JPH0269997A - Ceramic superconductive magnetic shield and manufacture of the same - Google Patents

Ceramic superconductive magnetic shield and manufacture of the same

Info

Publication number
JPH0269997A
JPH0269997A JP63222680A JP22268088A JPH0269997A JP H0269997 A JPH0269997 A JP H0269997A JP 63222680 A JP63222680 A JP 63222680A JP 22268088 A JP22268088 A JP 22268088A JP H0269997 A JPH0269997 A JP H0269997A
Authority
JP
Japan
Prior art keywords
ceramic
superconductor
magnetic shield
layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63222680A
Other languages
Japanese (ja)
Inventor
Masami Koshimura
正己 越村
Hidenao Matsushima
秀直 松島
Mamoru Kamiyama
上山 守
Mikiya Ono
幹也 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP63222680A priority Critical patent/JPH0269997A/en
Publication of JPH0269997A publication Critical patent/JPH0269997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to manufacture a magnetic shield which shows magnetic shield effect at liquid nitrogen temperature and has a larger, complex shape by forming a ceramic superconductive layer on the surface of a board. CONSTITUTION:An organic binder and solvent are mixed to powders of a ceramic superconductive material and a ceramic superconductive paste is obtained. This ceramic superconductive paste is applied on the inner surface of a zirconia-ceramic-made pipe 1 and burned in oxygen to form a superconductive layer 2. This makes it possible to manufacture a magnetic shield which shows magnetic shield effect at liquid nitrogen temperature and has a larger, complex shape. The superconductive layer 2 should preferably contain a metal or its oxide of 0.1 to 50 weight parts with respect to a ceramic superconductive material 100.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミック超伝導体を用いた磁気シールド体お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic shield using a ceramic superconductor and a method for manufacturing the same.

〔概 要〕〔overview〕

本発明は、セラミック超伝導体層が一層以上積層された
セラミック超伝導磁気シールド体において、 基材表面にセラミック超伝導体層を形成することにより
、 液体窒素温度で磁気シールド効果を示し、しかも大型ま
たは複雑な形状のものでも製造可能な磁気シールド体お
よびその製造方法を提供するものである。
The present invention provides a ceramic superconducting magnetic shield in which more than one ceramic superconductor layer is laminated, which exhibits a magnetic shielding effect at liquid nitrogen temperature by forming the ceramic superconductor layer on the surface of the base material, and is large in size. Another object of the present invention is to provide a magnetic shielding body that can be manufactured even if it has a complicated shape, and a method for manufacturing the magnetic shielding body.

〔従来の技術〕[Conventional technology]

近年になって種々の磁気発生装置、特に超伝導磁石を使
用した医療機器が広く使用されている。
In recent years, various magnetic generation devices, particularly medical devices using superconducting magnets, have been widely used.

このような装置では、人体の保護のために、磁気シール
ドが必要とされる。また、ディジタル電子機器による不
要電磁波の発生およびこの電磁波による機器の誤動作を
防止するためにも磁気シールドが必要とされている。
Such devices require magnetic shielding to protect the human body. Furthermore, magnetic shielding is also required to prevent digital electronic equipment from generating unnecessary electromagnetic waves and from malfunctioning of the equipment due to these electromagnetic waves.

磁気シールド材料としては、従来から、透磁率ノ高イパ
ーマロイ、ケイ素鋼板などの金属磁性材料が用いられて
いる。
As magnetic shielding materials, metal magnetic materials such as high magnetic permeability ipermalloy and silicon steel plates have been used.

しかし、これらの磁性材料は有限の透磁率をもつことか
ら、例えば脳や心臓などから発生する生体の微弱な磁界
を計測する生体磁気計測の分野その他で使用される超伝
導量子干渉デバイス(SQUID)用の磁気シールドに
は不十分であった。
However, since these magnetic materials have finite magnetic permeability, superconducting quantum interference devices (SQUIDs) are used in the field of biomagnetic measurement, which measures weak magnetic fields in living organisms such as those generated by the brain and heart. It was insufficient for magnetic shielding.

そこで、金属超伝導材料を用いた5QUID用の磁気シ
ールド材が実用化されている。超伝導材料のマイスナ効
果を利用することにより、理論的には完全な磁気シール
ドが可能である。
Therefore, magnetic shielding materials for 5QUID using metallic superconducting materials have been put into practical use. Complete magnetic shielding is theoretically possible by utilizing the Meissner effect of superconducting materials.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、金属超伝導材料では冷却用に液体ヘリウムが必
要となり、液体窒素温度で動作する5QUIDの磁気シ
ールドは不可能であった。そこで、セラミック超伝導材
料を用いた磁気シールド材が検討されている。
However, metallic superconducting materials require liquid helium for cooling, making it impossible to magnetically shield a 5QUID that operates at liquid nitrogen temperatures. Therefore, magnetic shielding materials using ceramic superconducting materials are being considered.

5QUID用の磁気シールド体は、基本的に、周囲から
の磁界をシールドするためにパイプ状の形をしている。
The magnetic shield body for 5QUID basically has a pipe shape to shield magnetic fields from the surroundings.

セラミック超伝導体で磁気シールド体を製造するには、
超伝導体粉末をパイプ状に焼結することが考えられる。
To manufacture a magnetic shield with ceramic superconductor,
One possibility is to sinter superconductor powder into a pipe shape.

しかし、この方法では焼結時に一部液相が生じやすいた
め、変形してしまう欠点があった。また、加工性も劣り
、大型のものを製造できない欠点がある。さらに、磁気
シールド効果は一層構造で厚い場合よりも多層構造の方
が優れているのに対し、バルク材ではこの構造を作るこ
とが困難である。超伝導薄膜を用いることも考えられる
が、薄膜では大型のもの、または複雑な形状のものは製
造が難しい欠点がある。
However, this method has the disadvantage that a liquid phase tends to be partially formed during sintering, resulting in deformation. In addition, it has the drawback of poor processability and the inability to manufacture large-sized products. Furthermore, while a multilayer structure has a better magnetic shielding effect than a thick single layer structure, it is difficult to create this structure using bulk materials. Although it is possible to use a superconducting thin film, the disadvantage is that it is difficult to manufacture large thin films or those with complicated shapes.

本発明は、以上の問題点を解決し、セラミック超伝導体
を使用した超伝導磁気シールド体およびその製造方法を
提供することを目的とする。
An object of the present invention is to solve the above problems and provide a superconducting magnetic shield using a ceramic superconductor and a method for manufacturing the same.

〔問題点を解決するための手段〕 本発明のセラミック超伝導磁気シールド体は、支持基材
の表面にセラミック超伝導体の層が形成されたことを特
徴とする。
[Means for Solving the Problems] The ceramic superconducting magnetic shield of the present invention is characterized in that a layer of ceramic superconductor is formed on the surface of a supporting base material.

超伝導体層を構成するセラミック超伝導体物質としては
、 ■ アルカリ土類元素、イツトリウムとランクニド元素
との一方または双方、および銅を構成成分とする酸化物
、 ■ ビスマスと釦との一方または双方、ストロンチウム
、カルシウムおよび銅を構成成分とする酸化物、 ■ カリウム、バリウム、カルシウムおよび銅を構成成
分とする酸化物、 ■ バリウム、カリウムと鉛との一方または双方、およ
びビスマスを構成成分とする酸化物その他を用いること
ができる。
Ceramic superconductor materials constituting the superconductor layer include: - one or both of alkaline earth elements, yttrium and ranknid elements, and oxides containing copper, and - one or both of bismuth and button. , strontium, calcium and copper as constituents; ■ oxides as constituents of potassium, barium, calcium and copper; ■ oxides as constituents of barium, potassium and/or lead, and bismuth. objects etc. can be used.

超伝導体層は、セラミック超伝導体物質100に対して
0.1〜50重量部の金属またはその酸化物を含むこと
が望ましい。これにより、緻密で、支持基体との接着密
度が高く、しかも臨界温度および臨界電流密度の高い超
伝導体層が得られる。これにより、金属またはその酸化
物を含まない場合に比べて磁気シールド効果が大幅に改
善される。
The superconductor layer preferably contains 0.1 to 50 parts by weight of a metal or its oxide based on 100 parts by weight of the ceramic superconductor material. As a result, a superconductor layer that is dense, has a high adhesive density with the supporting substrate, and has a high critical temperature and critical current density can be obtained. As a result, the magnetic shielding effect is significantly improved compared to the case where the metal or its oxide is not included.

また、超伝導体層の表面には、水分および炭酸水との反
応を防止する保護皮膜を設けることが望ましい。セラミ
ック超伝導体、特に酸素欠損ペロブスカイト型の3a2
YCu307−y超伝導体(yは酸素欠損量)は、水分
や炭酸水を吸着すると分解して超伝導特性が大きく劣化
する。特に、塗布またはスクリーン印刷にりよ形成した
厚膜の場合には、バルクに比べて緻密化が困難であり、
水分や炭酸水の吸着による劣化が大きい。しかし、その
表面に皮膜を設けることにより、繰り返し使用しても特
性に変化のないセラミック超伝導磁気シールド体が得ら
れる。
Further, it is desirable to provide a protective film on the surface of the superconductor layer to prevent reaction with moisture and carbonated water. Ceramic superconductors, especially oxygen-deficient perovskite type 3a2
When the YCu307-y superconductor (y is the amount of oxygen vacancies) adsorbs moisture or carbonated water, it decomposes and its superconducting properties deteriorate significantly. In particular, in the case of thick films formed by coating or screen printing, it is difficult to densify them compared to bulk films.
Significant deterioration occurs due to adsorption of moisture and carbonated water. However, by providing a film on its surface, a ceramic superconducting magnetic shield whose characteristics do not change even after repeated use can be obtained.

保護皮膜としては、硼ケイ酸ガラス、結晶化ガラスなど
のガラス材料、あるいは金、銀、白金、パラジウムなど
の金属や合金、ワックス、フェス、ポリエステル樹脂、
フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、フッ
ソ樹脂などの有機材料など、超伝導物質と反応が小さく
、気密性があり、液体窒素温度と室温との間の温度変化
に対してクラックが生じない材料が適している。皮膜を
形成する方法としては、その材料を塗布、印刷または含
浸してもよく、蒸着、スパッタリンクなどの物理蒸着や
メツキ法を用いてもよい。また、ガラスを皮膜として用
いる場合には熱処理を施すこともある。皮膜の厚さとし
ては1〜100μ0程度が適しているが、クラックが生
じなければこれより厚くてもよい。
As a protective film, glass materials such as borosilicate glass and crystallized glass, metals and alloys such as gold, silver, platinum, and palladium, wax, fest, polyester resin,
Materials such as organic materials such as phenolic resins, epoxy resins, polyimide resins, and fluoroplastics that have a low reaction with superconducting substances, are airtight, and do not crack due to temperature changes between liquid nitrogen temperature and room temperature. Are suitable. As a method for forming the film, the material may be coated, printed, or impregnated, or physical vapor deposition such as vapor deposition, sputter linking, or plating method may be used. Further, when glass is used as a film, heat treatment may be performed. The suitable thickness of the film is about 1 to 100 μ0, but it may be thicker if no cracks occur.

超伝導体層の表面、保護皮膜を設けた場合には超伝導体
層と保護皮膜との間または保護皮膜の表面に、磁性体層
を設けることが望ましい。この磁性体層は、超伝導体層
に含まれるセラミック超伝導体が超伝導特性を示す温度
において磁気シールド効果を示す磁性材料、すなわち高
透磁率および高飽和磁束密度を有する磁性材料であるこ
とが望ましい。さらに、超伝導体層の臨界温度以上でも
磁気シールド効果を示す磁性材料であることが望ましい
。このような材料としては、パーマロイ組成を含むFe
−Ni合金、ケイ素鋼板その他の金属材料、あるいはフ
ェライト材料を用いる。これらの材料の膜を超伝導体層
の表面に形成するには、蒸着、スパッタリングその他の
物理成膜や、メツキ法を用いる。
It is desirable to provide a magnetic layer on the surface of the superconductor layer, or in the case where a protective film is provided, between the superconductor layer and the protective film or on the surface of the protective film. This magnetic layer is a magnetic material that exhibits a magnetic shielding effect at a temperature at which the ceramic superconductor contained in the superconductor layer exhibits superconducting properties, that is, a magnetic material that has high magnetic permeability and high saturation magnetic flux density. desirable. Furthermore, it is desirable that the material be a magnetic material that exhibits a magnetic shielding effect even above the critical temperature of the superconductor layer. Such materials include Fe containing permalloy composition.
-Ni alloy, silicon steel plate and other metal materials, or ferrite materials are used. To form a film of these materials on the surface of the superconductor layer, vapor deposition, sputtering, other physical film formation, or plating method is used.

超伝導体層の支持基材としては、超伝導体層に含まれる
セラミック超伝導体に対する反応性が小さいものが望ま
しく、酸化ジルコニウム、i12化マグネシウム、チタ
ン酸ストロンチウム、あるいはこれらの少なくともひと
つを主成分とするセラミックス材料が適している。また
、これらのセラミックス材料の皮膜をアルミナその他の
セラミックス基板表面に形成したものを用いることもで
きる。
The supporting base material for the superconductor layer is preferably one that has low reactivity to the ceramic superconductor contained in the superconductor layer, and is preferably one containing zirconium oxide, magnesium i12ide, strontium titanate, or at least one of these as a main component. Ceramic materials are suitable. Furthermore, a film formed of these ceramic materials on the surface of an alumina or other ceramic substrate can also be used.

さらにアルミナその他のセラミックス基板表面に銀、金
、白金、パラジウムその他の金属皮膜を形成したものを
用いることもできる。
Further, it is also possible to use a substrate made of alumina or other ceramics on which a metal film such as silver, gold, platinum, palladium or the like is formed.

また、支持基材は、磁性体層を含むことが望ましい。こ
の磁性体層は、超伝導体層に含まれるセラミック超伝導
体が超伝導特性を示す温度において高い磁性率を示す磁
性材料であることが望ましい。磁性体層と超伝導体層と
の間には、磁性体とセラミック超伝導体との反応を防止
するため、上述したセラミック材料の皮膜や金属皮膜を
設けることが必要である。
Further, it is desirable that the supporting base material includes a magnetic layer. This magnetic layer is preferably made of a magnetic material that exhibits a high magnetic rate at a temperature at which the ceramic superconductor contained in the superconductor layer exhibits superconducting properties. Between the magnetic material layer and the superconductor layer, it is necessary to provide a film of the above-mentioned ceramic material or a metal film in order to prevent a reaction between the magnetic material and the ceramic superconductor.

このようなセラミック超伝導磁気シールド体を製造する
には、セラミック超伝導体物質の粉末、有機結合材およ
び溶剤を混合したセラミック超伝導体ペーストを支持基
材に塗布あるいは印刷し、このセラミック超伝導体ペー
ストを焼成する。また、支持基材の表面に超伝導体粉末
を溶射し、例えば酸化性雰囲気中で熱処理してもよい。
To manufacture such a ceramic superconducting magnetic shield, a ceramic superconductor paste, which is a mixture of powdered ceramic superconductor material, an organic binder, and a solvent, is coated or printed on a supporting substrate, and the ceramic superconductor paste is coated or printed on a supporting substrate. Burn the body paste. Alternatively, the superconductor powder may be thermally sprayed onto the surface of the support base material and heat treated, for example, in an oxidizing atmosphere.

セラミック超伝導体物質の粉末には、金属またはその酸
化物の粉末を混合することが望ましい。
It is desirable to mix powder of a metal or its oxide with the powder of the ceramic superconductor material.

この粉末は、酸素を含む雰囲気中においてセラミック超
伝導体物質の焼成温度で溶融する金属、合金、これらを
含む混合物、これらの酸化物、あるいは酸素を脱離する
金属酸化物またはその混合物であればよい。このような
金属、金属酸化物としては、金、銀、白金、パラジウム
または水銀、これらを含む合金、混合物、これらの酸化
物、酸化物の混合物、金属と酸化物との混合物その他を
用いることができる。金属または金属酸化物の混合割合
としては、セラミック超伝導体物質100に対して0.
1〜50重量部の範囲が望ましい。この範囲であれば、
基板との密着性に優れ、かつ十分に緻密で臨界温度およ
び臨界電流密度の高い超伝導体層が得られる。
This powder may be a metal, an alloy, a mixture containing these, or an oxide thereof that melts at the firing temperature of the ceramic superconductor material in an oxygen-containing atmosphere, or a metal oxide or a mixture thereof that desorbs oxygen. good. As such metals and metal oxides, gold, silver, platinum, palladium or mercury, alloys and mixtures containing these, oxides of these, mixtures of oxides, mixtures of metals and oxides, etc. can be used. can. The mixing ratio of the metal or metal oxide is 0.00 to 100 parts of the ceramic superconductor material.
A range of 1 to 50 parts by weight is desirable. If this range is
A superconductor layer that has excellent adhesion to the substrate, is sufficiently dense, and has a high critical temperature and critical current density can be obtained.

有機結合材としては、エチルセルローズ、ニトロセルロ
ーズその他のセルローズ系樹脂、ポリメチルメタクリレ
ートその他のアクリル系樹脂、アルキッドフェノール系
樹脂、ビニール系樹脂、エポキシ系樹脂その他の焼成雰
囲気中で容易に熱分解が進行するものであれば、どのよ
うな材料を使用してもよい。
Examples of organic binders include ethyl cellulose, nitrocellulose, and other cellulose resins, polymethyl methacrylate and other acrylic resins, alkyd phenol resins, vinyl resins, epoxy resins, and other materials that undergo thermal decomposition easily in the firing atmosphere. Any material may be used as long as it is suitable.

ペースト化に用いる溶剤としては、カルピトールアセテ
ート、テルピネオール、トルエン、キシレンその他の芳
香族溶媒、酢酸エチルその他のエステル系溶媒、メチル
エチルケトンその他のケトン系溶媒、あるいはそれらの
混合溶媒を任意に使用できる。
As the solvent used for pasting, carpitol acetate, terpineol, toluene, xylene and other aromatic solvents, ethyl acetate and other ester solvents, methyl ethyl ketone and other ketone solvents, or mixed solvents thereof can be arbitrarily used.

〔作 用〕[For production]

セラミック超伝導体を支持基材の表面に形成することに
より、支持基材の形状で磁気シールド体を製造できる。
By forming the ceramic superconductor on the surface of the support base material, a magnetic shield body can be manufactured in the shape of the support base material.

したがって、大型の磁気シールド体を容易に製造できる
とともに、複雑な形状のものも容易に製造できる。また
、容易に多層構造の磁気シールド体を製造できる。
Therefore, not only can large-sized magnetic shielding bodies be easily manufactured, but also those having complicated shapes can be manufactured easily. Moreover, a magnetic shielding body having a multilayer structure can be easily manufactured.

〔実施例〕〔Example〕

(実施例1) 出発原料として炭酸バリウムBaC0+ 、三酸化二イ
ツトリウムY20゜および酸化第二銅CuOを用い、こ
れらを混合し、通常のセラミックス製造の手順、すなわ
ち仮焼、粉砕、造粒・成形および焼成を行ってセラミッ
ク超伝導体を得た。仮焼および焼成は大気中で行い、9
25℃で20時間加熱した後に、50℃/時の速度で冷
却した。
(Example 1) Barium carbonate BaC0+, diytrium trioxide Y20°, and cupric oxide CuO were used as starting materials, and these were mixed and subjected to the usual ceramic manufacturing procedures, that is, calcination, pulverization, granulation/molding, and Firing was performed to obtain a ceramic superconductor. Calcination and firing are performed in the atmosphere, and
After heating at 25°C for 20 hours, it was cooled at a rate of 50°C/hour.

このようにして得られたセラミック超伝導体について、
ジルコニアボールを用い、乾燥窒素ガス雲囲気下のエタ
ノール中でlO時時間式粉砕した。
Regarding the ceramic superconductor obtained in this way,
Using zirconia balls, the material was time-pulverized in ethanol under a cloud of dry nitrogen gas for 10 hours.

これにより、平均粒径が1μmのセラミック超伝導体物
質の粉末を得た。この粉末を二つに分け、その一方に酸
化銀粉(粒径0.5μm)を30重量部混合した。
As a result, a ceramic superconductor material powder having an average particle size of 1 μm was obtained. This powder was divided into two parts, and 30 parts by weight of silver oxide powder (particle size: 0.5 μm) was mixed into one part.

次に、得られた粉末にエチルセルローズ、プチルベンジ
ルフクレートおよびテルピネオールを混合し、儒潰機に
より、乾燥しないように留意しながら乾燥窒素雰囲気中
で攪拌混合し、ペースト化してセラミック超伝導体ペー
ストを得た。
Next, ethyl cellulose, butylbenzyl fucrate, and terpineol were mixed with the obtained powder, and the mixture was stirred and mixed in a dry nitrogen atmosphere using a crusher, taking care not to dry it, and the paste was formed into a ceramic superconductor paste. I got it.

このセラミック超伝導体ペーストを用いたセラミック超
伝導磁気シールド体の一例を図に示す。
An example of a ceramic superconducting magnetic shield using this ceramic superconductor paste is shown in the figure.

この例では、セラミック超伝導体ペーストを内径20m
m、外径25mm、長さ100mmのジルコニアセラミ
ック製パイプ1の内面に塗布し、985℃で3分間、酸
素中で焼成し、厚さ100μmの超伝導体層2を形成し
た。
In this example, we used a ceramic superconductor paste with an inner diameter of 20 m.
The mixture was coated on the inner surface of a zirconia ceramic pipe 1 having an outer diameter of 25 mm and a length of 100 mm, and was fired at 985° C. for 3 minutes in oxygen to form a superconductor layer 2 with a thickness of 100 μm.

このセラミック超伝導磁気シールド体を液体窒素に浸し
、パイプ内部に極低温用のホール素子を配置し、外部か
らパイプに垂直に磁場を印加して内部の磁場の大きさを
測定した。その結果を第1表に示す。
This ceramic superconducting magnetic shield was immersed in liquid nitrogen, a Hall element for cryogenic temperatures was placed inside the pipe, and a magnetic field was applied perpendicular to the pipe from the outside to measure the magnitude of the internal magnetic field. The results are shown in Table 1.

(以下本頁余白) 第 表 第1表に示したように、超伝導体層により磁気シールド
効果が得られる。このとき、超伝導体層に酸化銀を添加
すると、磁気シールド効果がさらに改善される。
(Hereinafter, this page margin) As shown in Table 1, a magnetic shielding effect can be obtained by the superconductor layer. At this time, adding silver oxide to the superconductor layer further improves the magnetic shielding effect.

(実施例2) 内径20mm、外径25mm、長さ100mmのパイプ
状に加工されたNi−Znフェライト磁性材料の内面に
、有1属アルコキシドのジルコニアアルコキシド2r 
(DC2H5) 4液体を塗布し、温度50℃の大気中
で5分間にわたり熱風乾燥した。次に、これを1200
℃で1時間焼成し、ジルコニアの酸化物膜が内面に形成
されたパイプを得た。
(Example 2) Zirconia alkoxide 2r, which is a group 1 alkoxide, was placed on the inner surface of a Ni-Zn ferrite magnetic material processed into a pipe shape with an inner diameter of 20 mm, an outer diameter of 25 mm, and a length of 100 mm.
(DC2H5) 4 liquid was applied and dried with hot air for 5 minutes in the atmosphere at a temperature of 50°C. Next, set this to 1200
C. for 1 hour to obtain a pipe with a zirconia oxide film formed on the inner surface.

このパイプを支持基体とし、この支持基体の内面に、実
施例1で得られた酸化銀を混入したセラミック超伝導体
ペーストを塗布した。さらに、これを985℃で3分間
にわたり酸素中で焼成し、厚さ100μmの超伝導体層
を形成した。さらに、超伝導体層の表面に、フッソ樹脂
で保護皮膜を形成した。
This pipe was used as a support base, and the ceramic superconductor paste mixed with silver oxide obtained in Example 1 was applied to the inner surface of this support base. Furthermore, this was fired in oxygen at 985° C. for 3 minutes to form a superconductor layer with a thickness of 100 μm. Furthermore, a protective film was formed on the surface of the superconductor layer using fluorocarbon resin.

このセラミック超伝導磁気シールド体を液体窒素に浸し
、パイプ内部に極低温用のホール素子を配置し、外部か
らパイプに垂直に磁場を印加して内部の磁場の大きさを
測定した。その結果を第2表に示す。この表には、超伝
導体層を設けない場合の測定値を比較例として示す。
This ceramic superconducting magnetic shield was immersed in liquid nitrogen, a Hall element for cryogenic temperatures was placed inside the pipe, and a magnetic field was applied perpendicular to the pipe from the outside to measure the magnitude of the internal magnetic field. The results are shown in Table 2. This table shows measured values when no superconductor layer is provided as a comparative example.

(以下不貞余白) 第   2   表 第2表に示した測定値を第1表に示した測定値と比較す
ると、実施例2の方が高い磁場まで大きな磁気シールド
効果を示すことがわかる。
(Hereinafter, unfaithful margin) Table 2 Comparing the measured values shown in Table 2 with the measured values shown in Table 1, it can be seen that Example 2 shows a greater magnetic shielding effect up to a higher magnetic field.

いずれの実施例についても、液体窒素と室温とで繰り返
し測定したが、超伝導体層表面の塗布状態、ひび割れ、
クラックその他の変化は目視では観測されなかった。
For each example, repeated measurements were performed using liquid nitrogen and room temperature, and the coating condition of the superconductor layer surface, cracks,
No cracks or other changes were visually observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のセラミック超伝導磁気シ
ールド体は、微弱な磁場だけでなく比較的大きな磁場に
対しても磁気シールド効果を示す。
As explained above, the ceramic superconducting magnetic shield of the present invention exhibits a magnetic shielding effect not only against a weak magnetic field but also against a relatively large magnetic field.

本発明により、大型の磁気シールド体を容易に製造でき
るとともに、複雑な形状のものも容易に製造できる。ま
た、多層構造の磁気シールド体を容易に製造できる。し
たがって、本発明は、液体窒素温度で使用する機器の磁
気シールド体として大きな効果がある。
According to the present invention, it is possible to easily manufacture large magnetic shielding bodies, and also to manufacture magnetic shielding bodies having complicated shapes. Further, a multilayered magnetic shielding body can be easily manufactured. Therefore, the present invention is highly effective as a magnetic shield for equipment used at liquid nitrogen temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明実施例セラミック超伝導磁気シールド体の斜
視図。 ■・・・ジルコニアセラミック製パイプ、2・・・超伝
導体層。 特許出願人 三菱鉱業セメント株式会社代理人 弁理士
 井 出 直 孝
The figure is a perspective view of a ceramic superconducting magnetic shielding body according to an embodiment of the present invention. ■... Zirconia ceramic pipe, 2... Superconductor layer. Patent applicant Mitsubishi Mining Cement Co., Ltd. Representative Patent attorney Naotaka Ide

Claims (13)

【特許請求の範囲】[Claims] 1.セラミック超伝導体層が一層以上積層されたセラミ
ック超伝導磁気シールド体において、上記超伝導体層は
支持基材の表面に形成されたことを特徴とするセラミッ
ク超伝導磁気シールド体。
1. 1. A ceramic superconducting magnetic shield comprising at least one laminated ceramic superconductor layer, characterized in that the superconductor layer is formed on the surface of a support base material.
2.超伝導体層は、セラミック超伝導体物質100に対
して0.1〜50重量部の金属またはその酸化物を含む
請求項1記載のセラミック超伝導磁気シールド体。
2. 2. The ceramic superconducting magnetic shield according to claim 1, wherein the superconductor layer contains 0.1 to 50 parts by weight of a metal or an oxide thereof based on 100 parts by weight of the ceramic superconductor material.
3.超伝導体層の表面に水分および炭酸水との反応を防
止する保護皮膜が設けられた請求項1記載のセラミック
超伝導磁気シールド体。
3. 2. The ceramic superconducting magnetic shield according to claim 1, wherein a protective film is provided on the surface of the superconductor layer to prevent reaction with moisture and carbonated water.
4.超伝導体層の表面に磁性体層が設けられた請求項1
記載のセラミック超伝導磁気シールド体。
4. Claim 1, wherein a magnetic layer is provided on the surface of the superconductor layer.
The described ceramic superconducting magnetic shield body.
5.磁性体層は、超伝導体層に含まれるセラミック超伝
導体が超伝導特性を示す温度において磁気シールド効果
を示す磁性材料である請求項4記載のセラミック超伝導
磁気シールド体。
5. 5. The ceramic superconducting magnetic shield according to claim 4, wherein the magnetic layer is a magnetic material that exhibits a magnetic shielding effect at a temperature at which the ceramic superconductor contained in the superconductor layer exhibits superconducting properties.
6.支持基材は磁性体層を含む請求項1記載のセラミッ
ク超伝導磁気シールド体。
6. The ceramic superconducting magnetic shield according to claim 1, wherein the supporting base material includes a magnetic layer.
7.磁性体層は、超伝導体層に含まれるセラミック超伝
導体が超伝導特性を示す温度において磁気シールド効果
を示す磁性材料を含む請求項6記載のセラミック超伝導
磁気シールド体。
7. 7. The ceramic superconducting magnetic shield according to claim 6, wherein the magnetic layer contains a magnetic material that exhibits a magnetic shielding effect at a temperature at which the ceramic superconductor contained in the superconductor layer exhibits superconducting properties.
8.支持基材は、超伝導体層と接する界面に、超伝導体
層に含まれるセラミック超伝導体に対する反応性が小さ
い膜が設けられた請求項1記載のセラミック超伝導磁気
シールド体。
8. 2. The ceramic superconducting magnetic shield according to claim 1, wherein the supporting base material is provided with a film having low reactivity to the ceramic superconductor contained in the superconductor layer at an interface in contact with the superconductor layer.
9.反応性の小さい膜は、酸化ジルコニウム、酸化マグ
ネシウム、チタン酸ストロンチウム、銀、パラジウムま
たは白金のいずれかを含む請求項8記載のセラミック超
伝導磁気シールド体。
9. 9. The ceramic superconducting magnetic shield according to claim 8, wherein the less reactive film contains any one of zirconium oxide, magnesium oxide, strontium titanate, silver, palladium, or platinum.
10.セラミック超伝導体物質の粉末、有機結合材およ
び溶剤を混合したセラミック超伝導体ペーストを支持基
材に塗布し、 このセラミック超伝導体ペーストを焼成するセラミック
超伝導磁気シールドの製造方法。
10. A method for manufacturing a ceramic superconducting magnetic shield, in which a ceramic superconductor paste, which is a mixture of ceramic superconductor powder, an organic binder, and a solvent, is applied to a supporting base material, and the ceramic superconductor paste is fired.
11.セラミック超伝導体物質の粉末は、セラミック超
伝導体物質100に対して0.1〜50重量部の金属ま
たはその酸化物の粉末を含む請求項10記載のセラミッ
ク超伝導磁気シールドの製造方法。
11. 11. The method for manufacturing a ceramic superconducting magnetic shield according to claim 10, wherein the ceramic superconductor material powder contains 0.1 to 50 parts by weight of metal or oxide powder based on 100 parts by weight of the ceramic superconductor material.
12.セラミック超伝導体ペーストを支持基材に塗布す
る前に、この支持基材の表面に、セラミック超伝導体ペ
ーストに含まれるセラミック超伝導体物質との反応性の
小さい膜を形成する請求項10記載のセラミック超伝導
磁気シールドの製造方法。
12. 11. A film having low reactivity with the ceramic superconductor substance contained in the ceramic superconductor paste is formed on the surface of the support base before the ceramic superconductor paste is applied to the support base. A method for manufacturing a ceramic superconducting magnetic shield.
13.セラミック超伝導体ペーストを焼成した後に、そ
の表面に磁性体層を形成する請求項10記載のセラミッ
ク超伝導磁気シールドの製造方法。
13. 11. The method for manufacturing a ceramic superconducting magnetic shield according to claim 10, wherein a magnetic layer is formed on the surface of the ceramic superconducting paste after firing the ceramic superconducting paste.
JP63222680A 1988-09-05 1988-09-05 Ceramic superconductive magnetic shield and manufacture of the same Pending JPH0269997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222680A JPH0269997A (en) 1988-09-05 1988-09-05 Ceramic superconductive magnetic shield and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222680A JPH0269997A (en) 1988-09-05 1988-09-05 Ceramic superconductive magnetic shield and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH0269997A true JPH0269997A (en) 1990-03-08

Family

ID=16786239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222680A Pending JPH0269997A (en) 1988-09-05 1988-09-05 Ceramic superconductive magnetic shield and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH0269997A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722822A (en) * 1993-06-30 1995-01-24 Nec Corp Micro strip line resonator and production of shield for the same
JPH07283586A (en) * 1994-04-12 1995-10-27 Chodendo Sensor Kenkyusho:Kk Magnetic shield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258098A (en) * 1987-04-15 1988-10-25 Fujikura Ltd Superconducting electromagnetic shield
JPS6444098A (en) * 1987-08-12 1989-02-16 Fujikura Ltd Superconducting electromagnetic shielding material
JPS6460913A (en) * 1987-09-01 1989-03-08 Furukawa Electric Co Ltd Ceramic superconductive base board
JPH01110799A (en) * 1987-10-23 1989-04-27 Furukawa Electric Co Ltd:The Manufacture of superconductive magnetic shielding material
JPH01260895A (en) * 1988-04-12 1989-10-18 Mitsui Petrochem Ind Ltd Laminated magnetic shielding material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258098A (en) * 1987-04-15 1988-10-25 Fujikura Ltd Superconducting electromagnetic shield
JPS6444098A (en) * 1987-08-12 1989-02-16 Fujikura Ltd Superconducting electromagnetic shielding material
JPS6460913A (en) * 1987-09-01 1989-03-08 Furukawa Electric Co Ltd Ceramic superconductive base board
JPH01110799A (en) * 1987-10-23 1989-04-27 Furukawa Electric Co Ltd:The Manufacture of superconductive magnetic shielding material
JPH01260895A (en) * 1988-04-12 1989-10-18 Mitsui Petrochem Ind Ltd Laminated magnetic shielding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722822A (en) * 1993-06-30 1995-01-24 Nec Corp Micro strip line resonator and production of shield for the same
JPH07283586A (en) * 1994-04-12 1995-10-27 Chodendo Sensor Kenkyusho:Kk Magnetic shield

Similar Documents

Publication Publication Date Title
CA1326976C (en) Superconducting member
JPH0269997A (en) Ceramic superconductive magnetic shield and manufacture of the same
JP2502098B2 (en) Superconducting magnetic shield
WO1989003126A1 (en) Structure of superconductor wiring and process for its production
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JP2599387B2 (en) Ceramic superconductor
JPS63258098A (en) Superconducting electromagnetic shield
JPH04795A (en) Magnetic shielding plate
JPS63274017A (en) Superconductive wire material
JP3187089B2 (en) Oxide superconducting structure
JPH084199B2 (en) Superconducting magnetic shield
JPH01203258A (en) Production of oxide superconducting sintered body
JPH03192615A (en) Oxide superconducting structural body and manufacture thereof
JP3150718B2 (en) Superconductor lamination substrate and superconducting laminate using the same
JPH0256990A (en) Manufacture of ceramic superconductor wiring board
JPH01140622A (en) Device having superconducting film
JPS63261763A (en) Superconducting magnetic shield
JP2517055B2 (en) Superconductor
JPH0269990A (en) Manufacture of ceramic superconductor wiring board
JPH01289300A (en) Superconducting magnetic shielding material
JPH06328618A (en) Ceramics superconductive composite and production thereof
JPH06272021A (en) Bismuth based oxide superconducting conjugated body and its production
JPH01144519A (en) Oxide-based covering member for superconductor
JPS63307115A (en) Production of oxide superconductor
JPH04349187A (en) Oxide superconductor composite and its manufacture