KR20070004599A - Use of statistical copolymers - Google Patents

Use of statistical copolymers Download PDF

Info

Publication number
KR20070004599A
KR20070004599A KR1020067015218A KR20067015218A KR20070004599A KR 20070004599 A KR20070004599 A KR 20070004599A KR 1020067015218 A KR1020067015218 A KR 1020067015218A KR 20067015218 A KR20067015218 A KR 20067015218A KR 20070004599 A KR20070004599 A KR 20070004599A
Authority
KR
South Korea
Prior art keywords
range
precursor
emulsion
nanoparticles
structural unit
Prior art date
Application number
KR1020067015218A
Other languages
Korean (ko)
Inventor
마티아스 코흐
빅토르 크레노프
마르쿠스 클라퍼
클라우스 뮐렌
Original Assignee
메르크 파텐트 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004004209A external-priority patent/DE102004004209A1/en
Application filed by 메르크 파텐트 게엠베하 filed Critical 메르크 파텐트 게엠베하
Publication of KR20070004599A publication Critical patent/KR20070004599A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/046Making microcapsules or microballoons by physical processes, e.g. drying, spraying combined with gelification or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/003Organic compounds containing only carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/007Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/14Derivatives of phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/18Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Abstract

The invention relates to the use of statistical copolymers, comprising at least one structural unit with hydrophobic groups and at least one structural unit with hydrophilic groups, as emulsifiers, in particular, for the synthesis of nanoparticles and a production method for such particles with the steps a) production of an inverse emulsion containing one or several water-soluble precursors for the nanoparticles, or a melt, from a statistical copolymer of one monomer with hydrophobic groups and at least one monomer with hydrophilic groups and b) the generation of particles. ® KIPO & WIPO 2007

Description

통계적 공중합체의 용도 {USE OF STATISTICAL COPOLYMERS}Use of Statistical Copolymers {USE OF STATISTICAL COPOLYMERS}

본 발명은 통계적 공중합체 (statistical copolymer) 를 유화제로서, 특히 나노입자의 합성에 사용하는 것과, 그러한 입자의 제조 방법에 관한 것이다.The present invention relates to the use of statistical copolymers as emulsifiers, in particular for the synthesis of nanoparticles, and to methods for producing such particles.

무기 나노입자의 중합체 매트릭스 내로의 혼입은, 예를 들어 충격 강도와 같은, 매트릭스의 기계적 특성에 영향을 미칠 뿐만 아니라, 예를 들어 파장-의존 투과, 색 (흡수 스펙트럼) 및 굴절률과 같은 광학적 특성도 개질시킨다. 광학적 적용을 위한 혼합물에서, 매트릭스의 굴절률과 다른 굴절률을 갖는 재료의 첨가는불가피하게 광산란 및 결국 광 불투명도를 초래하기 때문에, 입자는 중요한 역할을 한다. 혼합물 통과시 피정의 파장 조사 강도의 감소는 무기 입자의 지름에 대한 높은 의존도를 나타낸다.Incorporation of inorganic nanoparticles into the polymer matrix not only affects the mechanical properties of the matrix, such as, for example, impact strength, but also optical properties such as, for example, wavelength-dependent transmission, color (absorption spectrum) and refractive index. Reform. In mixtures for optical applications, the particles play an important role, since the addition of materials with refractive indices different from the refractive index of the matrix inevitably results in light scattering and eventually light opacity. The decrease in wavelength irradiation intensity of the retreat when passing through the mixture indicates a high dependence on the diameter of the inorganic particles.

중합체 중의 분산을 위해 적합한 나노입자의 개발은 입자 크기의 제어 뿐만 아니라, 입자의 표면 특성의 제어도 필요로 한다. 친수성 입자와 소수성 중합체 매트릭스의 간단한 혼합 (예를 들어, 압출에 의해) 은 입자의 중합체 전체에 걸친 비균질한 분포, 및 또한 그의 응집을 초래한다. 따라서, 무기 입자의 중합체로의 균질한 혼입을 위해, 그의 표면은 적어도 소수적으로 개질되어야만 한다. 부가적으로, 나노입자 재료는 특히 응집체를 형성하는 경향이 많으며, 이는 이후의 표면 처리에도 잔존한다.The development of nanoparticles suitable for dispersion in polymers requires control of the particle size as well as the surface properties of the particles. Simple mixing (eg, by extrusion) of the hydrophilic particles with the hydrophobic polymer matrix results in an inhomogeneous distribution of the particles throughout the polymer, and also agglomeration thereof. Thus, for homogeneous incorporation of the inorganic particles into the polymer, its surface must be at least hydrophobicly modified. In addition, nanoparticle materials are particularly prone to forming aggregates, which remain in subsequent surface treatments.

놀랍게도, 특정 통계적 공중합체가 유화제로 이용되면, 나노입자는 적합한 표면 개질로, 응집체가 거의 없이 에멀젼으로부터 직접 침전될 수 있음을 이제 발견하였다.Surprisingly, it has now been found that when certain statistical copolymers are used as emulsifiers, the nanoparticles can be precipitated directly from the emulsion with little aggregates, with suitable surface modification.

따라서, 본 발명은 첫째로 소수성 라디칼을 함유하는 하나 이상의 구조 단위 및 친수성 라디칼을 함유하는 하나 이상의 구조 단위를 함유하는 통계적 공중합체의 유화제로의 사용, 특히 에멀젼으로부터의 나노입자 합성에서의 사용에 관련된다.Accordingly, the present invention first relates to the use of statistical copolymers containing one or more structural units containing hydrophobic radicals and one or more structural units containing hydrophilic radicals as emulsifiers, in particular in the synthesis of nanoparticles from emulsions. do.

본 발명은 추가적으로 중합체-개질된 나노입자의 제조를 위한 과정에 관한 것이며, 이는 단계 a) 에서, 용융물 또는 나노입자의 수용성 전구체의 하나 이상을 함유하는 역에멀젼 (inverse emulsion) 이, 소수성 라디칼을 함유하는 하나 이상의 단량체 및 친수성 라디칼을 함유하는 하나 이상의 단량체의 통계적 공중합체에 의해 제조되고, 단계 b) 에서 입자가 제조되는 것을 특징으로 한다.The present invention further relates to a process for the preparation of polymer-modified nanoparticles, wherein in step a) an inverse emulsion containing at least one of the melt or the water soluble precursor of the nanoparticles contains hydrophobic radicals. Characterized in that it is prepared by a statistical copolymer of at least one monomer and at least one monomer containing a hydrophilic radical, and particles are prepared in step b).

나노입자의 제조를 위한 에멀젼 기법이 대체로 알려져 있다. 따라서, M.P. Pileni; J. Phys. Chem. 1993, 97, 6961-6973 은 역에멀젼 중, CdSe, CdTe 및 ZnS 와 같은 반도체 입자의 제조를 기술한다.Emulsion techniques for the production of nanoparticles are generally known. Thus, M.P. Pileni; J. Phys. Chem. 1993, 97, 6961-6973 describe the preparation of semiconductor particles such as CdSe, CdTe and ZnS in reverse emulsion.

그러나, 무기 재료의 합성은 흔히 에멀젼 내에 전구체 재료의 높은 염 농도를 필요로 하며, 그 농도는 반응 동안 부가적으로 변화한다. 저분자량 계면활성제는 그러한 높은 염 농도에 반응하며, 그에 따라 에멀젼의 안정성에 위험이 있다 (Paul Kent 및 Brian R. Saunders; Journal of Colloid and Interface Science 242, 437-442 (2001)). 특히, 입자 크기는 오로지 제한된 정도로만 제어될 수 있다 (M. H. Lee, C. Y. Tai, C. H. Lu, Korean J. Chem. Eng. 16,1999, 818-822). However, the synthesis of inorganic materials often requires high salt concentrations of the precursor material in the emulsion, which concentrations change additionally during the reaction. Low molecular weight surfactants respond to such high salt concentrations and are therefore at risk for emulsion stability (Paul Kent and Brian R. Saunders; Journal of Colloid and Interface Science 242, 437-442 (2001)). In particular, particle size can only be controlled to a limited extent (M. H. Lee, C. Y. Tai, C. H. Lu, Korean J. Chem. Eng. 16,1999, 818-822).

K. Landfester (Adv. Mater. 2001, 13, No. 10, 765-768) 는 금속염으로부터의 약 150 내지 약 300 nm 범위의 입자 크기의 나노입자의 제조를 위해, 고분자량 계면활성제 (PEO-PS 블럭 공중합체) 를 초음파와 함께 사용하는 것을 제안하다.K. Landfester (Adv. Mater. 2001, 13, No. 10, 765-768) is a high molecular weight surfactant (PEO-PS) for the production of nanoparticles of particle size ranging from about 150 to about 300 nm from metal salts. Block copolymers) together with ultrasound.

소수성 라디칼을 함유하는 하나 이상의 단량체 및 친수성 라디칼을 함유하는 하나 이상의 단량체의 통계적 공중합체의 선택은, 이제 입자 크기 및 입자-크기 분포의 제어를 가진, 역에멀젼으로부터 무기 나노입자의 제조를 촉진시키는 유화제의 제공을 가능하게 한다. 동시에, 이러한 신규한 유화제의 사용은, 각각의 입자가 중합체 코팅과 직접 형성되기 때문에, 실질적으로 응집체 없이 분산물로부터 나노입자를 단리시키는 것을 가능하게 한다. 부가적으로, 이러한 방법으로 수득가능한 나노입자는 중합체 내에서 특히 용이하고 균질하게 분산될 수 있으며, 특히 이는 가시광에서 그러한 중합체의 원치않는 투명도 손상을 충분히 막는 것을 가능하게 한다.The selection of statistical copolymers of one or more monomers containing hydrophobic radicals and one or more monomers containing hydrophilic radicals, emulsifiers which now facilitate the preparation of inorganic nanoparticles from inverse emulsions, with control of particle size and particle-size distribution To make available. At the same time, the use of these novel emulsifiers makes it possible to isolate the nanoparticles from the dispersion substantially without aggregates since each particle is formed directly with the polymer coating. In addition, the nanoparticles obtainable in this way can be particularly easily and homogeneously dispersed in the polymer, which in particular makes it possible to sufficiently prevent unwanted transparency damage of such polymers in visible light.

본 발명에 따라 바람직하게 사용될 통계적 공중합체는 통계적 공중합체 내에, 1:2 내지 500:1 범위, 바람직하게는 1:1 내지 100:1 범위 및 특히 바람직하게는 7:3 내지 10:1 범위인, 소수성 라디칼을 함유하는 구조 단위 대 친수성 라디칼을 함유하는 구조 단위의 중량비를 나타낸다. 통계적 공중합체의 중량 평균 분자량은 보통 Mw = 1000 내지 1,000,000 g/mol 범위, 바람직하게는 1500 내지 100,000 g/mol 범위, 및 특히 바람직하게는 2000 내지 40,000 g/mol 의 범위에 있다.The statistical copolymers to be preferably used according to the invention are in the statistical copolymers in the range from 1: 2 to 500: 1, preferably in the range from 1: 1 to 100: 1 and particularly preferably in the range from 7: 3 to 10: 1. And the weight ratio of the structural unit containing a hydrophobic radical to the structural unit containing a hydrophilic radical. The weight average molecular weight of the statistical copolymer is usually in the range of Mw = 1000 to 1,000,000 g / mol, preferably in the range of 1500 to 100,000 g / mol, and particularly preferably in the range of 2000 to 40,000 g / mol.

여기서 특히, 화학식 I 에 따른 공중합체가 발견되었다:In particular, copolymers according to formula (I) have been found:

Figure 112006054220913-PCT00001
Figure 112006054220913-PCT00001

[식 중, [In the meal,

X 및 Y 는 통상적인 비이온성 또는 이온성 단량체의 라디칼에 상응하며,X and Y correspond to the radicals of conventional nonionic or ionic monomers,

R1 은 수소 또는 소수성 측기를 의미하며, 바람직하게는 4 개 이상의 탄소 원자를 갖는 분지형 또는 비분지형 알킬 라디칼로부터 선택되며, 여기서 하나 이상의, 바람직하게는, 모든 H 원자가 불소 원자로 대체될 수 있으며,R 1 means hydrogen or a hydrophobic side group, preferably selected from branched or unbranched alkyl radicals having 4 or more carbon atoms, wherein at least one, preferably all H atoms can be replaced with fluorine atoms,

R2 는 친수성 측기를 의미하며, 바람직하게는 포스포네이트, 술포네이트, 폴리올 또는 폴리에테르 라디칼을 가지며,R 2 means a hydrophilic side group, preferably has a phosphonate, sulfonate, polyol or polyether radical,

-X-R1 및 -Y-R2 는 각각 분자 내에서 특정한 방식으로 본 발명에 따른 요건을 충족시키는 여러 다른 의미를 가질 수 있다.-XR 1 and -YR 2 may each have several different meanings that meet the requirements according to the invention in a particular way in the molecule.

-Y-R2 가 베타인 구조를 의미하는 중합체가 본 발명에 따라 특히 바람직하 다.Particularly preferred according to the invention are polymers in which -YR 2 is a betaine structure.

이어서, X 및 Y 가 서로 독립적으로 -O, -C(=O)-O-, -C(=O)-NH-, -(CH2)n-, 페닐, 나프틸 또는 피리딜을 의미하는, 화학식 I 의 중합체가 여기서 특히 바람직하다. 추가적으로, 하나 이상의 구조 단위가 하나 이상의 4차 질소 원자 (여기서, R2 는 바람직하게 -(CH2)m-(N+(CH3)2)-(CH2)n-SO3 - 측기 또는 -(CH2)m-(N+(CH3)2)-(CH2)n-PO3 2- 측기를 의미하며, m 은 1 내지 30 의 범위, 바람직하게는 1 내지 6 범위, 특히 바람직하게는 2 의 정수를 의미하며, n 은 1 내지 30 범위, 바람직하게는 1 내지 8 범위, 특히 바람직하게는 3 의 정수를 의미함) 를 함유하는 중합체가 유리하게 사용될 수 있다.X and Y, independently of one another, mean -O, -C (= 0) -0-, -C (= 0) -NH-,-(CH 2 ) n- , phenyl, naphthyl or pyridyl Particular preference is given here to polymers of the general formula (I). In addition, one or more structural units may comprise at least one quaternary nitrogen atom, wherein R 2 is preferably-(CH 2 ) m- (N + (CH 3 ) 2 )-(CH 2 ) n -SO 3 - side group or- (CH 2 ) m- (N + (CH 3 ) 2 )-(CH 2 ) n -PO 3 2- side group, m being in the range of 1 to 30, preferably in the range of 1 to 6, particularly preferably Means an integer of 2, n is in the range from 1 to 30, preferably from 1 to 8, particularly preferably from 3).

특히 바람직하게 사용될 통계적 공중합체는 하기 도식에 따라 제조될 수 있다:Statistical copolymers to be used particularly preferably may be prepared according to the following scheme:

Figure 112006054220913-PCT00002
Figure 112006054220913-PCT00002

목적되는 양의 라우릴 메타크릴레이트 (LMA) 및 디메틸 아미노에틸 메타크릴레이트 (DMAEMA) 는 여기서 공지된 방법, 바람직하게는 AIBN 의 첨가를 통해 톨루 엔 중 자유 라디칼에 의해 공중합된다. 이 후, 베타인 구조는 아민과 1,3-프로판 술톤의 반응에 의해 공지된 방법으로 수득된다.The desired amounts of lauryl methacrylate (LMA) and dimethyl aminoethyl methacrylate (DMAEMA) are copolymerized by free radicals in toluene via the method known here, preferably via the addition of AIBN. Thereafter, the betaine structure is obtained by a known method by reaction of amine with 1,3-propane sultone.

바람직하게 사용될 대안적인 공중합체는 스티렌, 비닐피롤리돈, 비닐피리딘, 할로겐 스티렌 또는 메트옥시스티렌을 함유할 수 있으며, 이러한 예에 제한되지는 않는다. 본 발명의 또 다른, 마찬가지로 바람직한 구현예에서는, 하나 이상의 구조 단위가 소중합체 또는 중합체, 바람직하게는 마크로단량체 (여기서 폴레에테르, 폴리올레핀 및 폴리아크릴레이트가 마크로단량체로서 특히 바람직함) 인 것을 특징으로 하는 중합체가 사용된다.Alternative copolymers that will preferably be used may contain, but are not limited to, styrene, vinylpyrrolidone, vinylpyridine, halogen styrene or metoxystyrene. In another, likewise preferred embodiment of the present invention, the at least one structural unit is characterized in that it is an oligomer or a polymer, preferably a macromonomer, wherein polyethers, polyolefins and polyacrylates are particularly preferred as macromonomers. Polymers are used.

무기 나노입자로 사용될 수 있는 전구체는 수용성 금속 화합물, 바람직하게는 규소, 세륨, 코발트, 크로뮴, 니켈, 아연, 티타늄, 철, 이트륨 및/또는 지르코늄 화합물이며, 여기서 이러한 전구체를, 상응하는 금속-산화물 입자의 제조를 위해 바람직하게 산 또는 가성알칼리액 (lye) 과 반응시킨다. 혼합된 산화물은 상응하는 전구체의 적절한 혼합에 의해 간단하게 수득될 수 있다. 적합한 전구체의 선택은 당업자에게 어렵지 않다; 적합한 화합물은 수용액으로부터 상응하는 표적 화합물의 침전에 적합한 모든 것이다. 산화물의 제조를 위해 적합한 전구체의 개요는, 예를 들어, 그 내용이 본 출원의 개시 내용에 명백히 속하는, [K.Osseo-Asare "Microemulsion-mediated Synthesis of nanosize Oxide Materials" in: Kumar P. Mittal KL, (editors), Handbook of microemulsion science and technology, New York: Marcel Dekker, Inc., pp. 559-573] 의 표 6 에 제공되어 있다.Precursors that can be used as the inorganic nanoparticles are water-soluble metal compounds, preferably silicon, cerium, cobalt, chromium, nickel, zinc, titanium, iron, yttrium and / or zirconium compounds, where such precursors are represented by corresponding metal-oxides. For the preparation of the particles it is preferably reacted with an acid or caustic alkali. Mixed oxides can be obtained simply by appropriate mixing of the corresponding precursors. Selection of suitable precursors is not difficult for those skilled in the art; Suitable compounds are all suitable for the precipitation of the corresponding target compounds from aqueous solutions. An overview of suitable precursors for the production of oxides is described, for example, in K. Osseo-Asare "Microemulsion-mediated Synthesis of nanosize Oxide Materials" in: Kumar P. Mittal KL, the content of which is expressly within the disclosure of the present application. , (editors), Handbook of microemulsion science and technology, New York: Marcel Dekker, Inc., pp. 559-573.

친수성 용융물 또한 본 발명의 의미에 있어서 나노입자의 전구체로 이용될 수 있다. 나노입자의 제조를 위한 화학 반응은 이 경우에 반드시 필요하지 않다.Hydrophilic melts can also be used as precursors of nanoparticles in the sense of the present invention. Chemical reactions for the production of nanoparticles are not necessary in this case.

특히, 전구체로서의 알칼리 또는 알칼리성 토금속 실리케이트, 바람직하게 소듐 실리케이트 또한 산 또는 가성알칼리액과 반응시켜 이산화규소를 제공할 수 있다.In particular, alkali or alkaline earth metal silicates, preferably sodium silicates, as precursors can also be reacted with an acid or caustic alkaline solution to give silicon dioxide.

본 발명의 마찬가지로 바람직한 구현예에서, 귀금속의 하나 이상의 가용성 화합물, 바람직하게는 질산은이 환원제, 바람직하게는 시트르산과 반응하여 금속이 제공된다.In a likewise preferred embodiment of the invention, at least one soluble compound of the noble metal, preferably silver nitrate, is reacted with a reducing agent, preferably citric acid to provide a metal.

본 발명에 따라 마찬가지로 바람직한, 나노입자성 금속 황화물의 제조를 위해, 가용성 금속 화합물, 바람직하게는 가용성 Pb, Cd 또는 Zn 화합물이 황화 수소와 반응하여 금속 황화물이 제공된다.For the preparation of nanoparticulate metal sulfides, which are likewise preferred according to the invention, soluble metal compounds, preferably soluble Pb, Cd or Zn compounds, are reacted with hydrogen sulfide to provide metal sulfides.

본 발명의 또 다른 구현예에서, 바람직하게 예를 들어, 칼슘 클로리드와 같은 가용성 금속 화합물이 이산화탄소와 반응하여 나노입자성 금속 카르보네이트가 제공된다.In another embodiment of the present invention, soluble metal compounds, such as, for example, calcium chloride, are preferably reacted with carbon dioxide to provide nanoparticulate metal carbonates.

바람직하게 제조된 나노입자는 규소, 세륨, 코발트, 크로뮴, 니켈, 아연, 티타늄, 철, 이트륨 및/또는 지르코늄의 산화물 또는 수산화물로 본질적으로 이루어지는 것들이다.Preferred nanoparticles are those consisting essentially of oxides or hydroxides of silicon, cerium, cobalt, chromium, nickel, zinc, titanium, iron, yttrium and / or zirconium.

입자는 바람직하게, 동적광산란 또는 투과 전자 현미경으로 측정된, 3 내지 200 nm, 특히 20 내지 80 nm 및 매우 특히 바람직하게 30 내지 50 nm 의 평균 입자 크기를 갖는다. 특정한, 마찬가지로 바람직한 본 발명의 구현예에서, 입자 크기의 분포는 좁으며, 즉, 변동 범위는 평균의 100% 미만이며, 특히 바람직하게는 평균의 50% 이하이다.The particles preferably have an average particle size of 3 to 200 nm, in particular 20 to 80 nm and very particularly preferably 30 to 50 nm, as measured by dynamic light scattering or transmission electron microscopy. In certain, likewise preferred embodiments of the invention, the distribution of particle sizes is narrow, ie the variation range is less than 100% of the mean, particularly preferably 50% or less of the mean.

중합체에서의 UV 보호를 위한, 이러한 나노입자의 사용에 있어서, 나노입자가 300 ~ 500 nm 의 범위, 바람직하게는 400 nm 이하의 범위에 흡수 최대점을 갖는 것이 특히 바람직하며, 여기서 특히 바람직한 나노입자는 특히 UV-A 영역에서 조사를 흡수한다.In the use of such nanoparticles for UV protection in polymers, it is particularly preferred that the nanoparticles have an absorption maximum point in the range of 300 to 500 nm, preferably in the range of 400 nm or less, particularly preferred nanoparticles here Absorbs radiation, especially in the UV-A region.

에멀젼 과정은 여기서 여러 방식으로 수행될 수 있다:The emulsion process can be performed here in several ways:

상기된 바와 같이, 입자는 보통 단계 b) 에서 전구체의 반응 또는 용융물의 냉각에 의해 제조된다. 전구체는 여기서, 선택된 방법 변형에 따라, 산, 가성알칼리액, 환원제 또는 산화물과 반응시켜질 수 있다.As mentioned above, the particles are usually prepared by reaction of the precursor or cooling of the melt in step b). The precursor may here be reacted with an acid, caustic alkaline solution, reducing agent or oxide, depending on the method variant selected.

목적되는 입자-크기 범위의 입자 제조를 위해, 에멀젼 중의 액적 크기가 5 내지 500 nm 범위, 바람직하게 10 내지 200 nm 의 범위일때 특히 유리하다. 주어진 시스템의 액적 크기가 여기서 당업자에게 공지된 방법으로 맞추어지며, 오일 상 (phase) 은 당업자에 의해 반응 시스템에 개별적으로 맞추어진다. ZnO 입자의 제조를 위해, 예를 들어, 톨루엔 및 시클로헥산이 오일 상으로 성공적인 것이 확인되었다. For the preparation of particles in the desired particle-size range, it is particularly advantageous when the droplet size in the emulsion is in the range from 5 to 500 nm, preferably in the range from 10 to 200 nm. The droplet size of a given system is tailored in a manner known to those skilled in the art here, and the oil phase is individually tailored to the reaction system by those skilled in the art. For the production of ZnO particles, for example, it has been found that toluene and cyclohexane are successful in the oil phase.

어떤 경우에서는, 통계적 공중합체에 부가적으로, 추가의 조유화제 (coemulsifier), 바람직하게는 비이온성 계면활성제를 이용하는 것이 도움이될 수 있다. 바람직한 조유화제는 임의로 에톡시화 또는 프로폭시화된, 여러 정도의 에톡시화 또는 프로폭시화를 갖는 비교적 장쇄의 알카놀 또는 알킬페놀 (예를 들어, 0 내지 50 mol 의 알킬렌 옥시드의 첨가생성물) 이다.In some cases, in addition to the statistical copolymers, it may be helpful to use additional coemulsifiers, preferably nonionic surfactants. Preferred oiling agents are relatively long-chain alkanols or alkylphenols (eg, adducts of 0 to 50 mol alkylene oxides), with varying degrees of ethoxylation or propoxylation, optionally ethoxylated or propoxylated. to be.

분산 보조제, 바람직하게는 폴리비닐피롤리돈, 비닐피롤리돈 및 아세테이트 또는 비닐 프로피오네이트의 공중합체, 아크릴레이트 및 아크릴로니트릴의 부분적으로 비누화된 공중합체, 여러 잔류 아세테이트 함량을 갖는 폴리비닐 알코올, 셀룰로오스 에테르, 젤라틴, 블럭 공중합체, 개질된 전분, 저분자량, 카르복시- 및/또는 술포닐-함유 중합체와 같은 극성 기를 함유하는 수용성, 고분자량, 유기 화합물, 또는 이러한 재료의 혼합물을 이용하는 것 또한 유리할 수 있다.Dispersing aids, preferably polyvinylpyrrolidone, copolymers of vinylpyrrolidone and acetate or vinyl propionate, partially saponified copolymers of acrylates and acrylonitrile, polyvinyl alcohols having different residual acetate contents Using water-soluble, high molecular weight, organic compounds, or mixtures of these materials, which also contain polar groups such as cellulose ethers, gelatin, block copolymers, modified starches, low molecular weight, carboxy- and / or sulfonyl-containing polymers May be advantageous.

특히 바람직한 보호성 콜로이드는 40 mol% 미만, 특히 5 내지 39 mol% 의 잔류 아세테이트 함량을 갖는 폴리비닐 알코올, 및/또는 35 중량% 미만, 특히 5 내지 30 중량% 의 비닐 에스테르 함량을 갖는 비닐피롤리돈-비닐 프로피오네이트 공중합체이다.Particularly preferred protective colloids are polyvinyl alcohols having a residual acetate content of less than 40 mol%, in particular 5 to 39 mol%, and / or vinylpyrroli having a vinyl ester content of less than 35% by weight, in particular 5 to 30% by weight. Don-vinyl propionate copolymer.

요구되는 나노입자의 목적되는 특성 조합은 온도, 압력 및 반응 기간과 같은 반응 조건의 조절에 의해 목적되는 방식으로 조절될 수 있다. 이러한 매개변수의 상응하는 조절은 당업자에게 전혀 어렵지 않다. 예를 들어, 작업은 대기압 및 실온에서 여러 목적을 위해 수행될 수 있다.The desired combination of properties of the nanoparticles required can be adjusted in the desired manner by control of reaction conditions such as temperature, pressure and reaction duration. Corresponding adjustment of these parameters is not difficult at all to the skilled person. For example, the operation can be carried out for various purposes at atmospheric pressure and at room temperature.

바람직한 방법 변형에서, 전구체를 위한 반응물이 유화된 형태로 있는 제 2 의 에멀젼이 단계 b) 에서 단계 a) 로부터의 전구체 에멀젼과 혼합된다. 이러한 2-에멀젼 방법은 특히 좁은 입자-크기 분포를 갖는 입자의 제조를 허용한다. 여기서 2개의 에멀젼이 초음파의 작용에 의해 서로 혼합되는 것이 특히 유리할 수 있다.In a preferred method variant, a second emulsion in which the reactants for the precursor are in emulsified form is mixed in step b) with the precursor emulsion from step a). This two-emulsion method allows the preparation of particles with particularly narrow particle-size distributions. It may be particularly advantageous here that the two emulsions are mixed with each other by the action of ultrasound.

또 다른, 마찬가지로 바람직한 방법 변형에서, 전구체 에멀젼이 단계 b) 에서 에멀젼의 연속상에 용해되는 침전물과 혼합된다. 이어서, 침전은 침전물의 전구체-함유 미셀로의 확산에 의해 수행된다. 예를 들어, 티타늄 디옥시드 입자는 피리딘의 티타닐 클로리드-함유 미셀로의 확산에 의해 수득될 수 있고, 또는 은 입자는 장쇄 알데하이드의 질산은-함유 미셀로의 확산에 의해 수득될 수 있다.In another, likewise preferred method variant, the precursor emulsion is mixed with a precipitate which dissolves in the continuous phase of the emulsion in step b). Precipitation is then carried out by diffusion of the precipitate into the precursor-containing micelles. For example, titanium dioxide particles can be obtained by diffusion of pyridine to titanyl chloride-containing micelles, or silver particles can be obtained by diffusion of long chain aldehydes to silver nitrate-containing micelles.

본 발명에 따른 나노입자는 특히 중합체 내에서 사용된다. 본 발명에 따른 나노입자가 잘 혼입될 수 있는 중합체는, 특히, 폴리카르보네이트 (PC), 폴리에틸렌 테레프탈레이트 (PETP), 폴리이미드 (PI), 폴리스티렌 (PS), 폴리메틸 메타크릴레이트 (PMMA) 또는 상기 중합체 중 하나의 적어도 일부를 함유하는 공중합체이다. Nanoparticles according to the invention are used in particular in polymers. Polymers in which the nanoparticles according to the invention can be incorporated are, in particular, polycarbonate (PC), polyethylene terephthalate (PETP), polyimide (PI), polystyrene (PS), polymethyl methacrylate (PMMA). Or a copolymer containing at least part of one of the polymers.

여기서 혼입이 중합체 조성물의 제조를 위해 통상적인 방법에 의해 수행될 수 있다. 예를 들어, 중합체 재료는, 바람직하게는 압출기 또는 혼합기에서 본 발명에 따른 나노입자와 혼합될 수 있다. 사용되는 중합체에 따라, 혼합기를 사용하는 것 또한 가능하다.Incorporation here can be carried out by conventional methods for the preparation of polymer compositions. For example, the polymeric material can be mixed with the nanoparticles according to the invention, preferably in an extruder or mixer. Depending on the polymer used, it is also possible to use mixers.

본 발명에 따른 입자의 특별한 장점은 중합체 내에서 입자의 균질한 분포를 위해, 종래기술에 비해 낮은 에너지 입력만이 필요한데 있다.A particular advantage of the particles according to the invention is that only a low energy input is required compared to the prior art for the homogeneous distribution of the particles in the polymer.

여기의 중합체는 또한 예를 들어, 페인트와 같은 중합체의 분산물일 수 있다. 여기서 혼입은 통상적인 혼합 작업에 의해 수행될 수 있다.The polymer herein may also be a dispersion of a polymer, for example paint. Incorporation here can be carried out by conventional mixing operations.

나노입자를 함유하는 본 발명에 따른 중합체 조성물은 추가적으로 표면의 코 팅에도 특히 적합하다. 이는 표면 또는 코팅 밑에 있는 재료를, 예를 들어, UV 조사로부터 보호하는 것을 가능하게 한다.The polymer composition according to the invention containing nanoparticles is additionally particularly suitable for the coating of surfaces as well. This makes it possible to protect the material under the surface or the coating, for example from UV radiation.

하기의 예는 본 발명을 제한하지 않고 더욱 상세하게 설명하기 위한 것이다.The following examples are intended to explain in more detail without limiting the invention.

실시예 1: 마크로계면활성제의 합성Example 1 Synthesis of Macrosurfactants

제 1 단계는 도데실 메타크릴레이트 (라우릴 메타크릴레이트; LMA) 및 디메틸아미노에틸 메타크릴레이트 (DMAEMA) 의 통계적 공중합체의 합성을 포함한다. 분자량의 제어는 머캅토에탄올의 첨가에 의해 달성될 수 있다. 이러한 방식으로 수득된 공중합체는 포화기를 공급하게 위해 1,3-프로판 술톤에 의해 개질된다.The first step involves the synthesis of statistical copolymers of dodecyl methacrylate (lauryl methacrylate; LMA) and dimethylaminoethyl methacrylate (DMAEMA). Control of molecular weight can be achieved by the addition of mercaptoethanol. The copolymer obtained in this way is modified by 1,3-propane sultone to feed the saturation group.

이때문에, 7 g 의 LMA 및 DMAEMA 를, 1 ml 의 톨루엔 중 AIBN 0.033 g 의 첨가에 의한 반응 개시 후, 하기 표 1 에 상응하는 양으로, 처음에 12 g 의 톨루엔에 도입하고, 70℃ 에서 아르곤 하, 자유-라디칼 중합시켰다. 사슬 증대는 여기서 2-머캅토에탄올의 첨가에 의해 제어될 수 있다 (표 1 참조). 미정제 중합체를 [V. Butan, C. E. Bennett, M. Vamvkaki, A. B. Lowe, N. C. Billingham, S. P. Armes, J. Mater. Chem., 1997, 7(9), 1693-1695] 에 기술된 바와 같이, 세척하고, 동결건조하고, 이어서 1,3-프로판 술톤과 반응시켰다.For this reason, 7 g of LMA and DMAEMA were first introduced into 12 g of toluene in an amount corresponding to the following Table 1 after the start of the reaction by addition of 0.033 g of AIBN in 1 ml of toluene, and then at 70 ° C. Free-radical polymerization under argon. Chain enhancement can be controlled here by the addition of 2-mercaptoethanol (see Table 1). Crude polymers are described in [V. Butan, C. E. Bennett, M. Vamvkaki, A. B. Lowe, N. C. Billingham, S. P. Armes, J. Mater. Chem., 1997, 7 (9), 1693-1695, washed, lyophilized and then reacted with 1,3-propane sultone.

결과적으로 수득된 중합체의 특성화는 표 1 에 나타나 있다.The characterization of the resulting polymer is shown in Table 1.

사용된 단량체의 양 및 결과적으로 수득된 중합체의 특성화Characterization of the amount of monomers used and the resulting polymer obtained DMAEMA [g]DMAEMA [g] 중합체 내의 DMAEMA [mol%]DMAEMA [mol%] in the polymer 1-머캅토에탄올 [g]1-mercaptoethanol [g] Mn [g/mol]M n [g / mol] Mw [g/mol]M w [g / mol] 베타인 기 [mol%]Betaine group [mol%] E1E1 1.081.08 1919 0.0330.033 1800018000 3100031000 1616 E2E2 1.081.08 1919 0.0110.011 2800028000 5100051000 1919 E3E3 1.081.08 2121 0.0660.066 1300013000 2100021000 2121 E4E4 1.091.09 2020 -- 5900059000 158000158000 14.614.6 E5E5 0.480.48 10.710.7 -- 5200052000 162000162000 7.57.5

실시예 2: ZnO 입자의 침전Example 2: Precipitation of ZnO Particles

ZnO 입자는 하기 방법에 의해 침전된다:ZnO particles are precipitated by the following method:

1. 각 경우에 초음파에 의한, 물 1.1 g 중 Zn(AcO)2*2H2O 0.4 g (에멀젼 1) 및 물 1.35 g 중 NaOH 0.15 g (에멀젼 2) 의 수용액의 역에멀젼의 제조. 에멀젼 1 및 에멀젼 2 는 각각 표 1 로부터의 150 mg 의 통계적 공중합체 E1 ~ E5 을 함유한다.1. Preparation of an inverse emulsion of an aqueous solution of 0.4 g of Zn (AcO) 2 * 2H 2 O (emulsion 1) and 0.15 g of NaOH (emulsion 2) in 1.35 g of water by ultrasonic in each case. Emulsion 1 and Emulsion 2 each contain 150 mg of statistical copolymers E1 to E5 from Table 1.

2. 에멀젼 1 및 에멀젼 2 의 혼합물의 초음파 처리 후, 건조.2. After sonication of the mixture of emulsion 1 and emulsion 2, drying.

3. 결과적으로 수득된 고체의 물 세척에 의한 소듐 아세테이트의 정제.3. Purification of sodium acetate by water washing of the resulting solid.

4. 건조 및 톨루엔 중 교반에 의한, 유화제에 의해 표면에 관능화된 분말의 재-분산.4. Re-dispersion of the powder functionalized on the surface by emulsifier, by drying and stirring in toluene.

FT-IR 분광법 및 X-선 회절은 ZnO 의 형성을 나타낸다. 추가적으로, 소듐 아세테이트의 반사가 X-선 선도에 나타나지 않는다.FT-IR spectroscopy and X-ray diffraction indicate the formation of ZnO. In addition, the reflection of sodium acetate does not appear in the X-ray plot.

따라서, 실시예 2 는 합성된 마크로계면활성제 및 아연 산화물 입자로 이루어진 생성물을 초래한다.Thus, Example 2 results in a product consisting of the synthesized macrosurfactant and zinc oxide particles.

공중합체Copolymer 지름 [nm] (광산란)Diameter [nm] (light scattering) 변이 [nm]Variation [nm] ZnO 의 비율 (중량%)Ratio of ZnO (% by weight) E1E1 3737 3030 30.330.3 E2E2 6666 5353 30.530.5 E3E3 5050 4141 3232

비교예 2a: 유화제 ABIL EM 90Comparative Example 2a: Emulsifier ABIL EM 90 ®® 의 사용 Use of

실시예 1 로부터의 통계적 공중합체 대신, 시판되는 유화제 ABIL EM 90® (세틸 디메티콘 코폴리올, Goldschmidt) 를 사용한 실시예 2 에 기술된 바와 같은 방법은 안정적인 에멀젼을 초래하지 않는다. 수득된 입자는 500 내지 4000 nm 의 지름을 나타낸다. Example 1 instead of the statistical copolymer of from, a commercially available emulsifier ABIL EM 90 ® (Cetyl dimethicone copolyol, Goldschmidt) carried the same way as described in Example 2 using the do not result in a stable emulsion. The obtained particles have a diameter of 500 to 4000 nm.

실시예 3: 이산화규소의 침전Example 3: Precipitation of Silicon Dioxide

SiO2 입자의 침전은 하기 방법으로 수행된다:Precipitation of SiO 2 particles is carried out by the following method:

1. 각각의 경우에, 초음파에 의한 Na2SiO3 (에멀젼 1) 및 H2SO4 (에멀젼 2) 의 수용액의 역에멀젼의 제조 (표 2 에 상응하는 농도).1. In each case, preparation of an inverse emulsion of aqueous solutions of Na 2 SiO 3 (emulsion 1) and H 2 SO 4 (emulsion 2) by ultrasound (concentrations corresponding to Table 2).

2. 에멀젼 1 및 에멀젼 2 의 혼합물의 초음파 처리 후, 건조.2. After sonication of the mixture of emulsion 1 and emulsion 2, drying.

3. 수득물의 물 세척에 의한 정제.3. Purification of the obtained product by water washing.

4. 건조 및 수득된 분말의 재분산.4. Drying and redispersion of the powder obtained.

FR-IR 분광법 및 X-선 회절은 SiO2 의 형성 및 소듐 실리케이트의 비-존재/부재를 나타낸다.FR-IR spectroscopy and X-ray diffraction indicate the formation of SiO 2 and the non-existence / absence of sodium silicate.

따라서, 상기 단계는 합성된 마크로계면활성제 및 이산화규소 입자로 이루어진 생성물을 제공한다.Thus, this step provides a product consisting of the synthesized macrosurfactant and silicon dioxide particles.

에멀젼의 조성 및 생성물의 특성화Composition of the emulsion and characterization of the product 실험Experiment 에멀젼 E1Emulsion E1 에멀젼 E2Emulsion E2 나노입자의 입자 크기 [nm]Particle Size of Nanoparticles [nm] 표준 편차Standard Deviation [nm][nm] 3a3a 중합체 계면활성제 (E4) 0.15 g; 톨루엔 11.7 g; 물 1.25 g; Na2SiO3 1.25 g0.15 g of polymeric surfactant (E4); 11.7 g of toluene; 1.25 g of water; Na 2 SiO 3 1.25 g 중합체 계면활성제 (E4) 0.15 g; 톨루엔 11.7 g; 물 2.2 g; H2SO4 0.3 g0.15 g of polymeric surfactant (E4); 11.7 g of toluene; 2.2 g of water; 0.3 g H 2 SO 4 5959 1919 3b 3b 중합체 계면활성제 (E4) 0.15 g; 톨루엔 11.7 g; 물 1.25 g; Na2SiO3 1.00 g0.15 g of polymeric surfactant (E4); 11.7 g of toluene; 1.25 g of water; Na 2 SiO 3 1.00 g 중합체 계면활성제 (E4) 0.15 g; 톨루엔 11.7 g; 물 1.76 g; H2SO4 0.24 g0.15 g of polymeric surfactant (E4); 11.7 g of toluene; 1.76 g of water; 0.24 g H 2 SO 4 4040 1515 3c 3c 중합체 계면활성제 (E4) 0.15 g; 톨루엔 11.7 g; 물 0.75 g; Na2SiO3 0.75 g0.15 g of polymeric surfactant (E4); 11.7 g of toluene; 0.75 g of water; Na 2 SiO 3 0.75 g 중합체 계면활성제 (E4) 0.15 g; 톨루엔 11.7 g; 물 1.32 g; H2SO4 0.18 g0.15 g of polymeric surfactant (E4); 11.7 g of toluene; 1.32 g of water; H 2 SO 4 0.18 g 5050 2020 3d 3d 중합체 계면활성제 (E5) 0.15 g; 톨루엔 11.7 g; 물 0.75 g; Na2SiO3 0.75 g0.15 g of polymeric surfactant (E5); 11.7 g of toluene; 0.75 g of water; Na 2 SiO 3 0.75 g 중합체 계면활성제 (E5) 0.15 g; 톨루엔 11.7 g; 물 1.32 g; H2SO4 0.18 g0.15 g of polymeric surfactant (E5); 11.7 g of toluene; 1.32 g of water; H 2 SO 4 0.18 g 4343 1515 3e 3e 중합체 계면활성제 (E5) 0.15 g; 톨루엔 11.7 g 물 1.25 g; Na2SiO3 1.25 g0.15 g of polymeric surfactant (E5); 11.7 g toluene 1.25 g water; Na 2 SiO 3 1.25 g 중합체 계면활성제 (E5) 0.15 g; 톨루엔 11.7 g; 물 2.2 g; H2SO4 0.3 g0.15 g of polymeric surfactant (E5); 11.7 g of toluene; 2.2 g of water; 0.3 g H 2 SO 4 5353 1212 3f 3f 중합체 계면활성제 (E5) 0.15 g; 톨루엔 11.7 g; 물 1.0 g; Na2SiO3 1.0 g0.15 g of polymeric surfactant (E5); 11.7 g of toluene; 1.0 g of water; Na 2 SiO 3 1.0 g 중합체 계면활성제 (E5) 0.15 g; 톨루엔 11.7 g; 물 1.76 g; H2SO4 0.24 g0.15 g of polymeric surfactant (E5); 11.7 g of toluene; 1.76 g of water; 0.24 g H 2 SO 4 9393 3030

실시예 4: 중합체 조성물Example 4: Polymer Composition

실시예 2-E1 로부터의 입자의, PMMM 래커 중의 분산물을 혼합으로 제조하고, 유리 기판에 적용하고 건조한다. 건조 후의 ZnO 함량은 10 중량% 이다. 필름은 실질적으로 인지불가능한 탁도를 나타낸다. UV-VIS 분광측정기를 사용한 측정은 이러한 효과를 확인시켰다. 시료는 층 두께에 따라 하기의 흡수 값을 나타낸다 (투과에서 손실된 입사 광의 백분율이 나타나 있음).Dispersions in the PMMM lacquer of particles from Example 2-E1 are prepared by mixing, applied to a glass substrate and dried. The ZnO content after drying is 10% by weight. The film exhibits a substantially unacceptable haze. Measurements using a UV-VIS spectrometer confirmed this effect. The sample shows the following absorption values depending on the layer thickness (the percentage of incident light lost in transmission is shown).

층 두께 UV-A (350 nm) VIS (400 nm)Layer Thickness UV-A (350 nm) VIS (400 nm)

1.2 ㎛ 35% 4%1.2 μm 35% 4%

1.6 ㎛ 40% 5%1.6 μm 40% 5%

2.2 ㎛ 45% 7%2.2 μm 45% 7%

비교:compare:

(상기와 같은 PMMA 래커 중 ZnO (extra pure, Merck))(ZnO (extra pure, Merck) in the same PMMA lacquer)

2 ㎛ 64% 46%2 μm 64% 46%

Claims (20)

소수성 라디칼을 함유하는 하나 이상의 구조 단위 및 친수성 라디칼을 함유하는 하나 이상의 구조 단위를 함유하는 통계적 공중합체의 유화제로서의 용도.Use as a emulsifier of statistical copolymers containing at least one structural unit containing a hydrophobic radical and at least one structural unit containing a hydrophilic radical. 제 1 항에 있어서, 공중합체가 에멀젼으로부터의 나노입자의 합성에서 유화제로 사용되는 것을 특징으로 하는 용도.2. Use according to claim 1, characterized in that the copolymer is used as an emulsifier in the synthesis of nanoparticles from an emulsion. 제 1 항 또는 제 2 항에 있어서, 통계적 공중합체 내의 소수성 라디칼을 함유하는 구조 단위 대 친수성 라디칼을 함유하는 구조 단위의 중량비가 1:2 내지 500:1 범위, 바람직하게는 1:1 내지 100:1 범위 및 특히 바람직하게는 7:3 내지 10:1 범위에 있는 것을 특징으로 하는 용도.The weight ratio of the structural unit containing a hydrophobic radical to the hydrophilic radical in the statistical copolymer is in the range of 1: 2 to 500: 1, preferably 1: 1 to 100: 1, and particularly preferably in the range from 7: 3 to 10: 1. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 통계적 공중합체의 중량 평균 분자량이 Mw = 1000 내지 1,000,000 g/mol 범위, 바람직하게는 1500 내지 100,000 g/mol 범위, 및 특히 바람직하게는 2000 내지 40,000 g/mol 의 범위에 있는 것을 특징으로 하는 용도.The method according to claim 1, wherein the weight average molecular weight of the statistical copolymer is in the range M w = 1000 to 1,000,000 g / mol, preferably in the range 1500 to 100,000 g / mol, and particularly preferably 2000 To 40,000 g / mol. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 공중합체가 화학식 I 에 따 른 것을 특징으로 하는 용도:Use according to any of the preceding claims, characterized in that the copolymer is according to formula (I): [화학식 I][Formula I]
Figure 112006054220913-PCT00003
Figure 112006054220913-PCT00003
[식 중,[In the meal, X 및 Y 는 통상적인 비이온성 또는 이온성 단량체의 라디칼에 상응하며,X and Y correspond to the radicals of conventional nonionic or ionic monomers, R1 은 수소 또는 소수성 측기를 의미하며, 바람직하게는 4 개 이상의 탄소 원자를 갖는 분지형 또는 비분지형 알킬 라디칼로부터 선택되며, 여기서 하나 이상의, 바람직하게는 모든 H 원자가 불소 원자로 대체될 수 있으며,R 1 means hydrogen or a hydrophobic side group, preferably selected from branched or unbranched alkyl radicals having 4 or more carbon atoms, wherein at least one, preferably all H atoms can be replaced with fluorine atoms, R2 는 친수성 측기를 의미하며, 바람직하게는 포스포네이트, 술포네이트, 폴리올 또는 폴리에테르 라디칼을 가지며,R 2 means a hydrophilic side group, preferably has a phosphonate, sulfonate, polyol or polyether radical, -X-R1 및 -Y-R2 는 분자 내에서 각각 여러 다른 의미를 가질 수 있음].-XR 1 and -YR 2 may each have several different meanings in the molecule].
제 5 항에 있어서, X 및 Y 가 서로 독립적으로 -O, -C(=O)-O-, -C(=O)-NH-, -(CH2)n-, 페닐렌 또는 피리딜을 의미하는 것을 특징으로 하는 용도.6. A compound according to claim 5, wherein X and Y independently of one another are -O, -C (= 0) -0-, -C (= 0) -NH-,-(CH 2 ) n- , phenylene or pyridyl. Use characterized in that it means. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서, 하나 이상의 구조 단위가 하나 이상의 4차 질소 원자를 함유하는 것을 특징으로 하는 용도로서, 여기서, R2 는 바람직하게 -(CH2)m-(N+(CH3)2)-(CH2)n-SO3 - 측기 또는 -(CH2)m-(N+(CH3)2)-(CH2)n-PO3 2- 측기를 의미하며, m 은 1 내지 30 의 범위, 바람직하게는 1 내지 6 범위, 특히 바람직하게는 2 인 정수를 의미하며, n 은 1 내지 30 범위, 바람직하게는 1 내지 8 범위, 특히 바람직하게는 3 인 정수를 의미하는 용도.7. Use according to any one of the preceding claims, wherein at least one structural unit contains at least one quaternary nitrogen atom, wherein R 2 is preferably-(CH 2 ) m- ( N + (CH 3 ) 2 )-(CH 2 ) n -SO 3 - side group or-(CH 2 ) m- (N + (CH 3 ) 2 )-(CH 2 ) n -PO 3 2- side group M means an integer in the range 1 to 30, preferably in the range 1 to 6, particularly preferably 2, n is in the range 1 to 30, preferably in the range 1 to 8, particularly preferably 3 Use for integers. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서, 하나 이상의 구조 단위가 소중합체 또는 중합체, 바람직하게는 마크로단량체인 것을 특징으로 하며, 여기서 마크로단량체로서 폴리에테르, 폴리올레핀 및 폴리아크릴레이트가 특히 바람직한 용도.8. A process according to any one of the preceding claims, wherein at least one structural unit is an oligomer or a polymer, preferably a macromonomer, wherein polyethers, polyolefins and polyacrylates are particularly preferred as macromonomers. Usage. 중합체-개질된 나노입자의 제조 방법으로서, 단계 a) 에서, 용융물 또는 나노입자의 수용성 전구체의 하나 이상을 함유하는 역에멀젼 (inverse emulsion) 이, 소수성 라디칼을 함유하는 하나 이상의 단량체 및 친수성 라디칼을 함유하는 하나 이상의 단량체의 통계적 공중합체에 의해 제조되고, 단계 b) 에서 입자가 제조되는 것을 특징으로 하는 방법.A process for preparing polymer-modified nanoparticles, wherein in step a) an inverse emulsion containing at least one of the melt or the water soluble precursor of the nanoparticles contains at least one monomer containing hydrophobic radicals and a hydrophilic radical Prepared by a statistical copolymer of at least one monomer, wherein the particles are prepared in step b). 제 9 항에 있어서, 입자가 단계 b) 에서 전구체의 반응에 의해, 또는 용융물 의 냉각에 의해 제조되는 것을 특징으로 하는 방법.10. The process according to claim 9, wherein the particles are produced by reaction of the precursor in step b) or by cooling of the melt. 제 10 항에 있어서, 전구체를 산, 가성알칼리액 (lye), 환원제 또는 산화제와 반응시키는 것을 특징으로 하는 방법.The method of claim 10 wherein the precursor is reacted with an acid, caustic alkaline, reducing or oxidizing agent. 제 11 항에 있어서, 전구체로서의 소듐 실리케이트가 산 또는 가성알칼리액과 반응하여 이산화규소를 제공하는 것을 특징으로 하는 방법.12. The process of claim 11, wherein sodium silicate as precursor reacts with the acid or caustic alkaline solution to provide silicon dioxide. 제 11 항에 있어서, 귀금속, 바람직하게는 질산은이 환원제, 바람직하게는 시트르산과 반응하여 금속을 제공하는 것을 특징으로 하는 방법.12. Process according to claim 11, characterized in that the noble metal, preferably silver nitrate, is reacted with a reducing agent, preferably citric acid to provide the metal. 제 11 항에 있어서, 가용성 금속 화합물, 바람직하게는 가용성 Pb, Cd 또는 Zn 화합물이 황화 수소와 반응하여 금속 황화물을 제공하는 것을 특징으로 하는 방법.12. The process according to claim 11, wherein the soluble metal compound, preferably the soluble Pb, Cd or Zn compound, reacts with hydrogen sulfide to provide metal sulfides. 제 11 항에 있어서, 가용성 금속 화합물, 바람직하게는 칼슘 클로리드가 이산화탄소와 반응하여 금속 카르보네이트를 제공하는 것을 특징으로 하는 방법.Process according to claim 11, characterized in that the soluble metal compound, preferably calcium chloride, is reacted with carbon dioxide to give the metal carbonate. 제 1 항 내지 제 15 항 중 어느 한 항에 있어서, 에멀젼 내의 액적 크기가 5 내지 500 nm, 바람직하게는 10 내지 200 nm 의 범위에 있는 것을 특징으로 하는 방 법.Method according to any of the preceding claims, characterized in that the droplet size in the emulsion is in the range of 5 to 500 nm, preferably 10 to 200 nm. 제 1 항 내지 제 16 항 중 어느 한 항에 있어서, 전구체를 위한 반응물이 유화된 형태인 제 2 의 에멀젼이 단계 b) 에서 단계 a) 로부터의 전구체 에멀젼과 혼합되는 것을 특징으로 하는 방법.The method according to claim 1, wherein the second emulsion, in reacted form for the precursor, in emulsified form, is mixed in step b) with the precursor emulsion from step a). 제 17 항에 있어서, 2개의 에멀젼이 초음파의 작용에 의해 서로 혼합되는 것을 특징으로 하는 방법.18. The method of claim 17, wherein the two emulsions are mixed with each other by the action of ultrasound. 제 1 항 내지 제 18 항 중 어느 한 항에 있어서, 하나 이상의 전구체가 수용성 금속 화합물, 바람직하게는 규소, 세륨, 코발트, 크로뮴, 니켈, 아연, 티타늄, 철, 이트륨 또는 지르코늄 화합물로부터 선택되며, 상기 전구체를 바람직하게 산 또는 가성알칼리액 (lye) 과 반응시키는 것을 특징으로 하는 방법.19. The method according to any one of the preceding claims, wherein at least one precursor is selected from water soluble metal compounds, preferably silicon, cerium, cobalt, chromium, nickel, zinc, titanium, iron, yttrium or zirconium compounds. The precursor is preferably reacted with an acid or caustic alkaline liquid (lye). 제 1 항 내지 제 19 항 중 어느 한 항에 있어서, 조유화제 (coemulsifier), 바람직하게는 비이온성 계면활성제가 사용되는 것을 특징으로 하는 방법.20. The process according to claim 1, wherein a coemulsifier, preferably a nonionic surfactant, is used.
KR1020067015218A 2004-01-27 2004-12-17 Use of statistical copolymers KR20070004599A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004004209.8 2004-01-27
DE102004004209A DE102004004209A1 (en) 2004-01-27 2004-01-27 Use of random copolymer with hydrophobic and hydrophilic groups in different structural units as emulsifier is useful for producing polymer-modified nanoparticles, e.g. of silica, silver or metal sulfide or carbonate for use in polymer
EP04023002.1 2004-09-28
EP04023002 2004-09-28

Publications (1)

Publication Number Publication Date
KR20070004599A true KR20070004599A (en) 2007-01-09

Family

ID=34809608

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067015218A KR20070004599A (en) 2004-01-27 2004-12-17 Use of statistical copolymers

Country Status (6)

Country Link
EP (1) EP1709092A1 (en)
JP (1) JP2007519786A (en)
KR (1) KR20070004599A (en)
CA (1) CA2554335A1 (en)
TW (1) TW200540191A (en)
WO (1) WO2005070979A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0519316B8 (en) 2004-12-30 2021-06-29 Rhodia Chimie Sa aqueous herbicidal composition; and, process for preparing a composition.
DE102005019391A1 (en) * 2005-04-25 2006-10-26 Merck Patent Gmbh Method for fabricating metal polymer-modified nano-particles, requires inverse emulsion containing one or more water-soluble precursors
NZ598569A (en) 2005-11-14 2013-04-26 Rhodia Surfactant is sulfonate in an agricultural adjuvant compositions, pesticide compositions, and methods for using such compositions
DE102005056621A1 (en) * 2005-11-25 2007-05-31 Merck Patent Gmbh Modified zinc oxide nano-particles with a specific average particle size, obtained by converting nano-particle precursor to nano-particles and terminating the growth of nano-particles, useful for UV-stabilization of polymer
WO2008066611A2 (en) 2006-10-16 2008-06-05 Rhodia Inc. Agricultural adjuvant compositions. pesticide compositions. and methods for using such compositions
FR2914647B1 (en) * 2007-04-05 2011-10-21 Rhodia Recherches Et Tech COPOLYMER COMPRISING BETAINIC UNITS AND HYDROPHOBIC AND / OR AMPHIPHILIC UNITS, PREPARATION METHOD, AND USES.
DE102007029283A1 (en) 2007-06-22 2008-12-24 Merck Patent Gmbh hardening accelerator
DE102007032189A1 (en) 2007-06-22 2008-12-24 Merck Patent Gmbh curing
US9399075B2 (en) 2008-12-29 2016-07-26 General Electric Company Nanoparticle contrast agents for diagnostic imaging
BR112012001048A8 (en) 2009-07-14 2017-04-18 Rhodia Operations AGRICULTURAL ADJUVANT COMPOSITIONS, PESTICIDE COMPOSITIONS, AND METHODS OF USE OF SUCH COMPOSITIONS.
DE102010018073A1 (en) 2010-04-20 2011-10-20 Aesculap Ag Copolymer-modified nanoparticles, in particular for use in medical articles
US8841235B2 (en) 2010-08-10 2014-09-23 Rhodia Operations Agricultural pesticide compositions
US8921444B2 (en) 2010-10-19 2014-12-30 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Process for the modification of polymers, in particular polymer nanoparticles
CN103282388B (en) 2010-10-19 2017-02-15 马克斯·普朗克科学促进学会 Ultra fast process for the preparation of polymer nanoparticles
ITPA20110012A1 (en) * 2011-08-30 2013-03-01 Salvo Santina Di INNOVATIVE SONOCHIMIC PROCESS THAT EMPLOYS THE ULTRASONIC CAVITATION FOR THE SYNTHESIS OF NANOPARTICELLE MONODISPERSE AMORPHES OF SILICON DIOXIDE AND METHOD FOR PREPARING A LOTION OF HYDRO-SOLUBLE LITHIUM COMPOUND FOR HIGH PERFORMANCE, TO BE APPLIED IN SIT
WO2019092036A1 (en) 2017-11-07 2019-05-16 Clariant Plastics & Coatings Ltd Dispersion agent for pigments in non-aqueous colourant preparations

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1817309A1 (en) * 1968-12-28 1970-07-02 Hoechst Ag Basic and cationic ethylene copolymers
DE2612886A1 (en) * 1976-03-26 1977-10-06 Henkel & Cie Gmbh WATER-IN-OIL TYPE COSMETIC EMULSIONS AND THEIR PRODUCTION
JPH11140133A (en) * 1997-11-04 1999-05-25 Asahi Denka Kogyo Kk Styrene oligomer and its production
FR2774096B1 (en) * 1998-01-29 2000-04-07 Virsol NOVEL SURFACTANT COPOLYMERS BASED ON METHYLIDENE MALONATE
EP1133526B1 (en) * 1998-11-23 2005-11-16 M-I L.L.C. Invertible emulsions stabilised by amphiphilic polymers and application to bore fluids
DE10003297C2 (en) * 2000-01-27 2003-08-21 Clariant Gmbh Explosives containing modified copolymers of polyisobutylene, vinyl esters and maleic anhydride as emulsifiers

Also Published As

Publication number Publication date
JP2007519786A (en) 2007-07-19
TW200540191A (en) 2005-12-16
EP1709092A1 (en) 2006-10-11
CA2554335A1 (en) 2005-08-04
WO2005070979A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
KR20060127929A (en) Nanoparticles
KR20070004599A (en) Use of statistical copolymers
EP3047313B1 (en) Light diffuser comprising a composite system comprising a polymer matrix and core-shell nanoparticles, and process for preparing it
Balmer et al. Colloidal nanocomposite particles: quo vadis?
Krumpfer et al. Make it nano-Keep it nano
US20100221525A1 (en) Nanoparticles
CA2681153A1 (en) Methods of producing surface-modified nanoparticulate metal oxides, metal hydroxides and/or metal oxide hydroxides
JP2010527395A (en) Composite particles and methods for their preparation
US20070282075A1 (en) Use Of Statistical Copolymers
EP2513230B1 (en) Organic solvent dispersion, resin composition, and optical device
Liras et al. QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart luminescent nanogels and hydrogels
JPWO2005010100A1 (en) Ultrafine particle-containing resin composition
Gong et al. Preparation of ATO-incorporated composite latex with tailored structure and controllable size for highly spectrum-selective applications
Patil et al. Optical and thermal studies of host Poly (methyl methacrylate)(PMMA) based nanocomposites: A review
KR20080074410A (en) Preparation method of core-shell type nanocomposite particles in supercritical carbon dioxide
Kim et al. Synthesis of silver nanoparticles within intercalated clay/polymer nanocomposite via in situ electron transfer reaction
Kambe et al. Refractive index engineering of nano-polymer composites
Althues et al. Structure and mechanical properties of transparent ZnO/PBDMA nanocomposites
Xu et al. Hybrid polymer-inorganic materials: multiscale hierarchy
YUAN et al. Synthesis and characterization of polystyrene/nanosilica organic-inorganic hybrid
Sawada et al. Preparation of colloidal stable fluoroalkyl end‐capped oligomer/silver nanocomposites––application to the surface modification of traditional organic polymers with these nanocomposites
DE102004004210A1 (en) Producing polymer-modified nanoparticles useful as ultraviolet stabilizers in polymers comprises preparing an inverse emulsion comprising nanoparticle precursors or a melt using an amphiphilic copolymer
DE102005019391A1 (en) Method for fabricating metal polymer-modified nano-particles, requires inverse emulsion containing one or more water-soluble precursors
KR100347608B1 (en) The synthesis method for capsulized emulsion having internal pore by multy-stage emulsion polymerization
Blum et al. Nanocomposites by covalent bonding between inorganic nanoparticles and polymers

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid