JP2817257B2 - Superconductor - Google Patents

Superconductor

Info

Publication number
JP2817257B2
JP2817257B2 JP1245850A JP24585089A JP2817257B2 JP 2817257 B2 JP2817257 B2 JP 2817257B2 JP 1245850 A JP1245850 A JP 1245850A JP 24585089 A JP24585089 A JP 24585089A JP 2817257 B2 JP2817257 B2 JP 2817257B2
Authority
JP
Japan
Prior art keywords
superconductor
hours
transition temperature
present
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1245850A
Other languages
Japanese (ja)
Other versions
JPH03109213A (en
Inventor
均 信正
一治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1245850A priority Critical patent/JP2817257B2/en
Publication of JPH03109213A publication Critical patent/JPH03109213A/en
Application granted granted Critical
Publication of JP2817257B2 publication Critical patent/JP2817257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、核融合炉、電磁流体発電機、加速器、回
転電気機器(電動機や発電機等)、磁気分離機、磁気浮
上列車、核磁気共鳴測定装置、磁気推進船、電子線露光
装置等のマグネットコイル用材料として適し、また、送
電線、電気エネルギー貯蔵機、変圧器、整流器等の電力
損失が問題になる用途に適し、また、ジョセフソン素
子、SQUID素子、超電導トランジスタなどの各種素子と
して適し、さらに、赤外線探知材料、磁気遮蔽材料等と
して適した超電導体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a nuclear fusion reactor, a magnetic fluid generator, an accelerator, a rotating electric device (such as a motor or a generator), a magnetic separator, a magnetic levitation train, and nuclear magnetism. Suitable as a material for magnet coils such as resonance measuring devices, magnetic propulsion ships, and electron beam exposure devices, and suitable for applications where power loss is a problem, such as power lines, electric energy storage devices, transformers, and rectifiers. The present invention relates to a superconductor suitable as various elements such as a son element, a SQUID element and a superconducting transistor, and further suitable as an infrared detecting material, a magnetic shielding material and the like.

(従来の技術) 従来、超電導転移温度の高い超電導体としては、一般
式、(ε1-xCex(Ba1-yε2Cu3O10−δ(ただ
し、εはNd、Sm、Eu)で表わされる銅複合酸化物系のも
のが知られている(Journal of Physical Society of J
apan、Vol.18、第2252頁、1989)。しかしながら、この
超電導体は、零抵抗超電導転移温度が約20Kと低いばか
りか、超電導体積率も、4.2Kで約22%と小さい。
(Prior Art) Conventionally, as a superconductor having a high superconducting transition temperature, a general formula: (ε 1-x Ce x ) 2 (Ba 1-y ε y ) 2 Cu 3 O 10−δ (where ε is Nd , Sm, Eu) are known (Journal of Physical Society of J)
apan, Vol. 18, p. 2252, 1989). However, this superconductor has not only a low zero-resistance superconducting transition temperature of about 20K but also a superconductor moment of about 22% at 4.2K.

(発明が解決しようとする課題) この発明の目的は、格子定数を制御し、しかも、正孔
濃度を高めることによって、零抵抗超電導転移温度と超
電導体積率とを向上させてなる超電導体を提供すること
にある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a superconductor in which the lattice constant is controlled and the hole concentration is increased, thereby improving the zero-resistance superconducting transition temperature and the superconductor moment. Is to do.

(課題を解決するための手段) 上記目的を達成するために、この発明は、1気圧より
大きい酸素雰囲気中で熱処理を施すことにより作製され
る、下記一般式で表される超電導体を提供する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a superconductor represented by the following general formula, which is produced by performing a heat treatment in an oxygen atmosphere higher than 1 atm. .

(α(Ba1-xβ1-p(Ceqγ1-qzCu3Oδ ただし、 α:Nd、Sm、EuおよびGdから選ばれた少なくとも1種
の元素 β:SrおよびCaから選ばれた少なくとも1種の元素 γ:Nd、Sm、EuおよびGdから選ばれた少なくとも1種
の元素 0.2<p<0.5 0.0<x<0.6 1.8<y<2.2 0.05<q<0.4 1.8<z<2.2 8.0<δ<10.0 この発明の超電導体は、上記従来の、(ε1-xCex
(Ba1-yε2Cu3O10−δなる超電導体と類似の構造を
しているが、希土類元素は、Nd、Sm、Eu、Gdのなかか
ら、また、アルカリ土類金属元素は、Sr、Caのなかから
それぞれ選択することができる。これらは、1種を選
択、使用してもよく、また、2種以上を任意の混合比で
選択、使用してもよい。
p (Ba 1-x β x ) 1-p ) y (Ce q γ 1-q ) z Cu 3 O δ where α: at least one element selected from Nd, Sm, Eu and Gd : At least one element selected from Sr and Ca γ: at least one element selected from Nd, Sm, Eu and Gd 0.2 <p <0.5 0.0 <x <0.6 1.8 <y <2.2 0.05 <q < 0.4 1.8 <z <2.2 8.0 <δ <10.0 The superconductor of the present invention is characterized in that the conventional (ε 1-x Ce x ) 2
It has a similar structure to the superconductor (Ba 1-y ε y ) 2 Cu 3 O 10−δ, but the rare earth elements are Nd, Sm, Eu, Gd, and alkaline earth metal elements. Can be selected from Sr and Ca, respectively. One of these may be selected and used, or two or more may be selected and used at an arbitrary mixing ratio.

さて、銅酸化物系超電導体の超電導転移温度を決定す
る因子はいくつか考えられているが、結晶内のCu原子を
とりまくOとCuの結合距離、配意の状態と、正孔濃度と
が最も重要な因子であると考えられる。
Now, several factors that determine the superconducting transition temperature of the copper oxide superconductor are considered, but the bonding distance between O and Cu surrounding the Cu atoms in the crystal, the state of coordination, and the hole concentration are different. It is considered to be the most important factor.

すなわち、Cu原子をとりまくOとCuの結合距離、配位
の状態は、結晶構造の格子定数に反映される。この発明
においては、希土類元素とアルカリ土類元素との組み合
せにより、結晶構造のa軸長、c軸長を変化させること
ができる(この発明の超電導体は正方晶であるから、b
軸長はa軸長に等しい)。特に、上記式中のx、p、q
によって格子定数を系統的に変化させることができる。
そうして、この発明の超電導体の超電導転移温度は、a
軸方向のCuをとりまくOとCuとの結合距離と、c軸方向
のCuをとりまくOとCuとの結合距離との大小関係、すな
わち、これを反映するa軸長とc軸長の大小関係に依存
すると考えられるので、これらの格子定数を系統的に変
化させることによって超電導特性を向上させることがで
きる。特に、c軸長が長いほど超電導転移温度は高くな
る傾向にある。ただし、x、p、qが、上述した範囲を
はずれると、結晶構造が別の結晶系になったり、他の不
純物相(絶縁体)が混在するようになって、超電導特性
は著しく低下し、最終的には超電導を示さなくなる。
That is, the bonding distance between O and Cu surrounding the Cu atom and the state of coordination are reflected in the lattice constant of the crystal structure. In the present invention, the a-axis length and the c-axis length of the crystal structure can be changed by the combination of the rare earth element and the alkaline earth element (because the superconductor of the present invention is tetragonal, b
The axis length is equal to the a-axis length). In particular, x, p, q in the above formula
Thereby, the lattice constant can be changed systematically.
Thus, the superconducting transition temperature of the superconductor of the present invention is a
The magnitude relationship between the coupling distance between O and Cu surrounding the Cu in the axial direction and the coupling distance between O and Cu surrounding the Cu in the c-axis direction, that is, the magnitude relationship between the a-axis length and the c-axis length reflecting this. The superconductivity can be improved by systematically changing these lattice constants. In particular, the longer the c-axis length, the higher the superconducting transition temperature tends to be. However, if x, p, and q deviate from the above-mentioned ranges, the crystal structure becomes another crystal system or other impurity phases (insulators) are mixed, and the superconducting characteristics are remarkably deteriorated. Eventually, it will not show superconductivity.

次に、正孔濃度についてであるが、この発明の超電導
体においては、電荷は正孔で与えられ、その正孔濃度
は、主に結晶内のOの量で決定される。また、アルカリ
土類金属の種類によってOのとりこみやすさが変わるの
で、アルカリ土類金属の組み合せをいろいろ変化させる
ことによってOの量を上げ、超電導特性を向上させるこ
とができる。この点、上述した従来の超電導体は、Cuの
周りにOがが6配位するべき位置のCuと同一平面内のO
の欠損が多く、そのために正孔濃度が不足し、零抵抗超
電導転移温度や超電導体積率が高くならなかったともの
と考えられる。しかしながら、この発明の超電導体は、
元素のいろいろな組み合せによって、Oをより多くとり
こみやすい構造を形成しており、また、その超電導体に
酸素処理をほどこすことで、超電導特性はさらに向上さ
せることができる。
Next, regarding the hole concentration, in the superconductor of the present invention, the charge is given by holes, and the hole concentration is mainly determined by the amount of O in the crystal. In addition, since the incorporation of O changes depending on the type of alkaline earth metal, the amount of O can be increased by variously changing the combination of alkaline earth metals, and the superconductivity can be improved. In this regard, the above-described conventional superconductor has an O in the same plane as Cu at a position where O should coordinate 6 around Cu.
It is probable that the number of defects was so large that the hole concentration was insufficient and the zero-resistance superconducting transition temperature and the superconductor moment were not increased. However, the superconductor of the present invention
Various combinations of elements form a structure in which more O is easily incorporated, and the superconducting properties can be further improved by subjecting the superconductor to oxygen treatment.

ところで、上述した式においては、理想的にはy=z
=2、δ=10であるが、現実には、原子欠損や、上述し
た酸素欠損がみられるので、y、z、δともにある程度
の幅をもつようになる。特に、Oは欠損しやすいので、
yの値は10よりもかなり小さくなることが多い。
By the way, in the above equation, ideally y = z
= 2 and δ = 10, but in reality, y, z, and δ have a certain width because of the atomic deficiency and the oxygen deficiency described above. In particular, since O is easily lost,
The value of y is often much smaller than 10.

この発明の超電導体は、テープ状、線状、繊維状、シ
ート状等、いろいろな形態にして用いることができる。
また、炭素繊維や、セラミックスや、銀等の金属からな
る補強線材上に形成して用いることもできる。また、銀
シース等の補強用の中空材料に詰めて使用することもで
きる。また、銅等のマトリクスを用いて多芯線構造の超
電導線材とすることもできる。さらに、Si、MgO、LaCaO
3等の基板上に薄膜として形成し、いろいろな素子とし
て、あるいは、LSIの配線として用いることができる。
The superconductor of the present invention can be used in various forms such as a tape, a wire, a fiber, and a sheet.
Moreover, it can also be formed and used on a reinforcing wire made of carbon fiber, ceramics, or a metal such as silver. Moreover, it can also be packed and used in a hollow material for reinforcement such as a silver sheath. In addition, a superconducting wire having a multi-core wire structure can be formed by using a matrix such as copper. Furthermore, Si, MgO, LaCaO
It can be formed as a thin film on a substrate such as 3 and used as various elements or as LSI wiring.

この発明の超電導体は、いろいろな方法によって製造
することができる。
The superconductor of the present invention can be manufactured by various methods.

たとえば、いわゆる粉末混合法によることができる。
この方法は、成分元素の酸化物やその前駆体(炭酸塩、
硝酸塩等)の粉末を所望の割合で混合し、それを焼結温
度以下の温度で焼成し、さらに粉砕、混合し、所望の形
状に成形した後に焼成して超導電体とする方法である。
For example, a so-called powder mixing method can be used.
This method uses oxides of component elements and their precursors (carbonate,
This is a method in which powders such as nitrates are mixed at a desired ratio, fired at a temperature equal to or lower than the sintering temperature, further crushed, mixed, formed into a desired shape, and fired to form a superconductor.

また、薄膜を形成する方法としては、よく知られてい
る、たとえば、電子ビーム蒸着法やレーザー蒸着法等の
各種蒸着法、マグネトロンスパッタ法などの各種スパッ
タ法、ハロゲン化物や有機金属等を用いる化学的気相成
長法、硝酸塩や有機酸塩等を用いる霧化法、アルコキシ
ド等を用いる塗布法がある。
As a method for forming a thin film, well-known methods such as various evaporation methods such as an electron beam evaporation method and a laser evaporation method, various sputtering methods such as a magnetron sputtering method, and a chemical method using a halide or an organic metal are used. A vapor phase growth method, an atomization method using a nitrate or an organic acid salt, and a coating method using an alkoxide or the like.

もっとも、この発明の超電導体は酸素欠損を生じやす
いので、それを補うために、1気圧より大きい酸素分圧
中で熱処理を行ったり、N2O、O3等の、分解時に活性な
酸素原子を作り出す気体中での製造や熱処理を行うのも
好ましい。
However, the superconductor of the present invention is susceptible to oxygen deficiency. To compensate for this, heat treatment is performed in an oxygen partial pressure greater than 1 atm, or oxygen atoms active during decomposition such as N 2 O and O 3 are added. It is also preferable to carry out production or heat treatment in a gas that produces

(実施例) 実施例1 Nd2O3、CeO2、BaCO3、SrCO3、CuOの各粉末を、Nd:Ce:
Ba:Sr:Cuが2:0.7:0.98:0.33:3になるように計りとり、
これをメノウ乳鉢で混合した後、Al2O3の容器に入れて
空気中にて1000℃で12時間焼成した。その後、再びメノ
ウ乳鉢で粉砕し、ペレット状に成形し、空気中にて1050
℃で15時間焼成した。さらに、1300気圧の酸素雰囲気中
にて600℃で12時間加熱し、徐冷した。
Example 1 Example 1 Each powder of Nd 2 O 3 , CeO 2 , BaCO 3 , SrCO 3 , and CuO was mixed with Nd: Ce:
Measure Ba: Sr: Cu to be 2: 0.7: 0.98: 0.33: 3,
After mixing this in an agate mortar, it was placed in a container of Al 2 O 3 and baked in air at 1000 ° C. for 12 hours. Then, again crushed in an agate mortar, formed into a pellet, 1050 in the air
Firing at 15 ° C. for 15 hours. Further, it was heated at 600 ° C. for 12 hours in an oxygen atmosphere at 1300 atm, and gradually cooled.

得られた超電導体の格子定数は、X線回折パターンに
よると、a=3.87Å、c=28.59Åであった。また、ICP
発光分析法(セイコー電子工業社製シーケンシャル型IC
P、SPS1200VR)と、不活性ガス融解・赤外線吸収法(堀
場製作所製EMGA−2800)とによる組成分析では、組成
は、(Nd0.35(Ba0.75Sr0.250.65(Ce0.35N
d0.652Cu3O9.1となっており、Oの量が多かった。さ
らに、超電導特性を測定したところ、零抵抗超電導転移
温度は41.4K、超電導体積率は43%であった。
According to the X-ray diffraction pattern, the lattice constant of the obtained superconductor was a = 3.87 ° and c = 28.59 °. Also, ICP
Emission analysis (Sequential IC manufactured by Seiko Instruments Inc.)
P, SPS1200VR) and an inert gas melting / infrared absorption method (EMGA-2800, manufactured by Horiba, Ltd.), the composition is (Nd 0.35 (Ba 0.75 Sr 0.25 ) 0.65 ) 2 (Ce 0.35 N
d 0.65 ) 2 Cu 3 O 9.1, and the amount of O was large. Further, when the superconducting characteristics were measured, the zero-resistance superconducting transition temperature was 41.4K and the superconductor moment was 43%.

実施例2 Nd2O3、Sm2O3、CeO2、BaCO3、SrCO3、CuOの各粉末
を、Nd:Sm:Ce:Ba:Sr:Cuが1.62:0.42:0.8:1.13:0.13:3に
なるように計りとり、メノウ乳鉢で混合した後、Al2O3
の容器に入れて空気中に1000℃で12時間焼成した。その
後、再びメノウ乳鉢で粉砕し、ペレット状に成形し、空
気中にて1030℃で15時間焼成した。さらに、1000気圧の
酸素雰囲気中にて800℃で2時間加熱し、徐冷した。
Example 2 Each powder of Nd 2 O 3 , Sm 2 O 3 , CeO 2 , BaCO 3 , SrCO 3 , and CuO was Nd: Sm: Ce: Ba: Sr: Cu in 1.62: 0.42: 0.8: 1.13: 0.13: Measure to 3 and mix in an agate mortar, then Al 2 O 3
And baked in air at 1000 ° C. for 12 hours. Then, it was again pulverized in an agate mortar, formed into a pellet, and fired in air at 1030 ° C. for 15 hours. Further, it was heated at 800 ° C. for 2 hours in an oxygen atmosphere at 1000 atm and gradually cooled.

得られた超電導体の格子定数は、a=3.87Å、c=2
8.53Åであった。また、組成は、((Nd0.5Sm0.50.4
(Ba0.9Sr0.10.62.1(Ce0.4Nd0.62CU3O8.9となっ
ており、Oの量が多かった。さらに、超電導特性を測定
したところ、零抵抗超電導転移温度は37.6K、超電導体
積率は30%であった。
The lattice constant of the obtained superconductor is a = 3.87 °, c = 2
8.53Å. The composition is ((Nd 0.5 Sm 0.5 ) 0.4
(Ba 0.9 Sr 0.1 ) 0.6 ) 2.1 (Ce 0.4 Nd 0.6 ) 2 CU 3 O 8.9 , indicating a large amount of O. Further, when the superconducting properties were measured, the zero-resistance superconducting transition temperature was 37.6K and the superconductor moment was 30%.

実施例3 Eu2O3、Sm2O3、CeO2、BaCO3、SrCO3、CaCO3、CuOの各
粉末を、Eu:Sm:Ce:Ba:Sr:Ca:Cuが1.8:0.13:0.57:1.12:
0.21:0.07:3になるように計りとり、これをメノウ乳鉢
で混合した後、Al2O3の容器に入れて空気中にて1000℃
で12時間焼成した。その後、再びメノウ乳鉢で粉砕し、
ぺレット状に成形し、空気中にて1025℃で15時間焼成し
た。さらに、60気圧の酸素雰囲気中にて550℃で24時間
加熱し、徐冷した。
Example 3 Each powder of Eu 2 O 3 , Sm 2 O 3 , CeO 2 , BaCO 3 , SrCO 3 , CaCO 3 , and CuO was prepared by mixing Eu: Sm: Ce: Ba: Sr: Ca: Cu with 1.8: 0.13: 0.57. : 1.12:
Measure 0.21 to 0.07: 3, mix this in an agate mortar, put in a container of Al 2 O 3 and in the air at 1000 ° C
For 12 hours. Then, crush again in agate mortar,
It was formed into pellets and fired in air at 1025 ° C. for 15 hours. Furthermore, it was heated at 550 ° C. for 24 hours in an oxygen atmosphere at 60 atm, and gradually cooled.

得られた超電導体の格子定数は、a=3.85Å、c=2
8.47Åであった。また、組成は、(Eu0.3(Ba0.8Sr0.15
Ca0.050.72.0(Ce0.3(Eu0.9Sm0.10.71.9Cu3O
8.7であり、Oの量が多かった。さらに、超電導特性を
測定したところ、零抵抗超電導転移温度は30.3K、超電
導体積率は25%であった。
The lattice constant of the obtained superconductor is a = 3.85 °, c = 2
It was 8.47Å. The composition is (Eu 0.3 (Ba 0.8 Sr 0.15
Ca 0.05 ) 0.7 ) 2.0 (Ce 0.3 (Eu 0.9 Sm 0.1 ) 0.7 ) 1.9 Cu 3 O
It was 8.7 , and the amount of O was large. When the superconducting properties were measured, the zero-resistance superconducting transition temperature was 30.3K and the superconductor moment was 25%.

実施例4 Eu2O3、Gd2O3、CeO2、BaCO3、CaCO3、CuOの各粉末
を、Eu:Gd:Ce:Ba:Ca:Cuが1.78:0.22:0.9:0.99:0.11:3に
なるように計りとり、メノウ乳鉢で混合した後、Al2O3
の容器に入れ、空気中にて1000℃で12時間焼成した。そ
の後、再びメノウ乳鉢で粉砕し、ペレット状に成形し、
空気中にて1000℃で15時間焼成した。さらに、600気圧
の酸素雰囲気中にて500℃で15時間加熱し、徐冷した。
Example 4 Each powder of Eu 2 O 3 , Gd 2 O 3 , CeO 2 , BaCO 3 , CaCO 3 , and CuO was prepared by adding Eu: Gd: Ce: Ba: Ca: Cu to 1.78: 0.22: 0.9: 0.99: 0.11: Measure to 3 and mix in an agate mortar, then Al 2 O 3
And baked in air at 1000 ° C. for 12 hours. Then, again crushed in an agate mortar, formed into pellets,
It was baked at 1000 ° C. for 15 hours in air. Further, it was heated at 500 ° C. for 15 hours in an oxygen atmosphere at 600 atm, and gradually cooled.

得られた超電導体の格子定数は、a=3.85Å、c=2
8.41Åであった。また、組成は、(Eu0.45(Ba0.9C
a0.10.552.0(Ce0.45Eu0.8Gd0.20.552.0Cu3O
8.8であり、Oの量が多かった。さらに、超電導特性を
測定したところ、零抵抗超電導転移温度は33.0K、超電
導体積率は27%の超電導体であった。
The lattice constant of the obtained superconductor is a = 3.85 °, c = 2
It was 8.41Å. The composition is (Eu 0.45 (Ba 0.9 C
a 0.1 ) 0.55 ) 2.0 (Ce 0.45 Eu 0.8 Gd 0.2 ) 0.55 ) 2.0 Cu 3 O
It was 8.8 , and the amount of O was large. Further, when the superconducting properties were measured, the superconductivity was found to be a superconductor having a zero-resistance superconducting transition temperature of 33.0 K and a superconductor moment factor of 27%.

(発明の効果) この発明の超電導体は、1気圧より大きい酸素雰囲気
中で熱処理を施すことにより作製される、一般式、 (α(Ba1-xβ1-p(Ceqγ1-qzCu3Oδ ただし、 α:Nd、Sm、EuおよびGdから選ばれた少なくとも1種
の元素 β:SrおよびCaから選ばれた少なくとも1種の元素 γ:Nd、Sm、EuおよびGdから選ばれた少なくとも1種
の元素 0.2<p<0.5 0.0<x<0.6 1.8<y<2.2 0.05<q<0.4 1.8<z<2.2 8.0<δ<10.0 で表されるもので、実施例にも示したように、零抵抗超
電導転移温度が高く、かつ、超電導体積率が大きい。
(Effect of the Invention) The superconductor of the present invention is produced by performing a heat treatment in an oxygen atmosphere larger than 1 atm. The general formula: (α p (Ba 1-x β x ) 1-p ) y (Ce q γ 1-q ) z Cu 3 O δ where α: at least one element selected from Nd, Sm, Eu and Gd β: at least one element selected from Sr and Ca γ: Nd, Sm At least one element selected from the group consisting of Eu, Gd, and 0.2 <p <0.5 0.0 <x <0.6 1.8 <y <2.2 0.05 <q <0.4 1.8 <z <2.2 8.0 <δ <10.0; As shown in the examples, the zero-resistance superconducting transition temperature is high and the superconductor moment is large.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1気圧よりも大きい酸素雰囲気中で熱処理
を施すことにより作製される、下記一般式で表される超
電導体。 (α(Ba1-xβ1-p(Ceqγ1-qzCu3Oδ ただし、 α:Nd、Sm、EuおよびGdから選ばれた少なくとも1種の
元素 β:SrおよびCaから選ばれた少なくとも1種の元素 γ:Nd、Sm、EuおよびGdから選ばれた少なくとも1種の
元素 0.2<p<0.5 0.0<x<0.6 1.8<y<2.2 0.05<q<0.4 1.8<z<2.2 8.0<δ<10.0
1. A superconductor represented by the following general formula, which is produced by performing a heat treatment in an oxygen atmosphere higher than 1 atm. (Α p (Ba 1-x β x ) 1-p ) y (Ce q γ 1-q ) z Cu 3 O δ where α: at least one element selected from Nd, Sm, Eu and Gd : At least one element selected from Sr and Ca γ: at least one element selected from Nd, Sm, Eu and Gd 0.2 <p <0.5 0.0 <x <0.6 1.8 <y <2.2 0.05 <q < 0.4 1.8 <z <2.2 8.0 <δ <10.0
JP1245850A 1989-09-21 1989-09-21 Superconductor Expired - Fee Related JP2817257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245850A JP2817257B2 (en) 1989-09-21 1989-09-21 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245850A JP2817257B2 (en) 1989-09-21 1989-09-21 Superconductor

Publications (2)

Publication Number Publication Date
JPH03109213A JPH03109213A (en) 1991-05-09
JP2817257B2 true JP2817257B2 (en) 1998-10-30

Family

ID=17139770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245850A Expired - Fee Related JP2817257B2 (en) 1989-09-21 1989-09-21 Superconductor

Country Status (1)

Country Link
JP (1) JP2817257B2 (en)

Also Published As

Publication number Publication date
JPH03109213A (en) 1991-05-09

Similar Documents

Publication Publication Date Title
US4880771A (en) Bismuth-lead-strontium-calcium-cuprate superconductors
Karpinski et al. High-pressure synthesis, crystal growth, phase diagrams, structural and magnetic properties of Y2Ba4CunO2n+ x, HgBa2Can-1CunO2n+ 2+ and quasi-one-dimensional cuprates
US5510323A (en) Tl1 (Ba1-x Sr8)2 Ca2 Cu3 Oy oxide superconductor and method of producing the same
US5374611A (en) Preparation and composition of superconducting copper oxides based on Ga-O layers
JP2817257B2 (en) Superconductor
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US5502029A (en) Laminated super conductor oxide with strontium, calcium, copper and at least one of thallium, lead, and bismuth
US5492886A (en) Method of producing highly oxidized superconductors containing barium, copper, and a third metal
JPH0764560B2 (en) Layered copper oxide
JP2817259B2 (en) Superconductor
JP3219563B2 (en) Metal oxide and method for producing the same
US5066635A (en) High temperature superconducting Ti-Ba-Ca-Cu-O phases
JP3049739B2 (en) Superconducting composition
JPH01503060A (en) Devices and systems based on new superconducting materials
US5252544A (en) Oxide superconductor having the formula Pba (M1-x-y Cex Sry)4 Cu3-a Oz where M is at least one rare earth element
JP2716698B2 (en) Method for producing superconducting oxide
US5145834A (en) Processes for making Tl-Ca-Ba-Cu-O, Tl-Sr-Ba-Cu-O and Tl-Sr-Cu-O superconductors by solid state synthesis
JP3205996B2 (en) Superconductor
KR100265031B1 (en) A na-intervened superconductors and their preparing method
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
WO1989008076A1 (en) SUPERCONDUCTIVITY IN A Bi-Ca-Sr-Cu OXIDE COMPOUND SYSTEM FREE OF RARE EARTHS
JP2820480B2 (en) Oxide superconductor and manufacturing method thereof
JPH04114915A (en) Superconductor
JP3247914B2 (en) Metal oxide material
JPH02279517A (en) Superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees