JP2006120409A - Proton conductive composite type electrolyte membrane and its manufacturing method - Google Patents

Proton conductive composite type electrolyte membrane and its manufacturing method Download PDF

Info

Publication number
JP2006120409A
JP2006120409A JP2004305631A JP2004305631A JP2006120409A JP 2006120409 A JP2006120409 A JP 2006120409A JP 2004305631 A JP2004305631 A JP 2004305631A JP 2004305631 A JP2004305631 A JP 2004305631A JP 2006120409 A JP2006120409 A JP 2006120409A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
conductive composite
proton conductive
inorganic
proton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004305631A
Other languages
Japanese (ja)
Other versions
JP4716706B2 (en
Inventor
Toshihiro Takegawa
寿弘 竹川
Hiroyuki Kanesaka
浩行 金坂
Kiyoshi Kanemura
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004305631A priority Critical patent/JP4716706B2/en
Priority to US11/252,542 priority patent/US20060083962A1/en
Publication of JP2006120409A publication Critical patent/JP2006120409A/en
Priority to US12/081,551 priority patent/US20080213646A1/en
Application granted granted Critical
Publication of JP4716706B2 publication Critical patent/JP4716706B2/en
Priority to US13/292,679 priority patent/US20120058416A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proton conductive composite type electrolyte membrane capable of realizing a fuel cell having high heat-resistance, suppressing swelling caused by containing of water, and corresponding to operation in a high-temperature region, and to provide the manufacturing method of the proton conductive composite type electrolyte membrane. <P>SOLUTION: The proton conductive composite type electrolyte membrane is formed by arranging a hydrocarbon electrolyte material in globular holes installed in an inorganic porous body, the globular holes have almost equal inner diameter, are thee-dimensionally present on the inside of the porous body, and have communicating holes between adjacent globular holes, and the hydrocarbon electrolyte membrane shows proton conductivity through the communicating holes. The proton conductive composite type electrolyte membrane is manufactured by a mixing process of inorganic sol, globular organic resin and a solvent, a stirring process, a filtration and membrane forming process, an excess water removing process, a drying process, a baking process, an electrolyte material impregnation process, and a drying process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プロトン伝導性コンポジット型電解質膜及びその製造方法に係り、更に詳細には、燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサーなどに用いられるプロトン伝導性コンポジット型電解質膜及びその製造方法に関する。   The present invention relates to a proton conductive composite electrolyte membrane and a method for producing the same, and more specifically, to a fuel cell, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor and the like. The present invention relates to a proton conductive composite electrolyte membrane and a method for producing the same.

燃料電池は、発電効率が高く、環境負荷抑制に優れており、エネルギーを多大に消費している国々において現在の大きな課題となっている環境問題、エネルギー問題の解決に貢献が期待されている次世代型エネルギー供給デバイスである。
また、燃料電池は、電解質の種類により分類されるが、中でも固体高分子形燃料電池は、小型で且つ高出力を得ることができるため、小規模の定置型用、移動体用、携帯端末用のエネルギー供給源としての適用について研究・開発が進められている。
Fuel cells have high power generation efficiency and excellent environmental load control, and are expected to contribute to solving environmental and energy problems that are currently a major issue in countries that consume large amounts of energy. It is a generational energy supply device.
Fuel cells are classified according to the type of electrolyte. Among them, polymer electrolyte fuel cells are small and can provide high output, so that they can be used for small-sized stationary devices, mobile devices, and portable terminals. Research and development is underway for the application of energy as a source of energy.

かかる固体高分子電解質膜は、高分子鎖中にスルホン酸基やリン酸基などの親水性官能基を有する固体高分子材料であり、特定のイオンと強固に結合しており、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維又は膜状に成形し、電気透析、拡散透析、電池隔膜などの各種用途に利用されている。   Such a solid polymer electrolyte membrane is a solid polymer material having a hydrophilic functional group such as a sulfonic acid group or a phosphoric acid group in a polymer chain, and is firmly bonded to a specific ion, and is either a cation or an anion. Since it has a property of selectively permeating ions, it is formed into particles, fibers or membranes and used in various applications such as electrodialysis, diffusion dialysis, and battery membranes.

また、固体高分子型燃料電池は、高い総合エネルギー効率が得られる発電手段として現在改良が盛んに進められている。その主要な構成要素は、アノード、カソードの両電極と、ガス流路を形成するセパレータ板と、両極間を隔てる固体高分子電解質膜である。アノードの触媒上で生成したプロトンは、固体高分子電解質膜中を移動してカソードの触媒上に達し、酸素と反応する。従って、両極間のイオン伝導抵抗は、電池性能に大きく影響する。   In addition, solid polymer fuel cells are being actively improved as a power generation means that can provide high overall energy efficiency. The main components are anode and cathode electrodes, a separator plate that forms a gas flow path, and a solid polymer electrolyte membrane that separates the electrodes. Protons generated on the anode catalyst move through the solid polymer electrolyte membrane, reach the cathode catalyst, and react with oxygen. Therefore, the ion conduction resistance between the two electrodes greatly affects the battery performance.

上述の固体高分子電解質膜を用いて燃料電池を形成するには、両電極の触媒と固体高分子電解質膜をイオン伝導パスで接合する必要がある。そのために、高分子電解質の溶液と触媒粒子とを混合し、塗布・乾燥して両者を結合させた触媒層を電極に用い、電極の触媒と固体高分子電解質膜とを加熱下でプレスするという手法が一般的に用いられていた。
イオン伝導を担う高分子電解質には、一般に、パーフルオロカーボン系主鎖にスルホン酸基が導入されたポリマーが使用される。具体的な商品としては、デュポン(DuPont)社製のナフィオン(Nafion)、旭硝子(株)製のフレミオン(Flemion)、旭化成(株)製のアシプレックス(Aciplex)などが使用される。パーフルオロスルホン酸系の高分子電解質は、パーフルオロカーボン系主鎖とスルホン酸基をもつ側鎖からなり、高分子電解質は、スルホン酸基を主体とする領域とパーフルオロカーボン主鎖を主体とする領域とにミクロ相分離して、スルホン酸基の相はクラスターを形成すると考えられている。このパーフルオロカーボン系主鎖が凝集している部位がパーフルオロスルホン酸系電解質膜の化学的安定性に寄与しており、イオン伝導に寄与するのはスルホン酸基が集まってクラスターを形成している部分である。
In order to form a fuel cell using the above-mentioned solid polymer electrolyte membrane, it is necessary to join the catalyst of both electrodes and the solid polymer electrolyte membrane by an ion conduction path. For this purpose, a catalyst layer in which a polymer electrolyte solution and catalyst particles are mixed, applied and dried to bond them together is used as an electrode, and the electrode catalyst and the solid polymer electrolyte membrane are pressed under heating. The technique was commonly used.
In general, a polymer in which a sulfonic acid group is introduced into a perfluorocarbon-based main chain is used as a polymer electrolyte responsible for ionic conduction. Specific products include Nafion manufactured by DuPont, Flemion manufactured by Asahi Glass Co., and Aciplex manufactured by Asahi Kasei Co., Ltd. A perfluorosulfonic acid polymer electrolyte is composed of a perfluorocarbon main chain and a side chain having a sulfonic acid group, and the polymer electrolyte is a region mainly composed of a sulfonic acid group and a region mainly composed of a perfluorocarbon main chain. It is thought that the sulfonic acid group phase forms a cluster by microphase separation. The site where the perfluorocarbon main chain aggregates contributes to the chemical stability of the perfluorosulfonic acid electrolyte membrane, and the sulfonic acid groups gather to form a cluster that contributes to ionic conduction. Part.

このように、優れた化学的安定性とイオン伝導性を兼ね備えるパーフルオロスルホン酸系電解質膜の製造は困難であり、非常に高価となる欠点がある。そのため、パーフルオロスルホン酸系の用途は限定されており、移動体用の動力源と期待される固体高分子型燃料電池への適用が非常に困難を極めている。   As described above, it is difficult to produce a perfluorosulfonic acid electrolyte membrane having both excellent chemical stability and ion conductivity, and there is a drawback that it is very expensive. Therefore, the use of perfluorosulfonic acid is limited, and it is extremely difficult to apply it to a polymer electrolyte fuel cell which is expected to be a power source for a moving body.

また、現状の固体高分子型燃料電池は、室温から80℃程度の比較的低い温度領域で運転される。この運転温度の制限は、用いられているフッ素系膜が120〜130℃近辺にガラス転移点を有し、これよりも高温領域ではプロトン伝導に寄与しているイオンチャネル構造の維持が困難となるため、実質的には100℃以下での使用が望ましいこと、及び水をプロトン伝導媒体として使用するため、水の沸点である100℃を超えると加圧が必要となり、装置が大がかりとなることによる。運転温度が低いことは、燃料電池にとっては発電効率が低くなると共に、触媒のCOによる被毒が顕著に起こる。運転温度が100℃以上になると発電効率は向上し、更に廃熱利用が可能となるためにより効率的にエネルギーを活用できる。また、燃料電池自動車への適用を考えると、運転温度を120℃まで上昇させることができれば、効率の向上だけではなく、排熱に必要なラジエター負荷を下げることとなり、現行の移動体に使用されているラジエターと同等仕様のものを適用できるため、システムをコンパクト化できる。   In addition, current polymer electrolyte fuel cells are operated in a relatively low temperature range from room temperature to about 80 ° C. The limitation on the operating temperature is that the fluorine-based membrane used has a glass transition point in the vicinity of 120 to 130 ° C., and it becomes difficult to maintain an ion channel structure that contributes to proton conduction in a higher temperature region. Therefore, it is substantially desirable to use at 100 ° C. or lower, and since water is used as a proton conducting medium, pressurization is required when the water boiling point exceeds 100 ° C., and the apparatus becomes large. . The low operating temperature results in low power generation efficiency for the fuel cell and significant poisoning of the catalyst by CO. When the operating temperature is 100 ° C. or higher, the power generation efficiency is improved and the waste heat can be used, so that energy can be used more efficiently. Also, considering the application to fuel cell vehicles, if the operating temperature can be raised to 120 ° C, not only the efficiency will be improved, but also the radiator load required for exhaust heat will be reduced, and it will be used in current mobile units. The same specifications as the existing radiator can be applied, so the system can be made compact.

このように、より高い温度での運転を実現させるため、今まで種々の検討が行われている。代表的には、先の電解質膜のコスト低減も視野に入れたアクションとして、フッ素膜の代わりに、安価でかつ耐熱性に優れた芳香族炭化水素系高分子材料の固体高分子電解質への適用が検討されている。例えば、固体高分子電解質として、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、ポリベンズイミダゾールといった種々の芳香族系炭化水素系固体高分子電解質が検討されている(例えば特許文献1〜6参照)。
特開平6−93114号公報 特開平9−245818号公報 特開平11−116679号公報 特開平11−672244号公報 特表平11−510198号公報 特開平9−110982号公報
Thus, various studies have been made so far in order to realize operation at higher temperatures. Typically, as an action with a view to reducing the cost of the previous electrolyte membrane, instead of a fluorine membrane, application of an aromatic hydrocarbon polymer material that is inexpensive and excellent in heat resistance to a solid polymer electrolyte Is being considered. For example, various aromatic hydrocarbon solid polymer electrolytes such as sulfonated polyetheretherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and polybenzimidazole are studied as solid polymer electrolytes. (For example, see Patent Documents 1 to 6).
JP-A-6-93114 JP-A-9-245818 Japanese Patent Laid-Open No. 11-116679 JP-A-11-672244 Japanese National Patent Publication No. 11-510198 Japanese Patent Laid-Open No. 9-110982

しかしながら、上記高分子電解質材料は、極めて剛直な高分子化合物であり、電極形成の際、破損等の可能性が高いという問題がある。
また、これら芳香族炭化水素系高分子材料はプロトン伝導性を付与するため、スルホン酸基、リン酸基等の酸性基で修飾されており、水可溶性又は水膨潤性となっている。水可溶性の場合には燃料電池のような水が生成する系には適用できず、また水膨潤性の場合にも膨潤による応力で電極を破損するといった、膨潤による膜の強度低下で膜破損が起こる可能性がある。
更に、高いプロトン伝導性を実現するには、電解質に導入する酸性基を多くすることが望まれるが、ある程度の導入量を超えると高分子材料自身が膜形状を保つことが困難となる。
However, the polymer electrolyte material is a very rigid polymer compound, and there is a problem that there is a high possibility of breakage or the like during electrode formation.
These aromatic hydrocarbon polymer materials are modified with acidic groups such as sulfonic acid groups and phosphoric acid groups in order to impart proton conductivity, and are water-soluble or water-swellable. In the case of water-solubility, it cannot be applied to a system that generates water such as a fuel cell. In the case of water-swellability, the electrode is damaged by the stress due to swelling. Can happen.
Furthermore, in order to achieve high proton conductivity, it is desirable to increase the number of acidic groups introduced into the electrolyte. However, if the amount introduced exceeds a certain level, it becomes difficult for the polymer material itself to maintain the membrane shape.

このように、燃料電池の信頼性に関わる電解質膜としての寸法安定性・自立性を確保することと、電池性能向上を目指したイオン伝導度向上は、それぞれが樹脂へ導入するスルホン酸基やリン酸基等の量に関係しており、両特性はトレードオフの関係にあるので一方の改善が他方の特性を低下させるため、両特性を兼ね備えた電解質膜を実現することは困難であった。   In this way, ensuring dimensional stability and self-sustainability as an electrolyte membrane related to fuel cell reliability and improving ionic conductivity with the aim of improving battery performance are the sulfonic acid groups and phosphorus introduced into the resin. It is related to the amount of acid groups and the like, and both characteristics are in a trade-off relationship. Therefore, it is difficult to realize an electrolyte membrane having both characteristics because one improvement reduces the other characteristic.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、耐熱性が高く、含水時の膨潤が抑制され、より高い温度域での動作に対応しうる燃料電池を実現できるプロトン伝導性コンポジット型電解質膜及びその製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art. The object of the present invention is to have high heat resistance, suppress swelling when containing water, and support operation in a higher temperature range. It is an object of the present invention to provide a proton conductive composite electrolyte membrane that can realize a fuel cell that can be used and a method for manufacturing the same.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、球状孔が規則的・三次元的に形成された無機多孔質体の該球状孔内に炭化水素系電解質材料を配設することにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have arranged a hydrocarbon-based electrolyte material in the spherical pores of the inorganic porous body in which the spherical pores are regularly and three-dimensionally formed. As a result, the present inventors have found that the above problems can be solved, and have completed the present invention.

本発明によれば、安定した膜状形態を保持できるとともに安価で同系にパーフルオロスルホン酸系電解質材料を適用した場合より高いイオン伝導性を発現できる。   According to the present invention, a stable membranous form can be maintained, and higher ion conductivity can be exhibited than when a perfluorosulfonic acid electrolyte material is applied at the same cost.

以下、本発明のプロトン伝導性コンポジット型電解質膜について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示す。   Hereinafter, the proton conductive composite electrolyte membrane of the present invention will be described in detail. In the present specification, “%” indicates a mass percentage unless otherwise specified.

本発明のプロトン伝導性コンポジット型電解質膜は、無機多孔質体が有する複数の球状孔内に、炭化水素系電解質材料を配設して成る。この球状孔は、それぞれがほぼ均等な内径を有し且つ多孔質体内部に3次元的に存在し、隣接する球状孔とは連通口により連通している。また、炭化水素系電解質材料は、該連通口を介してプロトン伝導性を示すように配設(充填)されている。本電解質膜の模式的構造及び写真を図1に示す。
このように、無機多孔質体を保持体として用い、内部に耐熱性に優れる芳香族炭化水素系高分子などの電解質材料を配設できるので、耐熱性に優れた電解質膜が得られる。
また、湿潤状態においては、無機多孔質体が炭化水素系電解質材料の膨潤を抑制する。特に、多孔質体内部に存在する球状孔をほぼ均等な径で構成することで、電解質材料の含水時における膨潤に対して、多孔質体は均質且つ分散された膨潤力を受けるので、局所的な電解質の破損が抑制される。換言すれば、無機多孔質体の球状孔が3次元規則配列構造をとることで、電解質材料の膨潤圧が均質に無機多孔質体にかかるため、含水により膨潤する電解質膜の支持体として適している。
更に、多孔質体の球状孔をほぼ均等に制御することで、電解質材料の含浸状態が良好となり、従来から使用されているパーフルオロスルホン酸系電解質材料を同じコンポジット型電解質膜に適用したケースに比べて、高いプロトン伝導性を発現する。
The proton conductive composite electrolyte membrane of the present invention is formed by disposing a hydrocarbon-based electrolyte material in a plurality of spherical holes of an inorganic porous body. Each of the spherical holes has a substantially uniform inner diameter and exists three-dimensionally inside the porous body, and communicates with adjacent spherical holes through a communication port. The hydrocarbon-based electrolyte material is disposed (filled) so as to exhibit proton conductivity through the communication port. A schematic structure and a photograph of the present electrolyte membrane are shown in FIG.
As described above, since an inorganic porous body is used as a holding body and an electrolyte material such as an aromatic hydrocarbon polymer having excellent heat resistance can be disposed therein, an electrolyte membrane having excellent heat resistance can be obtained.
In a wet state, the inorganic porous body suppresses the swelling of the hydrocarbon electrolyte material. In particular, since the spherical pores existing in the porous body are formed with a substantially uniform diameter, the porous body receives a uniform and dispersed swelling force against the swelling of the electrolyte material when it contains water. Damage to the electrolyte is suppressed. In other words, the spherical pores of the inorganic porous body have a three-dimensional regular array structure, so that the swelling pressure of the electrolyte material is uniformly applied to the inorganic porous body. Therefore, it is suitable as a support for the electrolyte membrane that swells with water. Yes.
Furthermore, by controlling the spherical pores of the porous body almost evenly, the impregnation state of the electrolyte material becomes good, and the perfluorosulfonic acid electrolyte material that has been used in the past is applied to the same composite type electrolyte membrane. Compared to high proton conductivity.

ここで、上記無機多孔質体は、無機ゾルを形成する材料より成ることが好適である。このときは、簡易な無機材形成技術であるゾルゲル法を適用することができ、安価に無機多孔質体を得ることができる。
また、上記無機ゾルを形成する材料は、無機コロイドであることが好適である。無機コロイドとすることで、ポリマー粒子を鋳型に用いた規則配列形状を有する無機多孔質体を形成できる。
更に、上記無機多孔質体は、例えば、シリカ、チタニア、ジルコニア又はタンタル、及びこれらの任意の組合わせに係るものを含むことが好適である。このときは、実用に耐えうる無機コロイドとなり得る。
上記無機多孔質体は、例えば、ポリマー微粒子と無機材料を混合した懸濁液から得られる。このような懸濁液を適用することで、ポリマー微粒子が積み重なることで形成される3次元規則配列構造を鋳型とした、無機多孔質体を得ることができる。特に、ポリマー微粒子の粒径サイズ、積層状態を制御することで、任意の細孔径構造を有する無機多孔質体を設計できる。なお、細孔内のポリマー微粒子は熱処理などにより除去することで、電解質材料の入るスペースが確保される。
このように、規則的に3次元的に配列された球状孔を有する無機多孔質体を用いることで、均質な支持体として機能し、高分子電解質と組み合わせた場合は、含水により電解質が支持体に及ぼす膨潤力の集中を抑制でき、電解質膜の破損を防止できる。また、70%を超える高い気孔率を確保できることから、電解質材料を多量に導入でき、優れたイオン伝導性が実現できる。
Here, the inorganic porous body is preferably made of a material that forms an inorganic sol. In this case, a sol-gel method that is a simple inorganic material forming technique can be applied, and an inorganic porous body can be obtained at a low cost.
The material forming the inorganic sol is preferably an inorganic colloid. By using an inorganic colloid, an inorganic porous body having a regularly arranged shape using polymer particles as a template can be formed.
Furthermore, the inorganic porous body preferably includes, for example, those related to silica, titania, zirconia, or tantalum, and any combination thereof. At this time, it can be an inorganic colloid that can withstand practical use.
The inorganic porous body is obtained from, for example, a suspension obtained by mixing polymer fine particles and an inorganic material. By applying such a suspension, an inorganic porous body can be obtained using a three-dimensional regular array structure formed by stacking polymer fine particles as a template. In particular, an inorganic porous body having an arbitrary pore size structure can be designed by controlling the particle size and the lamination state of the polymer fine particles. The polymer fine particles in the pores are removed by heat treatment or the like, so that a space for the electrolyte material is secured.
Thus, by using an inorganic porous body having spherical pores regularly arranged three-dimensionally, it functions as a homogeneous support, and when combined with a polymer electrolyte, the electrolyte is supported by water content. Concentration of swelling force on the electrolyte can be suppressed, and damage to the electrolyte membrane can be prevented. In addition, since a high porosity exceeding 70% can be secured, a large amount of electrolyte material can be introduced, and excellent ion conductivity can be realized.

一方、上記炭化水素系電解質材料としては、芳香族炭化水素系高分子ポリマーにプロトン伝導性を発現する官能基を付与して成るものを用いることが好適である。耐熱性に優れた芳香族炭化水素系高分子を適用することで、耐熱性に優れた電解質膜が得られるとともに、従来のフッ素系電解質材料より安価な材料を適用することができる。   On the other hand, as the hydrocarbon electrolyte material, it is preferable to use a material obtained by adding a functional group that expresses proton conductivity to an aromatic hydrocarbon polymer. By applying an aromatic hydrocarbon polymer excellent in heat resistance, an electrolyte membrane excellent in heat resistance can be obtained, and a material cheaper than conventional fluorine-based electrolyte materials can be applied.

また、上記炭化水素系電解質材料は、少なくとも1〜6meq/gのイオン交換容量を有することが好適である。イオン交換量を上記範囲とするには、例えば、芳香族炭化水素電解質の種類や付与するプロトン伝導性官能基の量などを適宜調節すれば良い。このとき、芳香族炭化水素系電解質へ導入するプロトン電導性官能基量が1meq/g未満であると十分なプロトン伝導性を発現することができず、また、6meq/gを超えると電解質材料が固体状態を保持することが困難となる。
なお、Nafion(商標:デュポン社製)に代表される従来のフッ素系電解質膜では、およそ1meq/g付近のものが上市されているが、2meq/g以上のものは困難であるため、本発明では従来より高いプロトン伝導性を有する電解質膜を設計できる。
Moreover, it is preferable that the hydrocarbon-based electrolyte material has an ion exchange capacity of at least 1 to 6 meq / g. In order to set the ion exchange amount within the above range, for example, the kind of the aromatic hydrocarbon electrolyte, the amount of the proton conductive functional group to be imparted, and the like may be appropriately adjusted. At this time, if the amount of the proton conductive functional group introduced into the aromatic hydrocarbon electrolyte is less than 1 meq / g, sufficient proton conductivity cannot be expressed, and if it exceeds 6 meq / g, the electrolyte material is It becomes difficult to maintain a solid state.
In addition, in the conventional fluorine-based electrolyte membrane represented by Nafion (trademark: manufactured by DuPont), those around 1 meq / g are marketed, but those above 2 meq / g are difficult, so that the present invention Then, an electrolyte membrane having higher proton conductivity than before can be designed.

更に、上記炭化水素系電解質材料としては、ポリエーテル系のポリマーを使用することが好適である。具体的には、図2に示すように、ポリエーテル系の物質をスルホン化したポリエーテルエーテルケトンやポリエーテルスルホンなどが使用できる。代表的には、ポリエーテルエーテルスルホンを用いることが良い。
このときは、規則配列状態の空間を有する無機多孔質体に、従来のフッ素系電解質に比べて多くの電解質材料を含浸させることができ、従来品に比べてプロトン伝導性に優れた電解質を得ることができる。
Furthermore, it is preferable to use a polyether polymer as the hydrocarbon-based electrolyte material. Specifically, as shown in FIG. 2, polyether ether ketone or polyether sulfone obtained by sulfonating a polyether-based substance can be used. Typically, polyether ether sulfone is preferably used.
In this case, an inorganic porous body having a regularly arranged space can be impregnated with more electrolyte material than a conventional fluorine-based electrolyte, and an electrolyte superior in proton conductivity compared with a conventional product is obtained. be able to.

次に、本発明のプロトン伝導性コンポジット型電解質膜の製造方法について詳細に説明する。
本発明の製造方法では、以下の(1)〜(8)工程、
記載のプロトン伝導性コンポジット型電解質膜を製造するに当たり、
(1)溶媒に無機ゾルと球状有機樹脂を混合する工程
(2)この混合溶液を攪拌する工程
(3)この混合溶液を濾過により製膜する工程
(4)濾過成形膜に含まれる余剰水分の除去工程
(5)余剰水分を除去した濾過成形膜の乾燥工程
(6)乾燥させて得られた濾過成形膜の加熱焼成工程
(7)この加熱焼成して得られた無機多孔質体へ炭化水素系電解質材料を含浸させる工程
(8)電解質材料を含浸させた無機・有機コンポジット型電解質膜の乾燥工程
を行い、上述したプロトン伝導性コンポジット型電解質膜を製造する。図3に作製手順の流れを示す。
Next, the production method of the proton conductive composite electrolyte membrane of the present invention will be described in detail.
In the production method of the present invention, the following steps (1) to (8):
In producing the described proton conductive composite electrolyte membrane,
(1) Step of mixing inorganic sol and spherical organic resin in solvent (2) Step of stirring this mixed solution (3) Step of forming a film of this mixed solution by filtration (4) Excess water content contained in filtration molded membrane Removal step (5) Filtration molded membrane drying step from which excess water has been removed (6) Filtration molded membrane heating and firing step obtained by drying (7) Hydrocarbon to inorganic porous body obtained by this heating and firing Step of impregnating the system electrolyte material (8) A step of drying the inorganic / organic composite type electrolyte membrane impregnated with the electrolyte material is performed to produce the above-described proton conductive composite type electrolyte membrane. FIG. 3 shows the flow of the manufacturing procedure.

工程(1)及び工程(2)では、無機コロイドと有機樹脂材料を均質な状態に混合することで、均質な無機支持体で構成される無機多孔質体を得ることができる。
また、工程(3)では、濾過は有機樹脂テンプレートの隙間に無機ゾルを充填する方法として適している。更に、工程(4)では、濾過製膜された膜に含まれている溶剤を予め除去することで、次の乾燥工程における乾燥時間を短縮することができる。
また、工程(5)では、濾過製膜を室温にて予め乾燥させることで、焼成工程等での膜のハンドリングを容易にする。次いで、工程(6)では、濾過製膜を加温焼成することで、無機ゾルによる無機支持体を焼成形成すると共に、テンプレート樹脂を焼成除去することで多孔質を形成できる。
また、工程(7)及び工程(8)では、得られた多孔質体へ電解質材料を含浸・乾燥させることで、容易に目的とする無機・有機コンポジット型電解質膜を得ることができる。特に、乾燥時に高分子電解質が損壊しない程度の温度を与えることで、乾燥時間を短縮することができると共に、高分子電解質の含浸時に架橋剤などを併用した場合はその架橋反応を促進し、より強固な膜を得ることもできる。
In the step (1) and the step (2), an inorganic porous body composed of a homogeneous inorganic support can be obtained by mixing the inorganic colloid and the organic resin material in a homogeneous state.
In the step (3), the filtration is suitable as a method for filling the gap between the organic resin templates with the inorganic sol. Furthermore, in the step (4), the drying time in the next drying step can be shortened by previously removing the solvent contained in the membrane formed by filtration.
In step (5), the filtration film is dried at room temperature in advance, thereby facilitating the handling of the film in the firing step or the like. Next, in step (6), the filtration film is heated and fired, whereby an inorganic support made of an inorganic sol is fired and a porous material can be formed by baking and removing the template resin.
Further, in the step (7) and the step (8), the intended inorganic / organic composite electrolyte membrane can be easily obtained by impregnating and drying the obtained porous material with an electrolyte material. In particular, the drying time can be shortened by applying a temperature at which the polymer electrolyte does not break during drying, and when the polymer electrolyte is impregnated with a crosslinking agent, the crosslinking reaction is promoted. A strong film can also be obtained.

上記工程(1)〜(6)を経ることで、有機樹脂材料をテンプレートとして、3次元規則配列された無機多孔質体が得られる。特に濾過工程(3)は、球状有機樹脂をテンプレートとして無機コロイドを良好に充填する方法として適している。球状有機樹脂としては、例えば100nm〜1500nm程度のポリエチレンを代表とするポリオレフィン樹脂、ポリスチレン樹脂、架橋アクリル樹脂、メチルメタクリレート樹脂、ポリアミド樹脂などが適宜選択できる。100nmより小さくなると粒径の分布が均質に整った粒子を安価に入手することが困難となる。また、1500nmより大きくなると無機支持体を構成する支持構造の均質性に乱れが発生して好ましくない。
また、濾過は無機多孔質体の球状孔の大きさ、細孔密度などから、適宜10〜60kPa程度減圧して行うことができる。
更に、工程(6)においては、濾過膜中の有機樹脂材料を除去するための仮焼成を行い、その後無機多孔質体を焼結させることが良い。仮焼成は、例えば、1〜10℃/min、好ましくは2〜5℃/minの昇温速度で400〜500℃、より好ましくは430〜470℃まで昇温させ、30分以上熱処理を行うことができる。また、焼成は、例えば800〜900℃以上で30〜100分間程度の熱処理を行うことができる。さらに本焼成は複数回繰り返して行っても良い。
また、工程(7)において、含浸する電解質材料は、以下の含浸工程に供試できるものであれば、粉末状、ビーズ状、ゲル状、溶液状態のいずれの形態をとっていても構わない。また、水、メタノールやエタノール、n−プロパノール、イソプロパノールなどに代表される直鎖、分岐鎖を有するアルコール類、n−ヘキサンなどのオレフィン類、シクロヘキサン、トルエンやキシレンに代表される芳香族溶媒、ジメチルエーテルなどに代表されるエーテル類、酢酸エチル、酢酸メチル、アセトニトリル、ジメチルスルホキシド(DMSO)、ジクロロエタン(EDC)、ジオキサン、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)などの中から適宜選択して含浸溶液として用いることができる。また使用に際して上記溶媒を単独で用いても複数を適宜選択して混合して用いても構わない。
By passing through the said process (1)-(6), the organic porous material is used as a template and the inorganic porous body by which the three-dimensional regular arrangement was carried out is obtained. In particular, the filtration step (3) is suitable as a method for satisfactorily filling an inorganic colloid using a spherical organic resin as a template. As the spherical organic resin, for example, a polyolefin resin typified by polyethylene of about 100 nm to 1500 nm, a polystyrene resin, a crosslinked acrylic resin, a methyl methacrylate resin, a polyamide resin, and the like can be appropriately selected. If it is smaller than 100 nm, it becomes difficult to obtain particles having a uniform particle size distribution at low cost. On the other hand, if it exceeds 1500 nm, the homogeneity of the support structure constituting the inorganic support is disturbed, which is not preferable.
Further, the filtration can be performed at a reduced pressure of about 10 to 60 kPa as appropriate from the size of the spherical pores of the inorganic porous body, the pore density, and the like.
Furthermore, in the step (6), it is preferable to perform preliminary firing for removing the organic resin material in the filtration membrane and then sinter the inorganic porous body. Temporary baking is performed at a heating rate of 1 to 10 ° C./min, preferably 2 to 5 ° C./min, 400 to 500 ° C., more preferably 430 to 470 ° C., and heat treatment is performed for 30 minutes or longer. Can do. Moreover, baking can perform the heat processing for about 30 to 100 minutes, for example at 800-900 degreeC or more. Further, the main baking may be repeated a plurality of times.
In the step (7), the electrolyte material to be impregnated may be in any form of powder, bead, gel, or solution as long as it can be used for the following impregnation step. In addition, water, linear or branched alcohols typified by methanol, ethanol, n-propanol, isopropanol, etc., olefins such as n-hexane, aromatic solvents typified by cyclohexane, toluene and xylene, dimethyl ether Ethers such as ethyl acetate, methyl acetate, acetonitrile, dimethyl sulfoxide (DMSO), dichloroethane (EDC), dioxane, tetrahydrofuran (THF), dimethylformamide (DMF), N-methylpyrrolidone (NMP), etc. Can be appropriately selected from the above and used as an impregnation solution. In use, the above solvents may be used singly or plural may be appropriately selected and mixed.

以下、本発明を実施例及び比較例により更に詳述するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in full detail, this invention is not limited to these Examples.

(実施例1)
シリカ多孔質膜をマトリックスとして、その孔中に伝導性ポリマーを導入することにより、無機・有機コンポジット型電解質膜を作製した。
1)無機多孔質体の作製
無機多孔質体の孔径を制御するための有機樹脂材料として、平均直径約500nmのポリスチレン球状粒子を使用した。
このポリスチレン球状粒子及び直径70〜100nmのコロイダルシリカを、懸濁溶液中に含まれる溶質体積が所定の膜厚になるよう混合、調製した。手順としては、まずポリスチレンの所定量を秤量し、水に添加した後に、ポリスチレン球形微粒子の含有溶液にコロイダルシリカの含有溶液を加えた。それらの粒子を均一に分散させるため、超音波攪拌した。
Example 1
By using a porous silica membrane as a matrix and introducing a conductive polymer into the pores, an inorganic / organic composite type electrolyte membrane was prepared.
1) Production of inorganic porous body As an organic resin material for controlling the pore diameter of the inorganic porous body, polystyrene spherical particles having an average diameter of about 500 nm were used.
The polystyrene spherical particles and colloidal silica having a diameter of 70 to 100 nm were mixed and prepared so that the solute volume contained in the suspension solution had a predetermined film thickness. As a procedure, first, a predetermined amount of polystyrene was weighed and added to water, and then a solution containing colloidal silica was added to a solution containing polystyrene spherical fine particles. In order to disperse these particles uniformly, ultrasonic stirring was performed.

次いで、懸濁溶液の濾過によって無機多孔質の形成を行った。メンブレンフィルターをフィルターホルダーにセットし、手動式真空ポンプを用いて大気圧に対して大きくても10kPa以下の圧力となるように減圧し、懸濁溶液を濾過した。
懸濁溶液がすべて濾過された後、濾過成形された膜に含まれる余剰の溶剤を、濾紙などを吸水材として用いて余剰水の除去を行ない、室温で十分乾燥させた後にメンブレンフィルターから剥離することでポリスチレン及びシリカの混合物からなる膜を得た。
この混合物膜を次のように熱処理した。まず、ポリスチレンを取り除くため、3℃/minの昇温速度で450℃まで昇温させ、その温度にて60分仮焼成を行った。また、シリカの焼結を行うため、仮焼成後800℃以上で約60分間熱処理を行った。更に機械的強度を向上させるため、900℃以上の温度にて15分間熱処理を行い、ゆっくりと室温に戻すことで、目的とする無機多孔質体を得た。
Next, inorganic porous material was formed by filtration of the suspension solution. The membrane filter was set in a filter holder, the pressure was reduced to a pressure of 10 kPa or less with respect to atmospheric pressure using a manual vacuum pump, and the suspension solution was filtered.
After all of the suspended solution has been filtered, the excess solvent contained in the filter-formed membrane is removed using excess water such as filter paper as a water-absorbing material, and after sufficient drying at room temperature, it is peeled off from the membrane filter. Thus, a film made of a mixture of polystyrene and silica was obtained.
This mixture film was heat-treated as follows. First, in order to remove polystyrene, the temperature was raised to 450 ° C. at a temperature raising rate of 3 ° C./min, and calcination was performed at that temperature for 60 minutes. Moreover, in order to sinter the silica, a heat treatment was performed at 800 ° C. or higher for about 60 minutes after the preliminary firing. In order to further improve the mechanical strength, heat treatment was performed at a temperature of 900 ° C. or higher for 15 minutes, and the temperature was slowly returned to room temperature, thereby obtaining a target inorganic porous material.

2)高分子電解質材料の含浸
市販されている高分子をスルホン化することによって、ポリエーテル系電解質材料を作製した。出発物質としてPoly(oxy−1,4−phenyleneoxy−1,4−phenylenesulfonyl−1,4−phenylene)を用い、これをスルホン化して得られた高分子電解質材料を使用した。合成したポリマー溶液を細孔内に導入してコンポジット型電解質膜を作製した。具体的には、所定濃度に調整したスルホン化ポリエーテル系電解質水溶液をシリカ多孔質膜に含浸させ、水を蒸発させることによってコンポジット型電解質膜を作製した。得られた無機・有機コンポジット型電解質膜の断面SEM像を図4に示す。これより、無機多孔質体の表面に電解質樹脂が存在している様子が観測された。
また、中和滴定により、乾燥した芳香族炭化水素系高分子を構成する単位重量あたりのスルホン酸基量を求め、得られた電解質材料のイオン交換容量を算出した。ここでは、イオン交換容量3.2meq/gのものを使用した。この値は、現在フッ素系電解質膜として代表的なNafionと比べ3倍以上のイオン交換容量となり、得られた高分子電解質材料はスルホン酸基密度が高く、プロトン伝導性発現に対してより有利に働くものであった。
2) Impregnation of polymer electrolyte material A polyether electrolyte material was produced by sulfonating a commercially available polymer. Poly (oxy-1,4-phenylene-1,4-phenylenesulfyl-1,4-phenylene) was used as a starting material, and a polymer electrolyte material obtained by sulfonating this was used. The synthesized polymer solution was introduced into the pores to produce a composite electrolyte membrane. Specifically, a composite electrolyte membrane was produced by impregnating a porous silica membrane with a sulfonated polyether electrolyte aqueous solution adjusted to a predetermined concentration and evaporating water. A cross-sectional SEM image of the obtained inorganic / organic composite electrolyte membrane is shown in FIG. From this, it was observed that the electrolyte resin was present on the surface of the inorganic porous body.
Moreover, the amount of sulfonic acid groups per unit weight constituting the dried aromatic hydrocarbon polymer was determined by neutralization titration, and the ion exchange capacity of the obtained electrolyte material was calculated. Here, an ion exchange capacity of 3.2 meq / g was used. This value is more than three times the ion exchange capacity of Nafion, which is a typical fluorine-based electrolyte membrane, and the obtained polymer electrolyte material has a high sulfonic acid group density, which is more advantageous for the expression of proton conductivity. It was something that worked.

(比較例1)
無機多孔質体に含浸させた高分子電解質材料としてNafion(商標:デュポン社製)溶液を用いた以外は、実施例1と同様の操作を繰り返して、コンポジット型電解質膜を作製した。含浸には、20%Nafion溶液を用い、実施例1と同様に作製されたシリカ多孔質膜の表面に、Nafion溶液を滴下・含浸させた後、乾燥機中で溶媒を蒸発させることで、Nafion含浸膜を得た。
(Comparative Example 1)
A composite electrolyte membrane was prepared by repeating the same operation as in Example 1 except that a Nafion (trademark: manufactured by DuPont) solution was used as the polymer electrolyte material impregnated in the inorganic porous body. For impregnation, a 20% Nafion solution was used, and after dripping and impregnating the Nafion solution on the surface of the porous silica membrane produced in the same manner as in Example 1, the solvent was evaporated in a dryer to remove Nafion. An impregnated membrane was obtained.

(評価測定)
1)無機・有機コンポジット型電解質膜へ導入されたイオン伝導性官能基の定量
実施例1で得られた無機・有機コンポジット型電解質膜について、その電解質膜に含浸された高分子電解質量に結合しているプロトン伝導性を担う官能基の導入量をエネルギー分散形X線分光法(EDS法)を用いて、試料の組成元素分析を実施した。EDS法は、試料から出る特性X線のエネルギーを測定して、その試料の組成元素分析を行うことができる。この分析結果を図5に示す。
図5に示すように、無機多孔質体を構成するSi元素と芳香族炭化水素系高分子電解質に導入された、プロトン伝導を担うスルホン酸基に由来するS元素がEDSスペクトルで検出されており、これらの検出ピークから、それぞれの元素量を感度補正により算出し、元素比S/Siを求めた。
(Evaluation measurement)
1) Quantification of ion conductive functional group introduced into inorganic / organic composite electrolyte membrane The inorganic / organic composite electrolyte membrane obtained in Example 1 was bound to the polymer electrolysis mass impregnated in the electrolyte membrane. The amount of introduced functional groups responsible for proton conductivity was analyzed by compositional element analysis of the sample using energy dispersive X-ray spectroscopy (EDS method). The EDS method can measure the energy of characteristic X-rays emitted from a sample and perform composition element analysis of the sample. The analysis results are shown in FIG.
As shown in FIG. 5, Si element constituting the inorganic porous material and S element derived from the sulfonic acid group responsible for proton conduction introduced into the aromatic hydrocarbon polymer electrolyte are detected in the EDS spectrum. From these detection peaks, the amount of each element was calculated by sensitivity correction, and the element ratio S / Si was obtained.

実施例1の電解質膜では、S/Si=15.9を示し十分な電解質量が存在することがわかった。一方、比較例1で得られたNafion含浸膜は、S/Siが0.1未満であった。このように、本発明の電解質膜は、Nafion含浸膜より多くの電解質が無機多孔質体に導入されている。
現時点では、このメカニズムは明確ではないが、GebelのX線と中性子散乱測定の結果では(G.Gebel,Polymer,41,5829−5838(2000))、溶液状態のNafionは、高分子によって構成されたネットワークの周りをスルホン酸基が取り囲み、この棒状の形成体の周りを水が取り囲んでいるとの報告がなされている。これより、この棒状に構成された高分子ミセルが、ナノメートルオーダーで空孔を制御されている無機多孔質の孔中に対するNafionの導入を阻害していると推測できる。
In the electrolyte membrane of Example 1, it was found that S / Si = 15.9 and a sufficient electrolytic mass was present. On the other hand, the Nafion impregnated film obtained in Comparative Example 1 had S / Si of less than 0.1. Thus, in the electrolyte membrane of the present invention, more electrolyte is introduced into the inorganic porous body than the Nafion-impregnated membrane.
At present, this mechanism is not clear, but according to the results of Gebel's X-ray and neutron scattering measurements (G. Gebel, Polymer, 41, 5829-5838 (2000)), Nafion in the solution state is composed of polymers. It has been reported that sulfonic acid groups surround the network and water surrounds the rod-shaped formation. From this, it can be inferred that the polymer micelles configured in this rod shape inhibit the introduction of Nafion into the inorganic porous pores whose pores are controlled in the nanometer order.

Figure 2006120409
Figure 2006120409

2)無機・有機コンポジット型電解質膜のプロトン伝導性評価
得られたコンポジット型電解質膜のプロトン伝導性については、所定面積の金電極を両面から試料を挟み、100Hz〜1MHzの交流波をかけて計測したインピーダンスにて評価を行った。ここでのイオン導電率は多孔度を考慮せず、金電極と接触する面積を元に算出を行った。計測は、水蒸気分圧が飽和状態となるように温度・湿度の環境を調整して行った。この結果を図6に示す。
2) Proton conductivity evaluation of the inorganic / organic composite electrolyte membrane The proton conductivity of the obtained composite electrolyte membrane was measured by placing a gold electrode with a predetermined area between both sides and applying an AC wave of 100 Hz to 1 MHz. The impedance was evaluated. The ionic conductivity here was calculated based on the area in contact with the gold electrode without considering the porosity. The measurement was performed by adjusting the environment of temperature and humidity so that the water vapor partial pressure was saturated. The result is shown in FIG.

図6に示すように、実施例1で得られた電解質膜は、Nafion含浸膜と比較して高いイオン伝導性を示した。一方、Nafion含浸膜では明らかに寸法変化が目視で確認されたが、実施例1で得られた電解質膜は環境湿度を変化させても寸法変化を目視で認められず、含水に伴う電解質膨潤に対して効果が認められた。   As shown in FIG. 6, the electrolyte membrane obtained in Example 1 showed higher ionic conductivity than the Nafion-impregnated membrane. On the other hand, in the Nafion-impregnated membrane, the dimensional change was clearly confirmed visually. However, the electrolyte membrane obtained in Example 1 was not visually recognized even when the environmental humidity was changed, and the electrolyte swelled with water content. The effect was recognized.

本発明の電解質膜の構造を模式的に示す概略図である。It is the schematic which shows the structure of the electrolyte membrane of this invention typically. ポリエーテル系のポリマーの一例を示す構造式である。2 is a structural formula showing an example of a polyether-based polymer. プロトン伝導性コンポジット型電解質膜の作製手順を示すフロー図である。It is a flowchart which shows the preparation procedures of a proton conductive composite type electrolyte membrane. コンポジット型電解質膜の断面SEM像を示す写真である。It is a photograph which shows the cross-sectional SEM image of a composite type electrolyte membrane. EDSスペクトルの計測例を示すグラフである。It is a graph which shows the example of a measurement of an EDS spectrum. 実施例1及び比較例1で得られた電解質膜のプロトン伝導度を示すグラフである。3 is a graph showing proton conductivity of electrolyte membranes obtained in Example 1 and Comparative Example 1. FIG.

Claims (10)

無機多孔質体が有する複数の球状孔内に炭化水素系電解質材料を配設して成るプロトン伝導性コンポジット型電解質膜であって、
上記球状孔は、内径がほぼ均等であり且つ多孔質体内部に3次元的に存在し隣接する球状孔との間に連通口を有し、上記炭化水素系電解質材料は、該連通口を介してプロトン伝導性を示すことを特徴とするプロトン伝導性コンポジット型電解質膜。
A proton conductive composite electrolyte membrane comprising a hydrocarbon electrolyte material disposed in a plurality of spherical pores of an inorganic porous body,
The spherical holes have a substantially uniform inner diameter and are three-dimensionally present inside the porous body and have a communication port between adjacent spherical holes, and the hydrocarbon electrolyte material passes through the communication port. A proton conductive composite electrolyte membrane characterized by exhibiting proton conductivity.
上記無機多孔質体が、無機ゾルを形成する材料より成ることを特徴とする請求項1に記載のプロトン伝導性コンポジット型電解質膜。   2. The proton conductive composite electrolyte membrane according to claim 1, wherein the inorganic porous body is made of a material that forms an inorganic sol. 上記無機ゾルを形成する材料が、無機コロイドであることを特徴とする請求項2に記載のプロトン伝導性コンポジット型電解質膜。   3. The proton conductive composite electrolyte membrane according to claim 2, wherein the material forming the inorganic sol is an inorganic colloid. 上記無機多孔質体が、シリカ、チタニア、ジルコニア及びタンタルから成る群より選ばれた少なくとも1種のものを含むこと特徴とする請求項1〜3のいずれか1つの項に記載のプロトン伝導性コンポジット型電解質膜。   The proton conductive composite according to any one of claims 1 to 3, wherein the inorganic porous material includes at least one selected from the group consisting of silica, titania, zirconia and tantalum. Type electrolyte membrane. 上記無機多孔質体が、ポリマー微粒子と無機材料を混合した懸濁液から得られたことを特徴とする請求項1〜4のいずれか1つの項に記載のプロトン伝導性コンポジット型電解質膜。   The proton conductive composite electrolyte membrane according to any one of claims 1 to 4, wherein the inorganic porous material is obtained from a suspension obtained by mixing polymer fine particles and an inorganic material. 上記炭化水素系電解質材料が、芳香族炭化水素系高分子ポリマーにプロトン伝導性を発現する官能基を付与して成ることを特徴とする請求項1〜5のいずれか1つの項に記載のプロトン伝導性コンポジット型電解質膜。   The proton according to any one of claims 1 to 5, wherein the hydrocarbon electrolyte material is formed by adding a functional group that expresses proton conductivity to an aromatic hydrocarbon polymer. Conductive composite electrolyte membrane. 上記炭化水素系電解質材料が、少なくとも1meq/g〜6meq/gのイオン交換容量を有することを特徴とする請求項1〜6のいずれか1つの項に記載のプロトン伝導性コンポジット型電解質膜。   The proton conductive composite electrolyte membrane according to any one of claims 1 to 6, wherein the hydrocarbon electrolyte material has an ion exchange capacity of at least 1 meq / g to 6 meq / g. 上記炭化水素系電解質材料が、ポリエーテル系のポリマーから成ることを特徴とする請求項1〜7のいずれか1つの項に記載のプロトン伝導性コンポジット型電解質膜。   The proton conductive composite electrolyte membrane according to any one of claims 1 to 7, wherein the hydrocarbon-based electrolyte material is made of a polyether-based polymer. 上記炭化水素系電解質材料が、ポリエーテルエーテルスルホンであることを特徴とする請求項1〜8のいずれか1つの項に記載のプロトン伝導性コンポジット型電解質膜。   The proton conductive composite electrolyte membrane according to any one of claims 1 to 8, wherein the hydrocarbon electrolyte material is polyether ether sulfone. 請求項1〜9のいずれか1つの項に記載のプロトン伝導性コンポジット型電解質膜を製造するに当たり、
無機ゾルと球状有機樹脂を溶媒を用いて混合する工程と、この混合溶液を攪拌する工程と、この混合溶液を濾過により製膜する工程と、濾過成形膜に含まれる余剰水分の除去工程と、余剰水分を除去した濾過成形膜の乾燥工程と、乾燥させて得られた濾過成形膜の加熱焼成工程と、この加熱焼成して得られた無機多孔質体へ炭化水素系電解質材料を含浸させる工程と、電解質材料を含浸させたコンポジット型電解質膜の乾燥工程と、を行うことを特徴とするプロトン伝導性コンポジット型電解質膜の製造方法。
In producing the proton conductive composite electrolyte membrane according to any one of claims 1 to 9,
A step of mixing the inorganic sol and the spherical organic resin using a solvent, a step of stirring the mixed solution, a step of forming a film of the mixed solution by filtration, a step of removing excess water contained in the filtration molded membrane, A step of drying the filtration molded membrane from which excess water has been removed, a step of heating and baking the filter molded membrane obtained by drying, and a step of impregnating the hydrocarbon-based electrolyte material into the inorganic porous body obtained by heating and baking And a step of drying the composite electrolyte membrane impregnated with the electrolyte material. A method for producing a proton-conductive composite electrolyte membrane.
JP2004305631A 2004-10-20 2004-10-20 PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME Expired - Fee Related JP4716706B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004305631A JP4716706B2 (en) 2004-10-20 2004-10-20 PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
US11/252,542 US20060083962A1 (en) 2004-10-20 2005-10-19 Proton-conductive composite electrolyte membrane and producing method thereof
US12/081,551 US20080213646A1 (en) 2004-10-20 2008-04-17 Proton-conductive composite electrolyte membrane and producing method thereof
US13/292,679 US20120058416A1 (en) 2004-10-20 2011-11-09 Proton-conductive composite electrolyte membrane and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305631A JP4716706B2 (en) 2004-10-20 2004-10-20 PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2006120409A true JP2006120409A (en) 2006-05-11
JP4716706B2 JP4716706B2 (en) 2011-07-06

Family

ID=36538115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305631A Expired - Fee Related JP4716706B2 (en) 2004-10-20 2004-10-20 PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP4716706B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004533A (en) * 2006-05-22 2008-01-10 Nissan Motor Co Ltd Ionic conductor
JP2008034212A (en) * 2006-07-28 2008-02-14 Nissan Motor Co Ltd Ionic conductor, energy device, and fuel cell
JP2008130269A (en) * 2006-11-17 2008-06-05 Nissan Motor Co Ltd Proton conductive composite electrolyte membrane and manufacturing method thereof
WO2009037553A1 (en) * 2007-09-21 2009-03-26 Toyota Jidosha Kabushiki Kaisha Proton conductive material, method for manufacturing proton conductive material, and membrane-electrode assembly containing proton conductive material
JP2011113671A (en) * 2009-11-24 2011-06-09 Tokyo Metropolitan Univ Polymer electrolyte membrane, its manufacturing method, and direct methanol type fuel cell
KR20150060599A (en) * 2013-11-26 2015-06-03 주식회사 엘지화학 Polymer electrolyte membrane, membrane electrode assembly comprising the polymer electrolyte membrane and fuel cell comprising the membrane electrode assembly
CN112710718A (en) * 2020-12-17 2021-04-27 景德镇陶瓷大学 Ceramic hollow microsphere electrochemical sensor and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597537A (en) * 1991-10-02 1993-04-20 Kanebo Ltd Production of ceramic porous material
WO2000054351A1 (en) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
JP2003501516A (en) * 1999-04-30 2003-01-14 へーリング トーマス Composites and composite membranes
JP2004083371A (en) * 2002-08-28 2004-03-18 National Institute For Materials Science Process for producing ceramic porous body
JP2004119072A (en) * 2002-09-24 2004-04-15 Noritake Co Ltd Electrode for fuel cell
JP2004146801A (en) * 2002-10-03 2004-05-20 Murata Mfg Co Ltd Porous magnet, manufacturing method thereof, electric-wave absorber and magnet lens therewith
JP2005183017A (en) * 2003-12-16 2005-07-07 Konica Minolta Holdings Inc Manufacturing method of proton conductive electrolyte film, proton conductive electrolyte film, and fuel cell using proton conductive electrolyte film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597537A (en) * 1991-10-02 1993-04-20 Kanebo Ltd Production of ceramic porous material
WO2000054351A1 (en) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
JP2003501516A (en) * 1999-04-30 2003-01-14 へーリング トーマス Composites and composite membranes
JP2004083371A (en) * 2002-08-28 2004-03-18 National Institute For Materials Science Process for producing ceramic porous body
JP2004119072A (en) * 2002-09-24 2004-04-15 Noritake Co Ltd Electrode for fuel cell
JP2004146801A (en) * 2002-10-03 2004-05-20 Murata Mfg Co Ltd Porous magnet, manufacturing method thereof, electric-wave absorber and magnet lens therewith
JP2005183017A (en) * 2003-12-16 2005-07-07 Konica Minolta Holdings Inc Manufacturing method of proton conductive electrolyte film, proton conductive electrolyte film, and fuel cell using proton conductive electrolyte film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034546A4 (en) * 2006-05-22 2011-07-13 Nissan Motor Ion conductor
EP2034546A1 (en) * 2006-05-22 2009-03-11 Nissan Motor Co., Ltd. Ion conductor
JP2008004533A (en) * 2006-05-22 2008-01-10 Nissan Motor Co Ltd Ionic conductor
JP2008034212A (en) * 2006-07-28 2008-02-14 Nissan Motor Co Ltd Ionic conductor, energy device, and fuel cell
JP2008130269A (en) * 2006-11-17 2008-06-05 Nissan Motor Co Ltd Proton conductive composite electrolyte membrane and manufacturing method thereof
WO2009037553A1 (en) * 2007-09-21 2009-03-26 Toyota Jidosha Kabushiki Kaisha Proton conductive material, method for manufacturing proton conductive material, and membrane-electrode assembly containing proton conductive material
US8470286B2 (en) 2007-09-21 2013-06-25 Toyota Jidosha Kabushiki Kaisha Proton conductive material
JP2011113671A (en) * 2009-11-24 2011-06-09 Tokyo Metropolitan Univ Polymer electrolyte membrane, its manufacturing method, and direct methanol type fuel cell
KR20150060599A (en) * 2013-11-26 2015-06-03 주식회사 엘지화학 Polymer electrolyte membrane, membrane electrode assembly comprising the polymer electrolyte membrane and fuel cell comprising the membrane electrode assembly
KR101727369B1 (en) * 2013-11-26 2017-04-14 주식회사 엘지화학 Polymer electrolyte membrane, membrane electrode assembly comprising the polymer electrolyte membrane and fuel cell comprising the membrane electrode assembly
US10297852B2 (en) 2013-11-26 2019-05-21 Lg Chem, Ltd. Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly
CN112710718A (en) * 2020-12-17 2021-04-27 景德镇陶瓷大学 Ceramic hollow microsphere electrochemical sensor and application thereof
CN112710718B (en) * 2020-12-17 2023-04-18 景德镇陶瓷大学 Ceramic hollow microsphere electrochemical sensor and application thereof

Also Published As

Publication number Publication date
JP4716706B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US20080213646A1 (en) Proton-conductive composite electrolyte membrane and producing method thereof
Lu et al. HPW/MCM‐41 phosphotungstic acid/mesoporous silica composites as novel proton‐exchange membranes for elevated‐temperature fuel cells
Amirinejad et al. Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells
KR101022689B1 (en) Ion conducting composite membrane materials containing an optionally modified zirconium phosphate dispersed in a polymeric matrix, method for preparation of the membrane material and its use
EP1648047B1 (en) Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuell cell comprising the same
Lu et al. A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells
KR100864165B1 (en) Organic/inorganic composite electrolyte membrane using zeolite and fuel cell comprising the same
ES2551442T3 (en) Process for preparing proton-conducting clay particles and composite material comprising such particles
Zeng et al. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells
KR102036766B1 (en) Pore filling amphoteric membrane for low vanadium ion permeation and method for preparing thereof
Di et al. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone)
Guo et al. Zwitterion threaded metal–organic framework membranes for direct methanol fuel cells
Eastcott et al. Sulfonated silica-based fuel cell electrode structures for low humidity applications
WO2011156933A1 (en) Composite having ion exchange function and preparation method and use thereof
KR101315744B1 (en) Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
Sahu et al. Co‐assembly of a Nafion–Mesoporous Zirconium Phosphate Composite Membrane for PEM Fuel Cells
Mohanapriya et al. Cesium-substituted mesoporous phosphotungstic acid embedded chitosan hybrid polymer membrane for direct methanol fuel cells
KR100963747B1 (en) Method for preparing polymer film using electric field
Yuan et al. Preparation and properties of Nafion®/hollow silica spheres composite membranes
JP4716706B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP4925091B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP5196765B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP4576784B2 (en) Proton conductor membrane and production method thereof, membrane-electrode assembly and production method thereof, and electrochemical device
JP4379025B2 (en) Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point
JP5183886B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees