JPH04114915A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH04114915A
JPH04114915A JP2232167A JP23216790A JPH04114915A JP H04114915 A JPH04114915 A JP H04114915A JP 2232167 A JP2232167 A JP 2232167A JP 23216790 A JP23216790 A JP 23216790A JP H04114915 A JPH04114915 A JP H04114915A
Authority
JP
Japan
Prior art keywords
superconductor
element selected
blocking layer
type
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232167A
Other languages
Japanese (ja)
Inventor
Hitoshi Nobumasa
均 信正
Kazuharu Shimizu
一治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2232167A priority Critical patent/JPH04114915A/en
Publication of JPH04114915A publication Critical patent/JPH04114915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve coordination of superconductor with the same kind of superconductor and to attain a high superconducting transition temperature different from that of the same kind of superconductor by forming crystal structure containing a blocking layer of La2O2 type shown by the formula. CONSTITUTION:This superconductor consists essentially of a copper compound oxide shown by the formula (with the proviso that alpha is element selected from La and P1; beta is element selected from Ba and Sr; gamma is element selected from Ca and Sr; delta is element selected from Y, Nd, Sm, Eu, Gd, etc.; p is 0-0.75; q is 0-0.2; gamma is 0-0.5; s is 7.9-8.5). The superconductor has a blocking layer of La2O2 type made of elements alpha and beta and oxygen. The superconductor is produced by powder blending method, deposition method, sputtering method, etc., made into a tape state, filamentous state and sheetlike state, etc., and used.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、核融合炉、電磁流体発電機、加速器、回転
電気機器(電動機や発電機など)、磁気分離機、磁気浮
上列車、磁気浮上自動車、磁気浮上エレベータ、核磁気
共鳴断層撮影診断装置、磁気推進船、電子ビーム露光装
置、単結晶製造装置、各種実験装置などのマグネットコ
イル用材料として適し、また、送電線、電気エネルギー
貯蔵器、変圧器、整流器などの電力損失が問題になる用
途に適し、さらに、ジョセフソン素子、5QUTD素子
、超電導トランジスタ、超電導マイクロ波立体回路など
の各種素子として適し、さらにまた、赤外線探知材料、
磁気遮蔽材料などの各種機能材料として適した超電導体
に関する。
[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to nuclear fusion reactors, magnetohydrodynamic generators, accelerators, rotating electrical equipment (such as electric motors and generators), magnetic separators, magnetic levitation trains, and magnetic levitation. Suitable as a material for magnet coils in automobiles, magnetic levitation elevators, nuclear magnetic resonance tomography diagnostic equipment, magnetic propulsion ships, electron beam exposure equipment, single crystal manufacturing equipment, various experimental equipment, etc. Also suitable for power transmission lines, electrical energy storage devices, It is suitable for applications where power loss is a problem, such as transformers and rectifiers, and is also suitable for various devices such as Josephson devices, 5QUTD devices, superconducting transistors, and superconducting microwave three-dimensional circuits.It is also suitable for infrared detection materials,
This invention relates to superconductors suitable as various functional materials such as magnetic shielding materials.

〈従来の技術〉 従来、結晶構造が異なる20種類はどの銅複合酸化物超
電導体が見出されている。これらの超電導体の結晶構造
をさらに細分化してみると、結晶構造の繰り返し単位が
CuO□層とそれ以外のものとに分類できる。さらに、
CuO2層以外のものは、”Physica  XC1
67、第515頁(1990)で説明されているように
、CuO2層に垂直な方向(C軸方向)の層の厚みによ
ってブロッキング層とメゾイエ−ティング層とに分類で
きる。そうして、ブロッキング層には、それを構成する
構造や主たる組成の相異により、La2o2型、B a
 O/ Cu O/ B a O型、B a O/ C
u O/ Cu O/ B a O型、SrO/B 1
202/S ro型、B a O/ T 1202 /
 B a OもしくはBaO/ T ] O/ B a
 O型、SrO/PbO−CuPbO/SrO型、S 
ro/ (Pb、Cu)O/SrOもしくはS rO/
 (Pb、  S r) 0/S ro型、Ln2O3
型(LnはNd、Sm、EuおよびGdから選ばれた元
素)の8種類の型が存在する。
<Prior Art> Twenty types of copper composite oxide superconductors having different crystal structures have been discovered so far. When the crystal structures of these superconductors are further subdivided, the repeating units of the crystal structure can be classified into CuO□ layers and other layers. moreover,
Other than the CuO2 layer, “Physica XC1
67, p. 515 (1990), the layer can be classified into a blocking layer and a meso-eating layer depending on the thickness of the layer in the direction perpendicular to the CuO2 layer (C-axis direction). In this way, the blocking layer has La2o2 type, B a
O/ Cu O/ B a O type, B a O/ C
u O/ Cu O/ B a O type, SrO/B 1
202/S ro type, B a O/T 1202/
B a O or BaO/T] O/B a
O type, SrO/PbO-CuPbO/SrO type, S
ro/ (Pb, Cu)O/SrO or S rO/
(Pb, S r) 0/S ro type, Ln2O3
There are eight types (Ln is an element selected from Nd, Sm, Eu, and Gd).

さて、従来の銅複合酸化物超電導体のCuO2平面に平
行な方向の格子定数(a軸長またはb軸長)を調べてみ
ると、ブロッキング層の種類によって異なっている。C
uO2平面に平行な方向の結晶の大きさを、CuO2平
面内のCuとそれに最も接近しているOとの距離で表す
と、1.89〜1.97への範囲で分布している。
Now, when examining the lattice constant (a-axis length or b-axis length) of a conventional copper composite oxide superconductor in a direction parallel to the CuO2 plane, it differs depending on the type of blocking layer. C
When the crystal size in the direction parallel to the uO2 plane is expressed as the distance between Cu in the CuO2 plane and the O closest to it, it is distributed in the range of 1.89 to 1.97.

ところで、銅複合酸化物超電導体を利用するとき、超電
導転移温度の異なる超電導体を一体にして使用できれば
便利である。たとえば、各種の素子やセンサーを構成す
る場合、超電導転移温度の異なるものを層状に一体化配
置できれば、新しい効果が期待できる。しかしながら、
異なる型のブロッキング層をもつ超電導体の共用は、C
uO2平面に平行な方向の結晶の大きさの不整合性や、
製作時における、一方の超電導体から他方の超電導体へ
の構成元素の拡散などがあってなかなか難しい。そこで
、同じ種類の型のブロッキング層を含み、しかも、超電
導転移温度が異なる複数種類の超電導体を得ることが望
まれている。
By the way, when using copper composite oxide superconductors, it would be convenient if superconductors having different superconducting transition temperatures could be used together. For example, when constructing various elements and sensors, new effects can be expected if materials with different superconducting transition temperatures can be integrated and arranged in layers. however,
The common use of superconductors with different types of blocking layers is C
Inconsistency in the crystal size in the direction parallel to the uO2 plane,
This is quite difficult due to the diffusion of constituent elements from one superconductor to the other during fabrication. Therefore, it is desired to obtain multiple types of superconductors that contain the same type of blocking layer but have different superconducting transition temperatures.

たとえば、La185Sro、15Cu104超電導体
とLa16S ro、4 Ca1Cu、、06超電導体
は、同じ種類の型(La202型)のブロッキング層も
っているので、共用は容易である。そうして、超電導転
移温度は、それぞれ35に、60にで、上述した希望に
よく合う。しかしながら、ただ2種類では利用範囲が限
られてしまう。
For example, the La185Sro, 15Cu104 superconductor and the La16S ro, 4Ca1Cu, 06 superconductor have the same type of blocking layer (La202 type), so they can be easily used in common. The superconducting transition temperatures are then 35 and 60, respectively, well meeting the above-mentioned wishes. However, the scope of use is limited with only two types.

〈発明が解決しようとする課題〉 この発明の目的は、Lal、B5S ro、l5cul
 O4超電導体やLa1,6 S ro4Cal C1
1206超電導体と同じ種類の型(La20□型)のブ
ロッキング層を含み、これらとの整合性がよいばかりか
、これらとは超電導転移温度が異なる銅複合酸化物超電
導体を提供するにある。
<Problem to be solved by the invention> The purpose of this invention is to solve the problems that Lal, B5S ro, l5cul
O4 superconductor and La1,6 S ro4Cal C1
The object of the present invention is to provide a copper composite oxide superconductor that not only includes a blocking layer of the same type (La20□ type) as the 1206 superconductor and has good compatibility with them, but also has a different superconducting transition temperature from them.

〈課題を解決するための手段〉 上記目的を達成するために、この発明は、下記一般式で
表される超電導体を提供する。
<Means for Solving the Problems> In order to achieve the above object, the present invention provides a superconductor represented by the following general formula.

(α+−pβ11)2−0 (71−rδ、) 2+Q C1130sただし、 α:LaおよびPbから選ばれた元素 β:BaおよびSrから選ばれた元素 γ:CaおよびSrから選ばれた元素 δ: YXNd、Sm、Eu、Gd、Dy。(α+-pβ11)2-0 (71-rδ,) 2+Q C1130s However, α: Element selected from La and Pb β: Element selected from Ba and Sr γ: Element selected from Ca and Sr δ: YXNd, Sm, Eu, Gd, Dy.

Ho、E r、Tm、YbおよびLuから選ばれた元素 0<p≦0.75 0≦q<Q、  2 0≦r<0. 5 7、 9<s<8. 5 この発明において、α、β、γ、δは、それぞれただ1
種を選択してもよく、2種以上を選択しでもよい。
Element selected from Ho, Er, Tm, Yb and Lu 0<p≦0.75 0≦q<Q, 2 0≦r<0. 5 7, 9<s<8. 5 In this invention, α, β, γ, and δ are each only 1
You may select one species or two or more species.

この発明の超電導体は、図面に示すような結晶構造を有
し、元素α、βと酸素とで形成されるしa202型のブ
ロッキング層を有している。
The superconductor of the present invention has a crystal structure as shown in the drawings, and has an a202 type blocking layer formed of elements α, β and oxygen.

さて、この発明の超電導体は、構造が理想的に実現され
たとき、一般式におけるSは8.0となるが、通常は酸
素量の過不足があるため、7.9<s<8.5という組
成範囲が許される。pについては、BaおよびSrの固
溶限界から、0<p≦0.75なる制限が加わる。
Now, in the superconductor of the present invention, when the structure is ideally realized, S in the general formula is 8.0, but since there is usually an excess or deficiency in the amount of oxygen, 7.9<s<8. A composition range of 5 is allowed. As for p, a limit of 0<p≦0.75 is added due to the solid solubility limit of Ba and Sr.

この発明の超電導体は、電荷が正孔(ホール)で与えら
れる。このように電荷が正孔で与えられるとき、従来の
銅複合酸化物超電導体と同じく、正孔濃度がCu1個あ
たり0.01以上、0. 5以下のときに超電導体とな
る。そうして、Cu1個あたりの正孔濃度は、−(3X
 (]、−1)) +2Xp) X (2−q) /3
−(2x (1−r) +3Xr) X (2+q)/
3+2Xs/3−2で与、えられるから、2.OL<−
(3x (1−p)+2Xp) X (2−q) /3
−(2X (:I−−r) +3Xr) X (2+q
)/3+2Xs/3<2.50でなくてはならない。好
ましくは、2.10<(3x (1−p) +2xp)
X (2−q)/3(2X (1−r) +3xr) 
X (2+q) /3+2xs/3<2.30である。
In the superconductor of this invention, charge is given by holes. When charge is provided by holes in this way, the hole concentration is 0.01 or more per Cu, as in conventional copper composite oxide superconductors. When it is 5 or less, it becomes a superconductor. Then, the hole concentration per Cu is -(3X
(], -1)) +2Xp) X (2-q) /3
-(2x (1-r) +3Xr) X (2+q)/
Since it is given by 3+2Xs/3-2, 2. OL<-
(3x (1-p)+2Xp) X (2-q) /3
-(2X (:I--r) +3Xr) X (2+q
)/3+2Xs/3<2.50. Preferably, 2.10<(3x (1-p) +2xp)
X (2-q)/3(2X (1-r) +3xr)
X(2+q)/3+2xs/3<2.30.

ただし、各元素の価数は、L aは+3価、Ba、、S
r、Caは+2価、YXNd、Sm、Eu、Gd、Dy
、Ho。
However, the valence of each element is: La is +3 valence, Ba, S
r, Ca is +2 valent, YXNd, Sm, Eu, Gd, Dy
, Ho.

Er、Tm、Tb、Luは+3価とした。また、Pbは
+2価さ+4価をとり得るので、+2価と」−4価の混
合価数と考え、平均して+3価とした。
Er, Tm, Tb, and Lu were set to +3 valence. Further, since Pb can have a valence of +2 and +4, it is considered to be a mixed valence of +2 and -4, and the average valence is +3.

なお、2.01.<〜(3×(:1.  p)+2X1
))X (2Q) /3  (2X (1−r) +3
Xr)X (2+q)/3+2Xs/3<2.50なる
制限を容易に満たすためには、Sは構造が理想的に実現
されたときの値よりも大きいほうがよい。
In addition, 2.01. <~(3×(:1.p)+2X1
))X (2Q) /3 (2X (1-r) +3
In order to easily satisfy the restriction Xr)X (2+q)/3+2Xs/3<2.50, S should be larger than the value when the structure is ideally realized.

元素δは、図面に示すように、それが存在する面(ab
面)内に酸素が存在できないようにするために、イオン
半径が約1100pと小さくなければならない。この条
件から、元素δは、Y、Nd。
The element δ is present in the plane (ab
The ionic radius must be small, about 1100p, to prevent oxygen from existing within the plane. From this condition, the elements δ are Y and Nd.

Sm、EuXGd、Dy、Ho、%E r、TmXYb
およびLuから選ばれなければならないが、構造をより
安定にするためには、Y 、、D y XHO%Er、
Ybであるのが好ましい。また、元素δの固溶限界から
、0≦r<Q、5なる制限が加わる。
Sm, EuXGd, Dy, Ho, %E r, TmXYb
and Lu, but to make the structure more stable, Y , , D y XHO%Er,
Preferably it is Yb. Further, due to the solid solubility limit of the element δ, the following restrictions are added: 0≦r<Q, 5.

さらに、qには、図面に示す構造を安定にするために、
0≦q<Q、2なる制限が加えられる。
Furthermore, in q, in order to stabilize the structure shown in the drawing,
A restriction of 0≦q<Q, 2, is added.

この発明の超電導体の結晶構造の格子定数は、元素α、
β、γ、δの種類や酸素含有量(S)にもよるが、およ
そ3.8人(a軸長およびb軸長)で、これをCuO2
平面内のCuとそれに最も接近しているOとの距離で表
すと1.9人となる。
The lattice constants of the crystal structure of the superconductor of this invention are elements α,
Although it depends on the types of β, γ, and δ and the oxygen content (S), it takes about 3.8 people (a-axis length and b-axis length) to convert CuO2
The number of people is 1.9 when expressed as the distance between Cu in a plane and O which is closest to it.

これは、L a 1. B5S r o、 15Cu 
104やL a 16Sro4Ca1Cu206の場合
とほぼ同じであり、これらの超電導体との整合性がよい
。また、格子定数のC軸長は約23Aであり、繰り返し
単位のC軸長は格子定数のC軸長の1/2で、約11〜
12Aである。
This is La 1. B5S r o, 15Cu
104 and La 16Sro4Ca1Cu206, and has good compatibility with these superconductors. In addition, the C-axis length of the lattice constant is about 23A, and the C-axis length of the repeating unit is 1/2 of the C-axis length of the lattice constant, which is about 11~
It is 12A.

この発明の超電導体は、テープ状、線状、繊維状、シー
ト状など、いろいろな形態にして用いることができる。
The superconductor of the present invention can be used in various forms such as a tape, a line, a fiber, and a sheet.

また、炭素繊維や、セラミックスや金、銀などの金属か
らなる補強線材上に形成して用いることもできる。また
、銀シースなどの補強用の中空材料に詰めて用いること
もできる。さらにまた、銅などのマトリクスを用いて多
芯線構造の超電導線材とすることもできる。また、51
1Mg0.LaGaO3、LaAlO3,5rTi03
などの基板上に薄膜として形成し、いろいろな素子とし
て、あるいは、L S Iの配線として用いることがで
きる。
It can also be formed on a reinforcing wire made of carbon fiber, ceramics, or metal such as gold or silver. It can also be used by filling it into a reinforcing hollow material such as a silver sheath. Furthermore, a superconducting wire with a multifilamentary wire structure can be made using a matrix of copper or the like. Also, 51
1Mg0. LaGaO3, LaAlO3, 5rTi03
It can be formed as a thin film on a substrate such as the like, and used as various elements or as LSI wiring.

この発明の超電導体は、ペルティエ効果などを利用した
冷凍機と併せて使用すれば、扱いが簡便になる。
The superconductor of this invention can be easily handled if used in conjunction with a refrigerator that utilizes the Peltier effect or the like.

この発明の超電導体は、いろいろな方法にょって製造す
ることができる。
The superconductor of this invention can be manufactured by various methods.

たとえば、よく知られた粉末混合法によることができる
。また、電子ビーム蒸着法やレーザー蒸着法などの各種
蒸着法によったり、マグネトロンスパッタ法などの各種
スパッタ法によったり、ハロゲン化物や有機金属などを
用いる化学的気相成長法によったり、硝酸塩や有機酸な
どを用いる霧化法によったり、アルコキシドなどを用い
る塗布法によったりすることができる。
For example, well-known powder mixing methods can be used. In addition, various evaporation methods such as electron beam evaporation and laser evaporation, various sputtering methods such as magnetron sputtering, chemical vapor deposition using halides and organic metals, and nitrate It can be carried out by an atomization method using an organic acid or the like, or by a coating method using an alkoxide or the like.

なお、この発明の超電導体は、酸素欠損を生じやすく、
結晶中の電荷担体、すなわち、正孔の数が減ってしまう
ので、焼成後、1〜400気圧の酸素分圧下で熱処理す
るのが好ましい。
In addition, the superconductor of this invention is prone to oxygen vacancies,
Since the number of charge carriers, ie, holes, in the crystal decreases, it is preferable to perform heat treatment under an oxygen partial pressure of 1 to 400 atmospheres after firing.

〈実 施 例〉 実施例1 L、a2 (CO3)3・xH2O,PbO,BaCO
3、CaCO3、Y2O3、cuoの各粉末をLa :
Pb :Ba :Ca :Y:Cuが0.に〇、6:1
.3+1.2:0.8:3.0になるように秤量し、P
bOを除く粉末をメノウ乳鉢で粉砕、混合した後、AI
。03の容器に入れ、空気中にて900℃で12時間仮
焼した。しかる後、再びメノウ乳鉢で粉砕し、PbO粉
末を加え、混合し、ペレット状に成形し、酸素分圧が0
. 1気圧以下の雰囲気下で900°Cにて3日間焼成
した後、急冷した。このようにして得られたペレットを
さらに200気圧の酸素分圧の酸素−アルゴン混合ガス
雰囲気下で750℃にて4時間熱処理した後、徐冷した
<Example> Example 1 L, a2 (CO3)3・xH2O, PbO, BaCO
3. Each powder of CaCO3, Y2O3, and cuo was added to La:
Pb:Ba:Ca:Y:Cu is 0. Yes, 6:1
.. Weigh it so that the ratio is 3 + 1.2: 0.8: 3.0, and P
After crushing and mixing the powder except bO in an agate mortar, AI
. 03 container and calcined in air at 900°C for 12 hours. After that, it is crushed again in an agate mortar, PbO powder is added, mixed, and formed into pellets until the oxygen partial pressure is 0.
.. After firing at 900° C. for 3 days in an atmosphere of 1 atm or less, it was rapidly cooled. The pellets thus obtained were further heat-treated at 750° C. for 4 hours in an oxygen-argon mixed gas atmosphere with an oxygen partial pressure of 200 atm, and then slowly cooled.

得られたペレットの一部を粉砕し、粉末X線回折法を使
用して解析したところ、図面に示す結晶構造であること
が確認された。また、この時格子定数を求めたところ、
a=3.82A、c=22゜7八であった。このa軸長
を、CuO2平面内のCuとそれに最も接近しているO
との距離で表すと1.91人になり、従来のL a 1
.85s r 0.15cu104やLa、6Sro、
、、Ca、Cu206の場合とほぼ同じであり、これら
との整合性に優れている。
A part of the obtained pellet was crushed and analyzed using powder X-ray diffraction, and it was confirmed that the pellet had the crystal structure shown in the drawing. Also, when the lattice constant was determined at this time,
a=3.82A, c=22°78. This a-axis length is defined as Cu in the CuO2 plane and O closest to it.
If expressed in terms of distance from
.. 85s r 0.15cu104, La, 6Sro,
, , Ca, and Cu206, and has excellent compatibility with these.

また、組成は(Lao、o、P I)o3Ba0.65
) 2]−1゜ o  (Ca0.6 Yo、4 ) 2.OC1130
g、2で、超電導転移温度は65にであった。
Also, the composition is (Lao, o, P I) o3Ba0.65
) 2]-1°o (Ca0.6 Yo, 4) 2. OC1130
g, 2, the superconducting transition temperature was 65.

実施例2 La2 (CO3)3・xH2O,、PbO,、、Ba
CO3、SrCO3、CaCO3、Er2O3、CuO
の各粉末をLa :Pb :Ba :Sr :Ca :
Er:Cuが0.195:0.683:0.975:0
.20:1.oa:o、923:3.0になるように秤
量し、PbOを除く粉末をメノウ乳鉢で粉砕、混合した
後、A1□03の容器に入れ、空気中にて900℃で1
2時間仮焼した。その後、再びメノウ乳鉢で粉砕し、P
bO粉末を加え、混合し、ペレット状に成形し、酸素分
圧が0.1気圧以下の雰囲気下にて920℃で3日間焼
成した後、急冷した。このようにして得られたペレット
をさらに10気圧の酸素分圧の酸素−アルゴン混合ガス
雰囲気下で800℃にて4時間熱処理した後、徐冷した
Example 2 La2 (CO3)3.xH2O,, PbO,, Ba
CO3, SrCO3, CaCO3, Er2O3, CuO
Each powder of La:Pb:Ba:Sr:Ca:
Er:Cu is 0.195:0.683:0.975:0
.. 20:1. The powder was weighed so that the ratio was oa:o, 923:3.0, and the powder excluding PbO was ground and mixed in an agate mortar, placed in an A1□03 container, and heated at 900℃ in air for 1 hour.
It was calcined for 2 hours. After that, crush it again in an agate mortar and P
bO powder was added, mixed, formed into pellets, fired at 920° C. for 3 days in an atmosphere with an oxygen partial pressure of 0.1 atm or less, and then rapidly cooled. The pellets thus obtained were further heat-treated at 800° C. for 4 hours in an oxygen-argon mixed gas atmosphere with an oxygen partial pressure of 10 atm, and then slowly cooled.

得られたペレットについて、実施例1と同様に解析した
ところ、図面に示す結晶構造であることが確認された。
When the obtained pellet was analyzed in the same manner as in Example 1, it was confirmed that it had the crystal structure shown in the drawing.

また、格子定数は、a=3. 84人、c=23.OA
であった。このa軸長をCuO□平面内のCuとそれに
最も接近しているOとの距離で表すと1.92Aになり
、やはりLa。
Moreover, the lattice constant is a=3. 84 people, c=23. OA
Met. If this a-axis length is expressed as the distance between Cu in the CuO□ plane and the O closest to it, it is 1.92A, which is also La.

、、S r o、 、、Cu 、 04やLa、6Sr
o、4 Ca。
,,S r o, ,,Cu, 04, La, 6Sr
o, 4 Ca.

Cu206との整合性に優れている。Excellent consistency with Cu206.

また、組成は(La。、、Pbo35Bao、S rO
,05) 1.95 (Cao、5 S ro、05E
 ro、45) 2.05Cu3081で、超電導転移
温度は62にであった。
In addition, the composition is (La., Pbo35Bao, S rO
, 05) 1.95 (Cao, 5 S ro, 05E
ro, 45) 2.05Cu3081, the superconducting transition temperature was 62.

〈発明の効果〉 この発明の超電導体は、実施例にも示したように、従来
のLa18,5ro15Cu204やLa。
<Effects of the Invention> As shown in the examples, the superconductor of the present invention is a superconductor of the conventional La18,5ro15Cu204 and La.

6Sro4Ca1Cu206と同じ種類の型(La2o
2型)のブロッキング層を含む結晶構造を有し、これら
との整合性がよいばかりか、これらの銅複合酸化物超電
導体とは異なる高い超電導転移温度を有する。
The same type of mold as 6Sro4Ca1Cu206 (La2o
It has a crystal structure including a type 2) blocking layer, and not only has good compatibility with these, but also has a high superconducting transition temperature different from those of these copper composite oxide superconductors.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の超電導体の結晶構造のモデル図であ
る。
The drawing is a model diagram of the crystal structure of the superconductor of the present invention.

Claims (1)

【特許請求の範囲】 下記一般式で表される銅複合酸化物を主成分とする超電
導体。 (α_1_−_pβ_p)_2_−_q (γ_1_−_rδ_r)_2_+_qCu_3O_s
ただし、 α:LaおよびPbから選ばれた元素 β:BaおよびSrから選ばれた元素 γ:CaおよびSrから選ばれた元素 δ:Y、Nd、Sm、Eu、Gd、Dy、 Ho、Er、Tm、YbおよびLuか ら選ばれた元素 0<p≦0.75 0≦q<0.2 0≦r<0.5 7.9<s<8.5
[Claims] A superconductor whose main component is a copper complex oxide represented by the following general formula. (α_1_-_pβ_p)_2_-_q (γ_1_-_rδ_r)_2_+_qCu_3O_s
However, α: an element selected from La and Pb β: an element selected from Ba and Sr γ: an element selected from Ca and Sr δ: Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Element selected from Tm, Yb and Lu 0<p≦0.75 0≦q<0.2 0≦r<0.5 7.9<s<8.5
JP2232167A 1990-08-31 1990-08-31 Superconductor Pending JPH04114915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232167A JPH04114915A (en) 1990-08-31 1990-08-31 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232167A JPH04114915A (en) 1990-08-31 1990-08-31 Superconductor

Publications (1)

Publication Number Publication Date
JPH04114915A true JPH04114915A (en) 1992-04-15

Family

ID=16935047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232167A Pending JPH04114915A (en) 1990-08-31 1990-08-31 Superconductor

Country Status (1)

Country Link
JP (1) JPH04114915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502204A1 (en) * 1990-09-21 1992-09-09 Toray Industries, Inc. Oxide superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502204A1 (en) * 1990-09-21 1992-09-09 Toray Industries, Inc. Oxide superconductor
EP0502204A4 (en) * 1990-09-21 1994-08-31 Toray Industries, Inc.

Similar Documents

Publication Publication Date Title
JP2859602B2 (en) Manufacturing method of products made of superconducting material
US5100866A (en) Process for producing compound oxide high temperature superconducting material Tly Cul-y O3-z where RE=Y or La
JPH0643268B2 (en) Oxide high temperature superconductor
EP0764991A1 (en) Oxide superconductor and method of producing the same
US6635603B1 (en) Devices and systems based on novel superconducting material
EP0301958B1 (en) Superconducting material and a method for preparing the same
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH04114915A (en) Superconductor
JPH0881221A (en) Oxide superconductor and its production
JP2975608B2 (en) Insulating composition
JPH04132611A (en) Superconductor
US5200389A (en) Method for manufacturing an oxide superconducting article
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JP3219563B2 (en) Metal oxide and method for producing the same
JP3205996B2 (en) Superconductor
JP2817259B2 (en) Superconductor
JPH04119917A (en) Superconductor
US5206214A (en) Method of preparing thin film of superconductor
JPH04119916A (en) Superconductor
JP2716698B2 (en) Method for producing superconducting oxide
JPH04114917A (en) Superconductor
JP2803823B2 (en) Method for producing T1-based oxide superconductor
US5252544A (en) Oxide superconductor having the formula Pba (M1-x-y Cex Sry)4 Cu3-a Oz where M is at least one rare earth element
JP2817257B2 (en) Superconductor
JP3049739B2 (en) Superconducting composition