies on the effect of nano-TiO2 on vinyl acetate–butyl acrylate latex-based surface coating
Arai et al. Colloidal silica bearing thin polyacrylate coat: A facile inorganic modifier of acrylic emulsions for fabricating hybrid films with least aggregation of silica nanoparticles
Zhang et al. Preparation of styrene‐acrylic emulsion by using nano‐SiO2 as seeds
KR20080074410A (en) Preparation method of core-shell type nanocomposite particles in supercritical carbon dioxide
JP2009235353A (en) Fine particle-containing oval or needle-like polymer particle and method for producing the same
Preda et al. Synthesis and properties of poly (methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite
US11591418B2 (en) POSS-TX nano-photo-initiator synthesis and in situ photochemical Ag nano-particle synthesis with the help of POSS-TX and wrinkled surface formation
JP5467447B2 (en) Surface modifier, modified material modified with the surface modifier and dispersion of nanoparticles, and method for producing nanoparticles
Zhang et al. ZnO@ PNIPAM nanospheres synthesis from inverse Pickering miniemulsion polymerization
Ji et al. Revisit to the self-assembled hybrid acrylate/silica core-shell structured particles in the presence of unmodified silica particles
Li et al. Self-assembly and the hemolysis effect of monodisperse N, N-diethylacrylamide/acrylic acid nanogels with high contents of acrylic acid
YUAN et al. Synthesis and characterization of polystyrene/nanosilica organic-inorganic hybrid
Xu et al. Hybrid polymer-inorganic materials: multiscale hierarchy