JPH03265576A - Oxide superconducting laminated body and its production - Google Patents

Oxide superconducting laminated body and its production

Info

Publication number
JPH03265576A
JPH03265576A JP2063406A JP6340690A JPH03265576A JP H03265576 A JPH03265576 A JP H03265576A JP 2063406 A JP2063406 A JP 2063406A JP 6340690 A JP6340690 A JP 6340690A JP H03265576 A JPH03265576 A JP H03265576A
Authority
JP
Japan
Prior art keywords
noble metal
metal plate
thickness
oxide
superconducting laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2063406A
Other languages
Japanese (ja)
Inventor
Hideki Shimizu
秀樹 清水
Takeyoshi Togashi
富樫 武義
Hitoshi Higuchi
均 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2063406A priority Critical patent/JPH03265576A/en
Priority to CA002038012A priority patent/CA2038012A1/en
Priority to EP19910302093 priority patent/EP0447198A3/en
Priority to US07/668,842 priority patent/US5302580A/en
Publication of JPH03265576A publication Critical patent/JPH03265576A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details

Abstract

PURPOSE:To improve the peel strength by making the end of a noble-metal sheet on the oxide superconductor layer side thinner than the other parts at the lap joint or providing a complementary relation to the end shape and forming the joint and other parts in the same thickness. CONSTITUTION:The joining parts of the noble-metal sheets 1 and 1' having 50-500mum thickness and consisting of >=1 kind among Ag, Au and Pd are worked into a specified shape, the thickness d of the joint is made smaller than the total thickness of the sheets 1 and 1', an adhesive is applied on the joining parts 2 and 2' which are joined, and the joined sheets are put on a stainless steel substrate through an inorg. adhesive of glass, etc., calcined and bonded. A slurry of the Bi and Y-based oxide superconductor materials is applied on the sheets 1 and 1', dried and then sintered at 800-1100 deg.C in an O2 atmosphere to obtain an oxide superconducting laminated body having 50-5000mum thickness. Alternatively, a complementary relation is provided to the shapes of the ends of the noble-metal sheets, the thickness of the lap joint is made almost equal to that of each sheet, and both ends are joined.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、酸化物超電導積層体及びその製造方法に関す
る。さらに詳しくは、基体上に貴金属板及び酸化物超電
導体層が順次積層され、かつ貴金属板の端部が重ね合せ
接合された酸化物超電導積層体及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide superconducting laminate and a method for manufacturing the same. More specifically, the present invention relates to an oxide superconducting laminate in which a noble metal plate and an oxide superconductor layer are sequentially laminated on a substrate, and the ends of the noble metal plates are overlapped and bonded, and a method for manufacturing the same.

[従来の技術] 近年、酸化物超電導体は高い臨界温度を示すことで注目
を集め、電力分野、核磁気共鳴コンピュータ断層診断装
置(M RI : Magnetic Resonan
ceImaging ) 、磁気シールド等の各分野で
の用途か期待されている。これら酸化物超電導体を実用
化する場合、酸化物超電導体により、器具、基材を製造
することも可能であるが、従来の既存の基材上に酸化物
超電導体の層を形成する方法か知られている。
[Prior Art] In recent years, oxide superconductors have attracted attention due to their high critical temperature, and have been used in the electric power field and nuclear magnetic resonance computed tomography diagnostic equipment (MRI).
It is expected to be used in various fields such as ceImaging) and magnetic shielding. When these oxide superconductors are put into practical use, it is possible to manufacture devices and base materials using the oxide superconductors, but it is not possible to use the conventional method of forming an oxide superconductor layer on an existing base material. Are known.

基体上に酸化物超電導体を形成させる場合、酸化物超電
導体の焼成中に酸化物超電導体と反応が不活性であり超
電導特性を低下させない基体材料の選定あるいは/また
は中間不活性材の介在が必要となる。
When forming an oxide superconductor on a substrate, it is necessary to select a substrate material that reacts inertly with the oxide superconductor during firing of the oxide superconductor and does not reduce the superconducting properties, and/or to intervene with an intermediate inert material. It becomes necessary.

現在の酸化物超電導体は液体窒素温度(77K)に冷却
して使用されるために、冷却時に基体とあるいは/また
は中間不活性材と酸化物超電導体の夫々の熱膨張係数の
差により各界面に発生する熱歪応力を緩和する構造が必
要となる。
Since current oxide superconductors are used after being cooled to liquid nitrogen temperature (77K), each interface is affected by the difference in thermal expansion coefficient between the substrate and/or intermediate inert material and the oxide superconductor during cooling. A structure is needed to alleviate the thermal distortion stress that occurs in the process.

従来、例えば特開昭63−305574号公報において
は、アルミナ、ジルコニア、銅等の基体とY−Ba−C
u−0系超電導体との間に、パラジウム(Pd)、銀(
Ag)、金(Au)等の化学的反応を起さない安定材を
中間層として介在させたものが提案され、また特開平1
−173790号公報においても、Y−Ba−Cu−0
系超電導体の上に、#(Ag)等の安定化層を中間層と
して設けた超電導材か提案されている。
Conventionally, for example, in JP-A No. 63-305574, a substrate of alumina, zirconia, copper, etc. and Y-Ba-C
Palladium (Pd), silver (
A method in which a stabilizing material that does not cause a chemical reaction, such as gold (Ag) or gold (Au), is interposed as an intermediate layer has been proposed;
-173790 also, Y-Ba-Cu-0
A superconducting material in which a stabilizing layer such as #(Ag) is provided as an intermediate layer on a superconductor has been proposed.

[発明か解決しようとする課題] ところで、大型の超電導材を製造する際において、基体
に銀等の貴金属板を用いて酸化物超電導体層を基体上に
積層する場合は、酸化物超電導体の焼成中に基体か変形
し易いため、肉厚の貴金属基体が必要となる。特に大型
の円筒体状の酸化物超電導積層体を製造する場合、肉厚
の貴金属基体か必要となり極めてコスト高の問題を生し
る。
[Problem to be solved by the invention] By the way, when producing a large-sized superconducting material, when a noble metal plate such as silver is used as a base and an oxide superconductor layer is laminated on the base, it is necessary to Since the substrate is easily deformed during firing, a thick noble metal substrate is required. In particular, when producing a large cylindrical oxide superconducting laminate, a thick noble metal substrate is required, resulting in an extremely high cost.

従って、基体に貴金属より安価な材料を使用し、基体上
に肉薄の貴金属板、及び酸化物超電導体を順次積層して
形成した酸化物超電導積層体か製造コストの低減で有利
である。
Therefore, an oxide superconducting laminate formed by using a material cheaper than noble metal for the base and sequentially stacking a thin noble metal plate and an oxide superconductor on the base is advantageous in reducing manufacturing costs.

しかしながら、前記貴金属板が薄く、1枚で大型の貴金
属板は製造が困難なため、数枚の貴金属板の端部を重ね
合せ、全体として大型の中間層たる貴金属板を作製する
ことか必要となる。
However, since the precious metal plate is thin and it is difficult to manufacture a single large noble metal plate, it is necessary to overlap the ends of several precious metal plates and create a large intermediate layer of the noble metal plate as a whole. Become.

しかしながら、単に貴金属板の端部な重ね合せる方法、
あるいは重ね合せ部分に貴金属ペースト、ガラス、同組
成の超電導体および/またはそれらの混合物等の無機接
着剤を塗布するのみでは、第6図(a)に示すように貴
金属板1,1′の重ね合せ接合部分の貴金属中間層の厚
さか厚くなり、酸化物超電導体M5側の貴金属板重ね合
せ端部ては段差Aを生ずる。そのため、この段差部で焼
成後の超電導体層5の厚さに不均一が生じ、特に酸化物
超電導°体の溶融又は半溶融過程を経る焼成条件で製造
する場合は、溶融時の超電導体融液の表面張力により焼
成後の超電導体層5の厚さの不均一が激しくなる。この
ように超電導体層5か段差部Aで厚さか不均一なものは
、その部分の臨界電流値が減少し、また、液体窒素中に
浸漬した際に応力が集中し、第6図(b)に示すように
、段差部Aの超電導体層5にクラック6か発生するとい
う問題が生じる。
However, the method of simply overlapping the ends of precious metal plates,
Alternatively, simply applying an inorganic adhesive such as noble metal paste, glass, a superconductor of the same composition, and/or a mixture thereof to the overlapping portion will not work, as shown in FIG. 6(a). The thickness of the noble metal intermediate layer at the mating joint portion becomes thicker, and a step A is generated at the overlapping end of the noble metal plates on the side of the oxide superconductor M5. As a result, the thickness of the superconductor layer 5 after firing is uneven at this stepped portion, and particularly when manufacturing under firing conditions that involve a melting or semi-melting process of the oxide superconductor, the superconductor layer 5 is Due to the surface tension of the liquid, the thickness of the superconductor layer 5 after firing becomes significantly non-uniform. If the thickness of the superconductor layer 5 or the stepped portion A is not uniform, the critical current value of that portion will decrease, and stress will be concentrated when immersed in liquid nitrogen, as shown in Fig. 6 (b). ), a problem arises in that cracks 6 occur in the superconductor layer 5 at the stepped portion A.

従って、本発明は貴金属板の重ね合せ接合部において、
焼成温度から液体窒素温度までの広い温度範囲で剥離も
しくは破損せず、しかも超電導特性を損なわない酸化物
超電導積層体及びその製造方法を提供することを目的と
する。
Therefore, the present invention provides the following features in the overlapping joint of precious metal plates:
It is an object of the present invention to provide an oxide superconducting laminate that does not peel or break in a wide temperature range from firing temperature to liquid nitrogen temperature, and does not impair superconducting properties, and a method for manufacturing the same.

[課題を解決するための手段] そして、その目的は、本発明によれば、基体上に貴金属
板及び酸化物超電導体層が順次積層されかつ該貴金属板
の端部か重ね合せ接合されてなる酸化物超電導積層体で
あって、重ね合せ接合部における貴金属板のうち少なく
とも酸化物超電導体層側の貴金属板の端部厚さをそれ以
外の部分に比し薄く形成してなる酸化物超電導積層体(
第一の超電導積層体)、および、基体上に貴金属板及び
酸化物超電導体層が順次積層され、かつ該貴金属板の端
部が重ね合せ接合されてなる酸化物超電導積層体であっ
て、重ね合せ接合部における各々の貴金属板の端部形状
か互いに相補的な関係を有し、重ね合せ接合部厚さを各
貴金属板の厚さと略等しく形成してなる酸化物超電導積
層体(第二の超電導積層体)、により達成される。
[Means for Solving the Problems] According to the present invention, a noble metal plate and an oxide superconductor layer are sequentially laminated on a substrate, and the ends of the noble metal plates are overlapped and bonded. An oxide superconducting laminate, the oxide superconducting laminate comprising at least the end portion of the noble metal plate on the oxide superconductor layer side of the precious metal plate in the overlapping joint portion, which is thinner than the other portion. body(
a first superconducting laminate), and an oxide superconducting laminate in which a noble metal plate and an oxide superconductor layer are sequentially laminated on a substrate, and the ends of the noble metal plates are overlapped and bonded, An oxide superconducting laminate (second superconducting laminate).

また、上記第一の超電導積層体は、基体上に、端部な重
ね合せ接合して形成した貴金属板を無機接着剤を介して
被覆し、次いて該貴金属板上に酸化物超電導体原料を被
覆して焼成することからなる酸化物超電導積層体の製造
方法であって、重ね合せ接合部における貴金属板のうち
少なくとも酸化物超電導体層側の貴金属板の端部を加工
処理し、端部厚さをそれ以外の部分に比し薄く形成する
方法により、さらに、第二の超電導積層体は、基体上に
、端部を重ね合せ接合して形成した貴金属板を無機接着
剤を介して被覆し、次いで該貴金属板上に酸化物超電導
体原料を被覆して焼成することからなる酸化物超電導積
層体の製造方法であって、重ね合せ接合部における各々
の貴金属板の端部を加工処理し、端部形状が互いに相補
的な関係を有し、重ね合せ接合部厚さを各貴金属板の厚
さと略等しく形成する方法により、それぞれ製造するこ
とかできる。
In addition, in the first superconducting laminate, a noble metal plate formed by overlapping and bonding the ends is coated on the base via an inorganic adhesive, and then an oxide superconductor raw material is coated on the noble metal plate. A method for manufacturing an oxide superconducting laminate comprising coating and firing, the method comprising processing at least the end of the noble metal plate on the oxide superconductor layer side among the noble metal plates at the overlapping joint part, and reducing the thickness of the end part. Furthermore, the second superconducting laminate is formed by coating the base with a precious metal plate formed by overlapping and bonding the ends with an inorganic adhesive. A method for producing an oxide superconducting laminate, which comprises: coating the noble metal plate with an oxide superconductor raw material and firing it; Each can be manufactured by a method in which the shapes of the end portions have a mutually complementary relationship and the thickness of the overlapping joint portion is formed to be approximately equal to the thickness of each noble metal plate.

[作用コ 本発明は、基体と酸化物超電導体層の間に貴金属板を挿
入して形成される酸化物超電導積層体てあって、貴金属
板の端部が重ね合せ接合されている酸化物超電導積層体
とその製造方法に係るものであり、特に重ね合せ接合部
における貴金属板のうち少なくとも酸化物超電導体層側
の貴金属板の端部厚さをそれ以外の部分に比し薄く形成
するかあるいは、重ね合せ接合部における夫々の貴金属
板の端部形状が互いに相補的な関係を有し、重ね合せ接
合部厚さを各貴金属板の厚さと略等しく形成した点に特
徴を有するものである。
[Function] The present invention comprises an oxide superconductor laminate formed by inserting a noble metal plate between a base and an oxide superconductor layer, in which the ends of the noble metal plates are overlapped and bonded. The invention relates to a laminate and a method for manufacturing the same, and in particular, among the precious metal plates at the overlapping joint, at least the edge of the noble metal plate on the oxide superconductor layer side is formed to be thinner than the other part, or This is characterized in that the end shapes of the respective precious metal plates at the overlapping joint portion have a mutually complementary relationship, and the thickness of the overlapping joint portion is formed to be approximately equal to the thickness of each noble metal plate.

このように重ね合せ接合部における貴金属板の端部形状
を特定としたので、得られる酸化物超電導8iR体は、
焼成温度から液体窒素温度までの広い温度範囲において
剥離せず、しかも臨界電流(Jc)等の超電導特性を安
定して保持できる。
Since the shape of the end of the noble metal plate at the overlapping joint was specified in this way, the resulting oxide superconducting 8iR body was
It does not peel off in a wide temperature range from firing temperature to liquid nitrogen temperature, and can stably maintain superconducting properties such as critical current (Jc).

本発明に用いられる基体としては特に限定されないか、
ニッケル、鉄、ステンレス鋼、ハステロイ、インコネル
、インコロイ、ホーロー鋼板等の金属て、酸化物超電導
体の焼成温度である約800〜1100℃で基体構造を
維持てきる金属材料が好ましい、酸化物超電導体の基体
としては、金属以外にアルミナ、ジルコニア、マグネシ
ア、チタン酸ストロンチウム等のセラミックスも一般に
よく用いられるが、金属基体は作製コストの低いことや
、容易に加工できる等の理由で、最も適用範囲か広く工
業的利用価値が高い。従って、金属基体上に、安定で且
つ超電導特性の高い超電導体を得ることは工業上有用で
ある。
The substrate used in the present invention is not particularly limited, or
For oxide superconductors, metals such as nickel, iron, stainless steel, Hastelloy, Inconel, Incoloy, and enameled steel plates that can maintain their base structure at about 800 to 1100°C, which is the firing temperature of oxide superconductors, are preferable. In addition to metals, ceramics such as alumina, zirconia, magnesia, and strontium titanate are also commonly used as substrates, but metal substrates are the least applicable because of their low manufacturing cost and ease of processing. It has high value for wide industrial use. Therefore, it is industrially useful to obtain a stable superconductor with high superconducting properties on a metal substrate.

本発明における中間層としての貴金属板の材質としては
、銀、金、パラジウム、白金、ルテニウム、ロジウム、
オスミウム及びイリジウムのいずれか1種または2種以
上を組合せたもので、融点が900℃以上のものを用い
る。
The material of the noble metal plate as the intermediate layer in the present invention includes silver, gold, palladium, platinum, ruthenium, rhodium,
One or a combination of two or more of osmium and iridium, with a melting point of 900° C. or higher, is used.

貴金属板の厚さは、50g、m以上て、好ましくは50
〜500井m、さらに好ましくは50〜200gmであ
る。500ILmを超えた場合であっても、超電導体層
を安定させる効果は増加せず、却ってコストアップにな
る。また50p、mより薄い場合には、不均一性により
基体が露出する危険性か生じたり、酸化物超電導体焼成
中に、溶融した超電導体内に貴金属元素か拡散し、貴金
属板と基体の界面に活性な超電導体か流入して基体成分
と反応し、著しく超電導特性が損なわれるために、良好
な酸化物超電導積層体を得ることか困難である。
The thickness of the precious metal plate is 50 g, m or more, preferably 50 g, m or more.
-500 gm, more preferably 50-200 gm. Even if it exceeds 500 ILm, the effect of stabilizing the superconductor layer will not increase, and on the contrary, the cost will increase. In addition, if the thickness is less than 50p or m, there is a risk that the substrate may be exposed due to non-uniformity, or during firing of the oxide superconductor, noble metal elements may diffuse into the molten superconductor and form the interface between the noble metal plate and the substrate. It is difficult to obtain a good oxide superconducting laminate because the active superconductor flows in and reacts with the substrate components, significantly impairing the superconducting properties.

本発明における酸化物超電導体としては特にその種類は
制限されず、Bi系、Y系、TI系、La−3r系、L
a−Ba系等の各種の酸化物超電導体の他、Bi系酸化
物超電導体てBjをpb″C置換した組成の多層ヘロフ
スカイト構造を有するものなどが用いられる。
The type of oxide superconductor used in the present invention is not particularly limited, and includes Bi-based, Y-based, TI-based, La-3r-based, L
In addition to various oxide superconductors such as a-Ba-based oxide superconductors, Bi-based oxide superconductors having a multilayer herovskite structure in which Bj is replaced with pb''C are used.

本発明において酸化物超電導体層は、酸化物超電導体原
料粉末を用いるスプレー塗布またはパウダー塗布により
形成してもよいし、酸化物超電導体原料粉末をドクター
ブレード法により成形した成形体の未焼成体または焼成
し超電導特性を発現させた焼結体を貼付して形成しても
よい。
In the present invention, the oxide superconductor layer may be formed by spray coating or powder coating using an oxide superconductor raw material powder, or an unfired body formed by molding the oxide superconductor raw material powder by a doctor blade method. Alternatively, it may be formed by pasting a sintered body that has been fired to exhibit superconducting properties.

酸化物超電導体層の厚さは50〜5000 #Lm、好
ましくは100〜2000終mにするのかよい。500
0川mより厚い場合には超電導体層が剥離し易く、また
50pmより薄い場合には、厚さが不均一となり易く十
分な超電導特性か得られない。
The thickness of the oxide superconductor layer may be 50 to 5000 #Lm, preferably 100 to 2000 #Lm. 500
If it is thicker than 0 m, the superconductor layer tends to peel off, and if it is thinner than 50 pm, the thickness tends to be uneven and sufficient superconducting properties cannot be obtained.

また、本発明の酸化物超電導積層体は平板状、円筒状な
ど各種の形状のものとして形成することができる。
Further, the oxide superconducting laminate of the present invention can be formed into various shapes such as a flat plate shape and a cylindrical shape.

次に、貴金属板の重ね合せ接合について説明する。Next, the stacking and joining of precious metal plates will be explained.

本発明の酸化物超電導積層体においては、貴金属板の重
ね合せ接合方式が大きく2種類に分けられる。
In the oxide superconducting laminate of the present invention, the method of overlapping and joining noble metal plates can be roughly divided into two types.

まず第一に、重ね合せ接合部における貴金属板のうち少
なくとも酸化物超電導体層側の貴金属板の端部厚さをそ
れ以外の部分に比し薄く形成する接合方式である。この
接合方式としては、例えば第1図(a)(b)(c) 
、第2図(a) (b)、および第3図(a) (b)
 (c) (d)に示すものか典型的なものとして挙げ
られる。
First of all, there is a joining method in which at least the end portion of the noble metal plate on the oxide superconductor layer side of the overlapping joint portion is formed to be thinner than the other portion. For example, this joining method is shown in Fig. 1 (a), (b), and (c).
, Fig. 2(a) (b), and Fig. 3(a) (b)
(c) Those shown in (d) are listed as typical.

ここで、第1図(a)は夫々の貴金属板の端部を加工し
、重ね合せ部厚さdを夫々の貴金属板の厚さの合計より
薄く形成した場合を示し、第1図(b)(C)はそれぞ
れ酸化物超電導体層側の貴金属板の端部のみを加工した
場合を示している。なお、第1図(a)(b)(c)は
、貴金属板の重ね合せ部焼成前に端部加工を行なった場
合を示している。
Here, FIG. 1(a) shows a case where the end portions of each precious metal plate are processed to form the overlapping part thickness d thinner than the sum of the thicknesses of the respective noble metal plates, and FIG. 1(b) ) and (C) respectively show the case where only the end of the noble metal plate on the oxide superconductor layer side was processed. Note that FIGS. 1(a), 1(b), and 1(c) show the case where the end portions of the precious metal plates are processed before the overlapping portions are fired.

また、第2図(a)は重ね合せ部端部厚さdか下部貴金
属板lの厚さを超えるか、下部貴金属板lと上部貴金属
板1′の厚さの和を超えず、しかも上部貴金属板1′の
端部加工角度Cか0〈C〈90°の場合を示し、第2図
(b)は重ね合せ部端部厚さdか下部貴金属板lの厚さ
と同一で、上部貴金属板1′の端部加工角度CかO<c
<90゜の場合を示す。
In addition, in Fig. 2 (a), the thickness d of the overlapping part end exceeds the thickness of the lower precious metal plate l, or does not exceed the sum of the thicknesses of the lower noble metal plate l and the upper noble metal plate 1', and the upper Fig. 2(b) shows the case where the end processing angle C of the precious metal plate 1' is 0〈C〈90°, and in Fig. 2(b), the thickness d of the overlapping part end is the same as the thickness of the lower precious metal plate l, and the upper precious metal The edge processing angle of plate 1' is C or O<c
The case of <90° is shown.

第3図(a) (b)(c) (d)は夫々上部貴金属
板1′の端部を曲面状に加工した状態を示したもので、
第3図(a)は重ね合せ部端部厚さdか下部貴金属板l
の厚さを超えるが、下部貴金属板lと上部貴金属板1′
の厚さの和を超えず、しかも曲率半径Rか上部貴金属板
1′の重ね合せ部の厚さ未満である場合を示し、第3図
(b)は重ね合せ部端部厚さdか下部貴金属板1の厚さ
と同一で、Rか上部貴金属板1′の重ね合せ部の厚さを
超える場合を示している。また、第3図(c) (d)
は夫々重ね合せ部端部厚さdか下部貴金属板lの厚さと
同一の場合であって、上部貴金属板1′の端部の曲面状
加工を複合して形成した状態を示したものである。
Figures 3 (a), (b), (c), and (d) respectively show the state in which the ends of the upper precious metal plate 1' are processed into curved shapes.
Figure 3 (a) shows the overlapped end thickness d and the lower precious metal plate l.
exceeds the thickness of the lower precious metal plate l and the upper precious metal plate 1'
Fig. 3(b) shows the case where the radius of curvature R is less than the thickness of the overlapping part of the upper precious metal plate 1'. The case is shown in which the thickness is the same as that of the noble metal plate 1, but R exceeds the thickness of the overlapped portion of the upper noble metal plate 1'. Also, Fig. 3(c)(d)
are the cases in which the thickness d of the end of the overlapped portion is the same as the thickness of the lower precious metal plate l, respectively, and show a state in which the end of the upper precious metal plate 1' is formed by combining curved surface processing. .

なお、第2図(a)(b)、第3図(a) (b) (
c) (d)は、貴金属板の重ね合せ部焼成後に端部加
工を行なった場合を示している。
In addition, Fig. 2 (a) (b), Fig. 3 (a) (b) (
c) (d) shows the case where the end portions of the precious metal plates are processed after the overlapping portions are fired.

第二には、重ね合せ接合部における夫々の貴金属板の端
部形状が互いに相補的な関係を有し、重ね合せ接合部厚
さを各貴金属板の厚さと略等しくなるように形成する接
合方式である。この接合方式としては、例えば第4図(
a)(b)に示すものが典型的なものとして挙げられる
Second, there is a joining method in which the end shapes of the precious metal plates at the stacked joint are complementary to each other, and the thickness of the stacked joint is approximately equal to the thickness of each precious metal plate. It is. For example, this joining method is shown in Fig. 4 (
Typical examples include those shown in a) and (b).

ここで、第4図(a)は夫々の貴金属板の端部形状を先
細状の互いに相補的な関係を有する形状とし、それぞれ
を重ね合せたものて、重ね合せ接合部厚さdは夫々の貴
金属板の厚さとほぼ同一である。第4図(b)は夫々の
貴金属板の端部な薄く加工して互いに相補的な関係を有
する形状とし、それぞれを重ね合せた(嵌合した)もの
て、重ね合せ接合部厚さdは夫々の貴金属板の厚さと路
間−である。なお、第4図(a) (b)は、貴金属板
の重ね合せ部焼成前に端部加工を行なった場合を示して
いる。
Here, in FIG. 4(a), the end shapes of the respective precious metal plates are tapered and complementary to each other, and when they are overlapped, the overlapped joint thickness d is the same as each other. The thickness is almost the same as that of a precious metal plate. Fig. 4(b) shows the end portions of each precious metal plate processed thinly to have a mutually complementary shape, and then overlapped (fitted).The overlap joint thickness d is These are the thickness and distance between each precious metal plate. Note that FIGS. 4(a) and 4(b) show the case where the end portions of the precious metal plates are processed before the overlapping portions are fired.

貴金属板の端部加工処理方法としては、例えばタライン
ダー、サンドペーパー等を用いた研磨処理方法か好まし
いものとして挙げられるがこれに限られず、その他の機
械加工、化学加工、レーザー加工などを用いることがて
きる。
Preferable methods for processing the edges of the precious metal plate include, for example, a polishing method using a tarinder, sandpaper, etc., but the method is not limited to this, and other mechanical processing, chemical processing, laser processing, etc. may also be used. I'll come.

次に、本発明の酸化物超電導積層体の製造方法について
説明する。
Next, a method for manufacturing an oxide superconducting laminate according to the present invention will be explained.

まず数枚の貴金属板の端部な所望形状に加工する。次い
で、貴金属板の端部を重ね合せて所定の大きさの貴金属
板とした後、基体上にガラス等の無機接着剤を介して被
覆し、焼成接合する。
First, the edges of several precious metal plates are processed into the desired shape. Next, the ends of the noble metal plates are overlapped to form a noble metal plate of a predetermined size, which is then coated onto the substrate via an inorganic adhesive such as glass, and bonded by firing.

次にさらに貴金属板上に酸化物超電導体原料を被覆した
後焼き付け、酸化物超電導積層体を製造する。
Next, an oxide superconductor raw material is further coated on a noble metal plate and then baked to produce an oxide superconductor laminate.

なお、基体上に貴金属板を焼成接合した後に貴金属板の
端部を所望形状に加工し、当該貴金属板上に酸化物超電
導体原料を被覆した後焼き付けて酸化物超電導積層体を
製造することもてきる。
Note that an oxide superconducting laminate may also be produced by firing and bonding a noble metal plate onto a substrate, processing the end of the noble metal plate into a desired shape, coating the noble metal plate with an oxide superconductor raw material, and then baking it. I'll come.

また、貴金属板の端部な所望形状に加工した後貴金属板
の端部な重ね合せて所定の大きさの貴金属板とし、次い
で貴金属板を基体上に接合する。
Further, after the ends of the noble metal plates are processed into a desired shape, the ends of the noble metal plates are overlapped to form a noble metal plate of a predetermined size, and then the noble metal plates are bonded onto the substrate.

そして、接合後頁に貴金属板の端部を加工し、最後に貴
金属板上に酸化物超電導体原料を被覆した後焼き付けて
酸化物超電導積層体を製造することもできる。
Then, after joining, the edges of the noble metal plates can be processed, and finally, the oxide superconductor raw material is coated on the noble metal plates and then baked, thereby producing an oxide superconducting laminate.

この場合、酸化物超電導体層の形成において、スラリー
塗布等て有機バインダーや有機溶媒を用いたときには、
焼成前に前処理として500〜930°Cて一定時間酸
素含有雰囲気中で熱処理し、残留カーボン量を0.5重
量%未満とすることか好ましい。
In this case, when an organic binder or organic solvent is used, such as by slurry coating, in forming the oxide superconductor layer,
It is preferable to perform a heat treatment in an oxygen-containing atmosphere at 500 to 930° C. for a certain period of time as a pretreatment before firing to reduce the amount of residual carbon to less than 0.5% by weight.

本発明における焼成は、酸素または空気中の酸素含有ガ
ス雰囲気中で行うが、超電導体の種類によっては冷却時
に窒素ガス雰囲気中て行う。焼成温度は、超電導体原料
及び目的とする超電導体の種類等により適宜選択すれば
よいか、800℃以上、最高温度1100℃で行なえば
よい。
Firing in the present invention is performed in an atmosphere of oxygen or an oxygen-containing gas in the air, but depending on the type of superconductor, it is performed in a nitrogen gas atmosphere during cooling. The firing temperature may be appropriately selected depending on the superconductor raw material and the intended superconductor type, or it may be performed at a temperature of 800°C or higher and a maximum temperature of 1100°C.

[実施例] 以下、本発明を実施例によりさらに詳しく説明するか、
本発明はこれらの実施例に限定されるものてはない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

(実施例1〜2) 貴金属板として160■■(長さ)X160mm(輻)
 x300 u、m  (厚さ)の銀板1,1′を4枚
使用し、銀板l、1′の重ね合せ接合部の厚さdか30
0 gmである第4図(a) (b)に示すような形状
に加工した後、重ね合せ接合面2.2′にBi25r2
Ca(:u20x組成の接着剤を塗布してそれぞれの端
部を20■■の重ねしろて接合し、所定の大きさの銀板
を作製した。
(Examples 1-2) 160mm (length) x 160mm (radius) as a precious metal plate
Use 4 silver plates 1 and 1' with a thickness of
After processing it into the shape shown in Figure 4 (a) and (b), which has a weight of 0 gm, Bi25r2 was applied to the overlapping joint surface 2.2'.
An adhesive having a composition of Ca(:u20x) was applied and the respective ends were joined with 20 cm overlap to produce a silver plate of a predetermined size.

次いて、このように作製した銀板を、300■履X30
0mmX2mm(厚さ)の平板状の5US304ステン
レス鋼板基体上に、S機接着剤としてステンレスホーロ
ー(SC−2710S、日本フリット社製)を介して接
合した。
Next, the silver plate produced in this way was
It was bonded onto a flat 5US304 stainless steel plate substrate of 0 mm x 2 mm (thickness) via stainless steel enamel (SC-2710S, manufactured by Nippon Frit Co., Ltd.) as an S machine adhesive.

次に、Bi系の酸化物超電導体原料粉末にエチルアルコ
ール、PVB (ポリビニルブチラール)を混合して作
製したスラリーをスプレー塗布し、乾燥後、最高温度8
90″Cて酸素雰囲気中にて焼成して銀板上に酸化物超
電導体(Bi2Sr、CaCu2011)暦を積層した
平板状の酸化物超電導積層体を得た。
Next, a slurry made by mixing Bi-based oxide superconductor raw material powder with ethyl alcohol and PVB (polyvinyl butyral) was spray coated, and after drying, the maximum temperature was 8.
It was fired in an oxygen atmosphere at 90''C to obtain a flat oxide superconductor laminate in which an oxide superconductor (Bi2Sr, CaCu2011) was laminated on a silver plate.

この積層体を、−196℃の液体窒素中で1時間保持し
、次に20℃まで昇温してこの温度で1時間保持する冷
熱サイクルによる接合強度試験、および、300+mX
300寓■x2■■の酸化物超電導積層体から貴金属板
の重ね合せ接合部を含む一定の大きさのテストピースを
第5図の14に示す位置で切り出し、貴金属板の重ね合
せ接合部上の超電導層における超電導特性(臨界電流密
度値)を測定し、その特性値に対して第5図の11に示
した部分より切り出したテストピースの超電導特性値を
100とした時の相対値を表1に示す。
This laminate was held in liquid nitrogen at -196°C for 1 hour, then heated to 20°C and held at this temperature for 1 hour, and a bonding strength test was conducted using a cold/hot cycle, and 300+mX
A test piece of a certain size including the overlapping joint of precious metal plates is cut out from the oxide superconducting laminate of 300×2■■ at the position shown in 14 in Figure 5, and the The superconducting properties (critical current density value) in the superconducting layer were measured, and the relative values when the superconducting property value of the test piece cut out from the section 11 in Figure 5 was taken as 100 are shown in Table 1. Shown below.

同様に300mmx 300mmx 2mmの酸化物超
電導積層体から第5図に示す他の各位置12.1315
からテストピースを切り出し、超電導特性を測定した結
果を表2に示す。
Similarly, each of the other positions 12.1315 shown in FIG.
A test piece was cut out from the sample and its superconducting properties were measured. Table 2 shows the results.

(実施例3〜5) 厚さ3001Lmの銀板1.1’の重ね合せ接合部を、
第1図(a) (b) (c)及び表1に示す如く、重
ね合せ部厚さdを夫々の貴金属板の厚さの合計より薄く
形成した以外は実施例1〜2と同様の方法て酸化物超電
導積層体を作製し、実施例1〜2と同様の方法で試験を
行なった。その結果を表1に示す。
(Examples 3 to 5) The overlapping joint of 1.1' silver plates with a thickness of 3001 Lm was
As shown in FIGS. 1(a), (b), and (c) and Table 1, the method was the same as in Examples 1 and 2, except that the overlapping portion thickness d was formed to be thinner than the total thickness of each noble metal plate. An oxide superconducting laminate was prepared using the method described above, and a test was conducted in the same manner as in Examples 1 and 2. The results are shown in Table 1.

(実施例6〜7) 厚さ300 gjlの銀板l、1′の重ね合せ接合部を
、第2図(a) (b)及び表1に示すように加工し重
ね合せた。この実施例では、銀板の重ね合せ部焼成後に
端部の加工を行なった。上記以外は実施例1〜2と同様
の方法て酸化物超電導積層体を作製し、実施例1〜2と
同様の方法で試験を行なった。その結果を表1に示す。
(Examples 6-7) The overlapping joints of silver plates 1 and 1' having a thickness of 300 gjl were processed and overlapped as shown in FIGS. 2(a) and 2(b) and Table 1. In this example, the end portions were processed after the overlapping portions of the silver plates were fired. Except for the above, an oxide superconducting laminate was produced in the same manner as in Examples 1 and 2, and tested in the same manner as in Examples 1 and 2. The results are shown in Table 1.

(実施例8〜12) 厚さ300 gmの銀板1,1’の重ね合せ接合部を、
第3図(a) (b) (c) (d)及び表1に示す
ように加工し重ね合せたほかは、実施例6〜7と同様の
方法で酸化物超電導積層体を作製し、実施例1〜2と同
様の方法で試験を行なった。その結果を表1に示す。
(Examples 8 to 12) The overlapping joint of silver plates 1 and 1' with a thickness of 300 gm was
An oxide superconducting laminate was prepared in the same manner as in Examples 6 and 7, except that it was processed and stacked as shown in Figure 3 (a) (b) (c) (d) and Table 1. The test was carried out in the same manner as in Examples 1-2. The results are shown in Table 1.

(実施例13〜16) 表1に示すように厚さの異なる銀板1.1’の重ね合せ
部を第1図(a)および表1に示すように加工し、それ
ぞれの銀板1.1′を実施例6〜7と同様の方法で接合
した後、銀板を基体と焼成接合した後、更に第1図(a
)に示す銀板l゛の先端部分4′を第3図(d)の曲面
形状3の如く(R1> 1000終■、 R2>110
00u )加工した。
(Examples 13 to 16) As shown in Table 1, the overlapped portions of silver plates 1.1' having different thicknesses were processed as shown in FIG. 1(a) and Table 1, and each silver plate 1.1' was processed as shown in FIG. 1' was bonded in the same manner as in Examples 6 and 7, the silver plate was bonded to the base by firing, and then
) The tip portion 4' of the silver plate l'' is shaped like the curved surface 3 in Figure 3(d) (R1 > 1000, R2 > 110
00u) processed.

上記以外は実施例1〜2と同じ方法によって酸化物超電
導積層体を作製し、実施例1〜2と同し方法で試験を行
なった。その結果を表1に示す。
Except for the above, an oxide superconducting laminate was produced in the same manner as in Examples 1 and 2, and tested in the same manner as in Examples 1 and 2. The results are shown in Table 1.

(実施例17〜18) 銀板l、1°の重ね合せ部を第1図(b)または第1図
(C)に示すように加工した以外は実施例13〜16と
同様の方法で酸化物超電導積層体を作製し、実施例13
〜16と同様の方法で試験を行なった。その結果を表1
に示す。
(Examples 17-18) Oxidation was carried out in the same manner as in Examples 13-16, except that the overlapping part of the silver plate 1 was processed as shown in FIG. 1(b) or FIG. 1(C). Example 13: Fabricating a superconducting laminate
The test was conducted in the same manner as in 16. Table 1 shows the results.
Shown below.

(実施例19〜22) 基体をインコネル600、インコネル625、インコロ
イ805.5US310Sに変えた以外はすべて実施例
15と同様の方法で酸化物超電導積層体を作製し、実施
例15と同様の方法て試験を行なった。その結果を表1
に示す。
(Examples 19 to 22) Oxide superconducting laminates were produced in the same manner as in Example 15, except that the substrates were changed to Inconel 600, Inconel 625, and Incoloy 805.5US310S. I conducted a test. Table 1 shows the results.
Shown below.

(比較例1〜4) 表1に示すように厚さの異なる銀板を使用し、銀板の端
部は未加工のまま実施例1〜2と同様に酸化物超電導積
層体を作製し、実施例1〜2と同様の方法で試験を行な
った。その結果を表1に示す。
(Comparative Examples 1 to 4) Oxide superconducting laminates were produced in the same manner as Examples 1 to 2 using silver plates with different thicknesses as shown in Table 1, with the edges of the silver plates left unprocessed, The test was conducted in the same manner as in Examples 1-2. The results are shown in Table 1.

表2 表1および表2に示す結果から明らかな通り、貴金属板
の端部な本発明のように加工したことにより、未加工の
ものに比して貴金属板の蚤ね合せ接合部における酸化物
超電導体層の厚みは重ね合せ部以外の酸化物超電導体層
の厚みとほぼ同一てあり、得られる大型の酸化物超電導
積層体は全面においてほぼ均一な臨界電流密度が得られ
、冷熱サイクル試験においても剥離もしくは破損し難く
しかも超電導特性を損なわない酸化物超電導積層体が得
られることがわかる。
Table 2 As is clear from the results shown in Tables 1 and 2, by processing the edges of the precious metal plate as in the present invention, the oxide content at the flanged joint of the noble metal plate was higher than that of the unprocessed one. The thickness of the superconductor layer is almost the same as the thickness of the oxide superconductor layer other than the overlapping part, and the resulting large oxide superconductor laminate has an almost uniform critical current density over the entire surface, and has a high resistance to thermal cycle tests. It can be seen that an oxide superconducting laminate that is difficult to peel or break and does not impair superconducting properties can be obtained.

[発明の効果] 以上説明したように、本発明によれば、貴金属板の端部
な特定形状に加工し貴金属板を重ね合せ接合したので、
得られる酸化物超電導積層体は焼成温度から液体窒素温
度まての広い温度範囲において剥離せず、しかも超電導
特性を損なわない、という利点を有する。
[Effects of the Invention] As explained above, according to the present invention, the ends of the precious metal plates are processed into a specific shape and the precious metal plates are overlapped and joined.
The obtained oxide superconducting laminate has the advantage that it does not peel off in a wide temperature range from the firing temperature to the liquid nitrogen temperature, and does not impair its superconducting properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b) (c) 、第2図(a)(b)
、第3図(a)(b) (C) (d)および第4図(
a)(b)はそれぞれ本発明の酸化物超電導積層体に用
いる貴金属板の重ね合せ接合部における端部形状の実施
例を示す断面説明図、第5図は酸化物超電導積層体から
切り出すテストピースの位置を示す説明図、第6図(a
) (b)は単に貴金属板を重ね合せた場合に貴金属板
接合部上に超電導体層を積層した状態を示す断面説明図
である。 1.1′・・・貴金属板(銀板)、2.2’−・・重ね
合せ接合面、3・・・曲面形状、4′・・・先端部分、
5・・・超電導体層、6・・・クラック。 第 図 第 図
Figure 1 (a) (b) (c), Figure 2 (a) (b)
, Figure 3(a)(b)(C)(d) and Figure 4(
a) and (b) are cross-sectional explanatory diagrams showing examples of the end shapes of the stacked joints of noble metal plates used in the oxide superconducting laminate of the present invention, and FIG. 5 is a test piece cut out from the oxide superconducting laminate. An explanatory diagram showing the position of Fig. 6 (a
) (b) is a cross-sectional explanatory view showing a state in which a superconductor layer is laminated on the noble metal plate joint portion when the noble metal plates are simply stacked. 1.1'...Precious metal plate (silver plate), 2.2'-...Overlapping joint surface, 3...Curved surface shape, 4'...Tip portion,
5...Superconductor layer, 6...Crack. Figure Figure

Claims (4)

【特許請求の範囲】[Claims] (1)基体上に貴金属板及び酸化物超電導体層が順次積
層され、かつ該貴金属板の端部が重ね合せ接合されてな
る酸化物超電導積層体であって、重ね合せ接合部におけ
る貴金属板のうち少なくとも酸化物超電導体層側の貴金
属板の端部厚さをそれ以外の部分に比し薄く形成したこ
とを特徴とする酸化物超電導積層体。
(1) An oxide superconducting laminate in which a noble metal plate and an oxide superconductor layer are sequentially laminated on a substrate, and the end portions of the noble metal plates are overlapped and joined, wherein the noble metal plate at the overlapped joint is An oxide superconducting laminate characterized in that the end portion of at least the noble metal plate on the oxide superconductor layer side is thinner than the other portion.
(2)基体上に貴金属板及び酸化物超電導体層が順次積
層され、かつ該貴金属板の端部が重ね合せ接合されてな
る酸化物超電導積層体であって、重ね合せ接合部におけ
る各々の貴金属板の端部形状が互いに相補的な関係を有
し、重ね合せ接合部厚さを各貴金属板の厚さと略等しく
形成したことを特徴とする酸化物超電導積層体。
(2) An oxide superconducting laminate in which a noble metal plate and an oxide superconductor layer are sequentially laminated on a substrate, and the ends of the noble metal plates are overlapped and joined, and each precious metal at the overlapped joint is 1. An oxide superconducting laminate characterized in that the end shapes of the plates are complementary to each other and the thickness of the stacked joint is approximately equal to the thickness of each noble metal plate.
(3)基体上に、端部を重ね合せ接合して形成した貴金
属板を無機接着剤を介して被覆し、次いで該貴金属板上
に酸化物超電導体原料を被覆して焼成することからなる
酸化物超電導積層体の製造方法であって、重ね合せ接合
部における貴金属板のうち少なくとも酸化物超電導体層
側の貴金属板の端部を加工処理し、端部厚さをそれ以外
の部分に比し薄く形成したことを特徴とする酸化物超電
導積層体の製造方法。
(3) Oxidation consisting of coating a substrate with a noble metal plate formed by overlapping and bonding the ends with an inorganic adhesive, and then coating the noble metal plate with an oxide superconductor raw material and firing. A method for manufacturing a superconducting laminate, the method comprising processing at least an end of the noble metal plate on the oxide superconductor layer side among the noble metal plates at the overlapping joint, and comparing the thickness of the end with the other part. A method for manufacturing an oxide superconducting laminate, characterized in that it is formed thinly.
(4)基体上に、端部を重ね合せ接合して形成した貴金
属板を無機接着剤を介して被覆し、次いで該貴金属板上
に酸化物超電導体原料を被覆して焼成することからなる
酸化物超電導積層体の製造方法であって、重ね合せ接合
部における各々の貴金属板の端部を加工処理し、端部形
状が互いに相補的な関係を有し、重ね合せ接合部厚さを
各貴金属板の厚さと略等しく形成するようにしたことを
特徴とする酸化物超電導積層体の製造方法。
(4) Oxidation consisting of coating a substrate with a noble metal plate formed by overlapping and bonding the ends with an inorganic adhesive, and then coating the noble metal plate with an oxide superconductor raw material and firing. A method for manufacturing a superconducting laminate, comprising: processing the ends of each noble metal plate at the overlapping joint, so that the end shapes have a mutually complementary relationship, and the thickness of the overlapping joint is adjusted to A method for manufacturing an oxide superconducting laminate, characterized in that the thickness of the oxide superconducting laminate is approximately equal to that of the plate.
JP2063406A 1990-03-14 1990-03-14 Oxide superconducting laminated body and its production Pending JPH03265576A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2063406A JPH03265576A (en) 1990-03-14 1990-03-14 Oxide superconducting laminated body and its production
CA002038012A CA2038012A1 (en) 1990-03-14 1991-03-11 Oxide superconductor lamination and method of manufacturing the same
EP19910302093 EP0447198A3 (en) 1990-03-14 1991-03-13 Oxide superconductor laminations and methods of manufacturing them
US07/668,842 US5302580A (en) 1990-03-14 1991-03-13 Oxide superconductor lamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063406A JPH03265576A (en) 1990-03-14 1990-03-14 Oxide superconducting laminated body and its production

Publications (1)

Publication Number Publication Date
JPH03265576A true JPH03265576A (en) 1991-11-26

Family

ID=13228389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063406A Pending JPH03265576A (en) 1990-03-14 1990-03-14 Oxide superconducting laminated body and its production

Country Status (1)

Country Link
JP (1) JPH03265576A (en)

Similar Documents

Publication Publication Date Title
EP0390517B1 (en) Superconductor joint structure
JPH05145267A (en) Superconducting magnetic-shielding body and manufacture thereof
JPH03265576A (en) Oxide superconducting laminated body and its production
US5302580A (en) Oxide superconductor lamination
JP3383799B2 (en) Superconducting composite and manufacturing method thereof
JPH09263971A (en) Superconducting composite body and its production
JPH03265577A (en) Oxide superconducting laminated body
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JPH03275575A (en) Oxide superconducting laminated body and its production
JPH03243888A (en) Production of plate member for magnetic shielding
JP3150718B2 (en) Superconductor lamination substrate and superconducting laminate using the same
JPH03192615A (en) Oxide superconducting structural body and manufacture thereof
JPH01142089A (en) Metal-cored substrate and production thereof
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPH1012938A (en) Manufacture of high-temperature superconducting composite
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JPH04104970A (en) Bonding or mending oxide superconductor
JPH06272021A (en) Bismuth based oxide superconducting conjugated body and its production
JPH03242387A (en) Bismuth-based superconducting layer-metal composite body
JPH087674A (en) Manufacture of oxide superconductive complex
JPH04273500A (en) Oxide superconductive magnetic shield body and its manufacture
JPH01109613A (en) Manufacture of oxide superconductor
JPH09263972A (en) Oxide superconducting laminated body
JPH03235088A (en) Bismuth based superconductor composite
JPH05193907A (en) Production of oxide superconductor composite