JPH02299295A - Superconductive magnetic shield plate - Google Patents

Superconductive magnetic shield plate

Info

Publication number
JPH02299295A
JPH02299295A JP1120686A JP12068689A JPH02299295A JP H02299295 A JPH02299295 A JP H02299295A JP 1120686 A JP1120686 A JP 1120686A JP 12068689 A JP12068689 A JP 12068689A JP H02299295 A JPH02299295 A JP H02299295A
Authority
JP
Japan
Prior art keywords
layer
superconducting
substrate
shield plate
magnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1120686A
Other languages
Japanese (ja)
Inventor
Keiichiro Watanabe
敬一郎 渡邊
Hitoshi Yoshida
均 吉田
Hitoshi Sakai
均 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1120686A priority Critical patent/JPH02299295A/en
Priority to EP90303984A priority patent/EP0393932B1/en
Priority to DE69018303T priority patent/DE69018303T2/en
Priority to CA002014716A priority patent/CA2014716C/en
Publication of JPH02299295A publication Critical patent/JPH02299295A/en
Priority to US07/800,731 priority patent/US5202305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive magnetic shield plate which is able to shield an object from intensive magnetism by a method wherein the magnetic shield plate is formed into a two-layered structure composed of a superconductive layer and a board which supports the superconductive layer. CONSTITUTION:A superconductive magnetic shield plate of this design is composed of a board and a superconductive layer, and it is desirable that a protective layer provided outside the superconductive layer and moreover an intermediate layer provided between the board and the superconductive layer are added. In this case, it is desirable that the materials of the board and the superconductive layer are so selected as to make the thermal expansion coefficient of the board nearly identical to that of the superconductive layer, the superconductive layer is not required to be defined in kind, and any kind of a board which has a prescribed thermal expansion coefficient can be used for this purpose, and the board can be formed of various kinds of material such as metal material, ceramic material, and glass material. By this setup, a superconductive magnetic shield plate, which has such a shielding capacity that it can shields an object from an intensive magnetic field, can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導磁気シールド板に係り、更に詳しくは、
リニアモーター等の強磁気を遮蔽するために好適に使用
することができる超電導磁気シールド板に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superconducting magnetic shield plate, and more specifically,
The present invention relates to a superconducting magnetic shield plate that can be suitably used to shield strong magnetism from linear motors and the like.

[従来の技術] 近年、超電導特性を有する超電導材料で作製された超電
導マグネットを用い、核磁気共鳴コンピューター断層診
断装置(M RI :Magnetic Re5ona
ncc !waging ) 、磁気浮上列車などが実
用化されつつある。また、将来的にも核融合などの新エ
ネルギー開発、MHD発電などの新しいエネルギー変換
技術にも超電導マグネットの強磁界の適用が検討されて
いる。
[Prior Art] In recent years, nuclear magnetic resonance computed tomography diagnostic equipment (MRI) has been developed using superconducting magnets made of superconducting materials with superconducting properties.
ncc! (waging), magnetic levitation trains, etc. are being put into practical use. Furthermore, in the future, the application of the strong magnetic field of superconducting magnets is being considered for new energy development such as nuclear fusion and new energy conversion technologies such as MHD power generation.

このようにMRI診断装置などの超電導マグネットを用
いた装置が利用された場合には、それに伴ない、これら
の装置から漏れ磁界が生じ、外部に悪影響をもたらすこ
とがあり、問題となっている。
When devices using superconducting magnets, such as MRI diagnostic devices, are used in this way, a leakage magnetic field is generated from these devices, which may have an adverse effect on the outside, which poses a problem.

そこで、上記のような問題を解決するため、磁気源から
の磁気を遮蔽するための磁気シールド材料が要請されて
いる。
Therefore, in order to solve the above-mentioned problems, a magnetic shielding material for shielding magnetism from a magnetic source is required.

[発明か解決しようとする課題] 従来、磁気シールド材料として、高透磁率、低保磁力を
有する軟質の磁性材料が利用されていたか、大きな磁界
を遮蔽する場合にはシールド能力が低すぎ、漏れ磁界を
生ずる恐れがあった。このため、シールド材料の体積を
大きくし、シールド効果を高めることは可teであるが
、シールド材料の重量が増加することが避けられない、
という問題かある。
[Problem to be solved by the invention] Conventionally, soft magnetic materials with high magnetic permeability and low coercive force have been used as magnetic shielding materials, or when shielding a large magnetic field, the shielding ability is too low and leakage occurs. There was a risk of generating a magnetic field. For this reason, although it is possible to increase the volume of the shielding material and increase the shielding effect, it is inevitable that the weight of the shielding material will increase.
There is a problem.

[課題を解決するための手段] そこで、本発明者は上記従来の磁気シールド材料の問題
を解決するため鋭意検討を行なった結果、超電導層と基
板とを少なくとも有する二層構造から成る磁気シールド
板か有効であることを見出し、本発明に到達した。
[Means for Solving the Problems] Therefore, as a result of intensive studies to solve the problems of the conventional magnetic shielding materials described above, the present inventors have developed a magnetic shielding plate having a two-layer structure having at least a superconducting layer and a substrate. The inventors have discovered that this method is effective, and have arrived at the present invention.

即ち、本発明によれば、超電導層、基板を少なくとも有
する二層構造からなることを特徴とする超電導磁気シー
ルド板、が提供される。
That is, according to the present invention, there is provided a superconducting magnetic shield plate characterized by having a two-layer structure including at least a superconducting layer and a substrate.

また、本発明において、上記二層構造の超電導磁気シー
ルド板において、超電導層と基板の間に中間層を設けて
三層構造とすると、中間層を設けない場合に比し、超電
導特性である臨界電流密度が向上し、好ましい。
In addition, in the present invention, in the superconducting magnetic shield plate having a two-layer structure, if an intermediate layer is provided between the superconducting layer and the substrate to form a three-layer structure, the criticality, which is a superconducting property, This is preferable because the current density is improved.

さらに、上記二層または三層構造の超電導磁気シールI
・板の超電導層の外側にこの超電導層を保護するための
保護層を設けた三層構造又は四層構造の超電導磁気シー
ルド板とすることは、耐熱衝撃性か向上することから好
ましい。
Furthermore, the above two-layer or three-layer structure superconducting magnetic seal I
- It is preferable to use a superconducting magnetic shield plate with a three-layer structure or a four-layer structure in which a protective layer for protecting the superconducting layer is provided on the outside of the superconducting layer of the plate, since thermal shock resistance is improved.

[作用] 本、発明は漏れ磁気や地磁気などの磁気源からの磁気を
適切に遮蔽するための、ta電導磁気シールド板で、超
電導特性を有する超電導層とそれを支持する基板の二層
構造により基本的に構成されているものである。
[Function] The present invention is a ta conductive magnetic shield plate for appropriately shielding magnetism from magnetic sources such as leakage magnetism and terrestrial magnetism, and has a two-layer structure of a superconducting layer having superconducting properties and a substrate supporting it. It basically consists of:

また、超電導特性あるいは耐熱衝撃性の向上の観点から
、中間層または保護層を有する三層構造、保護層および
中間層を有する四層構造とすることも、好ましいもので
ある。
Further, from the viewpoint of improving superconducting properties or thermal shock resistance, it is also preferable to have a three-layer structure having an intermediate layer or a protective layer, or a four-layer structure having a protective layer and an intermediate layer.

本発明の超電導磁気シー・ベルト板において、基板の熱
膨張係数か超電導層の熱膨張係数と略同等となるように
、基板および超電導層の材質を選択することか好ましい
。同様に、中間層または保護層を有する三層構造の場合
も、中間層及び基板の熱膨張係数か超電導層の熱膨張係
数と略同等となるように、基板、中間層および超電導層
の材質を選択し、さらに保護層および中間層を有する四
層構造の場合には、中間層及び基板の熱膨張係数か、超
電導層の熱膨張係数と略同等となるように、基板、中間
層および超電導層の材質を選択するととか好ましい。
In the superconducting magnetic Sea Belt plate of the present invention, it is preferable to select materials for the substrate and the superconducting layer so that the coefficient of thermal expansion of the substrate is approximately equal to that of the superconducting layer. Similarly, in the case of a three-layer structure with an intermediate layer or a protective layer, the materials of the substrate, intermediate layer, and superconducting layer are selected so that the coefficient of thermal expansion of the intermediate layer and substrate is approximately equal to that of the superconducting layer. In the case of a four-layer structure having a protective layer and an intermediate layer, the substrate, intermediate layer, and superconducting layer are selected so that the thermal expansion coefficient of the intermediate layer and the substrate is approximately equal to that of the superconducting layer. It is preferable to select the material of

このように用いる基板および各層の熱膨張係数を上記し
た所定の関係に保持することが好ましいか、ここで、超
電導層の熱膨張係数と略同等とは、具体的には超電導層
の811張係数の値に対し。
It is preferable to maintain the thermal expansion coefficients of the substrate and each layer used in this way in the predetermined relationship described above.Here, approximately equivalent to the thermal expansion coefficient of the superconducting layer means, specifically, the 811 tensile coefficient of the superconducting layer. for the value of.

約±5xlO−6/”Cの範囲を云うものである。This refers to a range of approximately ±5xlO-6/''C.

本発明て用いる超電導層としては特にその種類を限定す
るものではなく、例えばB1−5r−Ca−Cu−0系
、あるいはY−Ba−Cu−0系などが挙げられ、B1
−5r−Ca−Cu−0系の場合にはBi25r2Ca
Cu2Onの組成の結晶相を有するもの、Y−Ba−C
u−0系の場合にはYBa。
The type of superconducting layer used in the present invention is not particularly limited, and examples thereof include B1-5r-Ca-Cu-0 system, Y-Ba-Cu-0 system, etc.
-5r-Ca-Cu-0 system, Bi25r2Ca
Those having a crystal phase with a composition of Cu2On, Y-Ba-C
YBa for u-0 series.

Cu:IO,イの!1JJk、の結晶相を右するものが
用いられる。
Cu:IO, Ino! The crystal phase of 1JJk is used.

また、超電導層の厚さは、余り薄すぎると超電導電流か
小さくなって磁気シールド能が低くなり、厚くなりすぎ
ると基板との密着性が悪化する。
Moreover, if the thickness of the superconducting layer is too thin, the superconducting current will be small and the magnetic shielding ability will be low, and if it is too thick, the adhesion with the substrate will deteriorate.

超電導層の厚さとしては、具体的には約0.2m層〜2
■程度か適当と考えられる。
Specifically, the thickness of the superconducting layer is approximately 0.2 m layer to 2 m
■It is considered to be moderate.

基板としては5前記のように所定の熱膨張係数を有する
ものであればよく 金属材料、セラミックス材料あるい
はガラス材料など各種の材料をSイ1いることかできる
。具体的には、金属材料としでは例えば、鉄、チタン、
ベリリウム、二・シケル、ステンレス鋼等を挙げること
ができる。また、セラミックス材料としては1例えばス
ピネル、アJIjミナ、イツトリア2 ジルコニア(部
分安定化ジルコニア及び安定化ジルコニア)、マグネシ
アτ、ガラス材料とし・ては、例えば各種の結糸化:f
 ’2ズ等を挙げることかできるゆ a電導層を保護するための保護層としては、耐熱衝撃性
(あるいは耐寒性)に優れた材料であわばよく、金属材
料、セラミック・ス材料、ガラス材料あるいは有機材料
などの各種の材料を用いることができる。
The substrate may be any material as long as it has a predetermined coefficient of thermal expansion as described above.Various materials such as metal materials, ceramic materials, or glass materials can be used. Specifically, metal materials such as iron, titanium,
Examples include beryllium, di-Sikel, and stainless steel. In addition, ceramic materials such as spinel, ajimina, zirconia (partially stabilized zirconia and stabilized zirconia), and magnesia τ, and glass materials such as various types of tying: f
As a protective layer for protecting the conductive layer, any material with excellent thermal shock resistance (or cold resistance) may be used, including metal materials, ceramic materials, and glass materials. Alternatively, various materials such as organic materials can be used.

次に、三層または四層構造とした場合におい゛て、基板
と超電導層の間に設ける中間層としCは、金属材料、セ
ラミックス材料あるいはガラス材料など各種の材料を用
いることかできる4具体的には、金属材料としては例え
ば、白金、ニッケル°、Vを挙げることができる。また
、セラミックス材料としては、例えばジルコニア等、ガ
ラス材料としては、例えば各種の結晶化ガラス等を挙げ
ることかできる。
Next, in the case of a three-layer or four-layer structure, the intermediate layer C provided between the substrate and the superconducting layer can be made of various materials such as metal materials, ceramic materials, or glass materials. Examples of the metal material include platinum, nickel, and V. Examples of the ceramic material include zirconia, and examples of the glass material include various crystallized glasses.

この中間層は、超電導層との反応性がないことか好まし
く、超電導層との反応性がある中間層を用いる場合には
二層構造とし、反応性がある中間層を基板側、反応性の
ない中間層を超電導層側とする。
This intermediate layer preferably has no reactivity with the superconducting layer. If an intermediate layer that is reactive with the superconducting layer is used, it has a two-layer structure, with the reactive intermediate layer facing the substrate and the reactive intermediate layer facing the substrate. The intermediate layer that is not included is considered to be the superconducting layer side.

超電導層と基板を直接密着させることが難かしい場合に
、基板及び超電導層の両方に密着性の良好な中間層を選
定することにより、より高性能の磁気シールド板を作製
することかできる。
When it is difficult to directly adhere the superconducting layer and the substrate, a magnetic shielding plate with higher performance can be produced by selecting an intermediate layer with good adhesion to both the substrate and the superconducting layer.

本発明は、上記のような基板、超電導層、好ましくはa
S導層の外側に設ける保護層、更に好ましくは基板と超
電導層間に設ける中間層とから構成されるものであり、
平板状に形成した磁気シールド板である。
The present invention provides a substrate as described above, a superconducting layer, preferably a
It is composed of a protective layer provided outside the S conductive layer, and more preferably an intermediate layer provided between the substrate and the superconducting layer,
This is a magnetic shield plate formed into a flat plate.

このような構造の磁気シールド板では、その面積は、大
面積の磁気シールドパネルを組合せる時の継ぎ目からの
磁気の漏れを小さくするために、磁気シールド板の周の
延べ長さL (cm)と面積S(am”)の比L/Sが
0.4cm−”未満となることか望ましい。
In a magnetic shielding plate having such a structure, its area is determined by the total length L (cm) of the circumference of the magnetic shielding plate in order to reduce magnetic leakage from the joints when combining large-area magnetic shielding panels. It is desirable that the ratio L/S of and area S (am") be less than 0.4 cm-".

さらにその形状は、大面積の磁気シールドパネルを組合
せる時に隙間を生じることなしに大面積化が可能な、正
六角形または正方形の形状が好ましい。特に、正六角形
や正方形は同一面積で比較した場合のL/S値も小さく
、磁気漏れを小さくできる。
Further, the shape is preferably a regular hexagon or a square, which allows the area to be increased without creating a gap when large-area magnetic shield panels are combined. In particular, regular hexagons and squares have a small L/S value when compared with the same area, and can reduce magnetic leakage.

なお、本発明の磁気シールド板は、その端部において、
超電導層は基板の端部まで全体に被覆することなく、基
板端部より超電導層の端部が約1−−以上短くして、基
板の面積が超電導層の面積より大きくなるように被覆す
ると、超電導層端部の剥離およびクラックの生成が抑制
され、望ましい。
In addition, the magnetic shield plate of the present invention has, at its end,
If the superconducting layer does not cover the entire substrate up to the edge, but the edge of the superconducting layer is made shorter than the edge of the substrate by about 1- or more, and the area of the substrate is larger than the area of the superconducting layer, This is desirable because peeling off and crack formation at the ends of the superconducting layer are suppressed.

次に1本発明の磁気シールド板の製造方法の例を説明す
る。
Next, an example of a method for manufacturing a magnetic shield plate according to the present invention will be explained.

正六角形または正方形の基板の表面上に、結晶相の主成
分かa電導特性を有する、例えばB1−5r−Ca−C
u −0系からなる超電導層をスプレー法によって塗布
した後乾燥する。次いで、基板の種類あるいは各層の種
類によりそれぞれ異なる焼成条件により7例えば約85
0”C〜950 ’Cの範囲の温度で約0.5〜20時
間程度焼成することにより、未発用の磁気シールド板が
製造される。
On the surface of a regular hexagonal or square substrate, the main component of the crystalline phase has a conductive property, for example, B1-5r-Ca-C.
A superconducting layer made of a u-0 system is applied by a spray method and then dried. Next, the firing conditions are different depending on the type of substrate or the type of each layer.
By firing at a temperature in the range of 0''C to 950'C for about 0.5 to 20 hours, a magnetic shield plate for unexploded use is manufactured.

なお、以りに説明した本発明の好ましい態様をまとめて
示せば、次の通りである。
The preferred embodiments of the present invention described above are summarized as follows.

(a)超電導層と基板の間に中間層を設けた超電導磁気
シー・−ルド板6 (h)超電導層の外側の磁気源側に該超電導層を保護す
る保護層を設けたH1電導磁気シールド板。
(a) Superconducting magnetic shield plate 6 with an intermediate layer provided between the superconducting layer and the substrate (h) H1 conducting magnetic shield with a protective layer provided on the magnetic source side outside the superconducting layer to protect the superconducting layer Board.

(c )超電導層の外側の磁気源側に該超電導層を保護
する保護層を設け、辻つB主導層と基板の間に中間層を
設はフ、:超奄導磁気う・−ルド板。
(c) A protective layer for protecting the superconducting layer is provided on the magnetic source side outside the superconducting layer, and an intermediate layer is provided between the leading layer B and the substrate. .

(セ1)基板の悲)彫張係数か超電導層の8WI張係数
と略同1の超電導磁気シールド板。
(Se1) A superconducting magnetic shield plate whose engraving coefficient is approximately the same as the 8WI tensile coefficient of the superconducting layer.

(c)中間層及び基板の熱膨張係数か、超電導層の熱(
7張4る−と略同′Vの超電導磁気シールド板。
(c) The thermal expansion coefficient of the intermediate layer and the substrate, or the heat of the superconducting layer (
A superconducting magnetic shield plate with approximately the same V as 7-4.

(f) 、!!板の面積かMi電導層の面積よりも大き
い超電導磁気シールド板。
(f) ,! ! A superconducting magnetic shield plate whose area is larger than the area of the plate or the area of the Mi conductive layer.

(g) a電導層の周の延べ長さL (c+s)と面I
Is(0m2)の比L/Sが0.4cm−”未満である
超電導磁気シールド板。
(g) Total circumferential length L (c+s) of conductive layer a and surface I
A superconducting magnetic shield plate having a ratio L/S of Is (0 m2) of less than 0.4 cm-''.

[実施例] (実施例1〜6及び比較例1〜4) −辺の長さが1201で厚さが1mmの正方形の各種金
属板の表面に結晶相の主成分が1li2sr2cacu
*011−Yの粉末をスプレー法にて乾燥後の厚さが約
0.1〜4 taysで、−辺の長さが100〜120
mmになるよう基板端部より0〜1(is園短くして塗
布し、乾燥後温度900℃で0.5時間の焼成条件で焼
成して、金属基板上に結晶相の主成分かBi、5r2C
aCu、0.−。
[Example] (Examples 1 to 6 and Comparative Examples 1 to 4) - The main component of the crystal phase is 1li2sr2cacu on the surface of various square metal plates with side lengths of 1201 and thickness of 1 mm.
*After drying the powder of 011-Y by spraying, the thickness is about 0.1 to 4 tays, and the length of the - side is 100 to 120.
The main component of the crystalline phase, Bi, is coated on the metal substrate by 0 to 1 mm shorter than the edge of the substrate, and after drying, it is fired at a temperature of 900°C for 0.5 hours. 5r2C
aCu, 0. −.

の超電導セラミックス層が形成された金属板を得た。A metal plate on which a superconducting ceramic layer was formed was obtained.

基板金属は熱度・警係数が4.7 Xl0−’/’Cの
コパールから19.7X 10−’/’Cの銅までの各
種材料とした。
The substrate metals were various materials ranging from copper with a thermal coefficient of 4.7Xl0-'/'C to copper with a thermal coefficient of 19.7X10-'/'C.

その結果、表1に示r様に、゛熱膨張係数か4.7xl
o−6/’Cのコバールでは剥離か生じ、8,9X10
−6X℃のチタンから13.3X 10−’/’Cのニ
ッケルでは基板と良好な密着状態が達成され18.7 
x 10−’/’Cの5US304ステンレスと19.
7x 10−6/’Cの銅では、再び剥離か生じた。
As a result, as shown in Table 1, the coefficient of thermal expansion was 4.7xl.
Peeling occurred in o-6/'C Kovar, 8,9X10
Good adhesion with the substrate was achieved with titanium at -6X°C and nickel at 13.3X 10-'/'C.
x 10-'/'C 5US304 stainless steel and 19.
With copper at 7x 10-6/'C, delamination occurred again.

又、超電導セラミックス層の良好な密着状態が達成され
た金属板では、表1に示す通り、5ガウス以上の磁気シ
ールド能を有することが確認された。
Further, as shown in Table 1, it was confirmed that the metal plate in which the superconducting ceramic layer had a good adhesion state had a magnetic shielding ability of 5 Gauss or more.

更に、シールド板の端部において、基板端部から超電導
層端部までの距離を1ms+未満にすると、セラミック
ス層か基板から剥離することが確認された。
Furthermore, it was confirmed that at the end of the shield plate, if the distance from the end of the substrate to the end of the superconducting layer was less than 1 ms+, the ceramic layer would peel off from the substrate.

(以下、余白) (実施例7〜11及び比較例5〜6) −辺の長さか120 i++sて厚さか5I1mの正方
形の各種セラミック板の表面に結晶相の主成分がYBa
2C11107−Yの粉末をスプレー法にて乾燥後の厚
さか約1mmで、−辺の長さか110■になるよう基板
端部より51−短くして塗布し、乾燥後温度950℃で
10時間の焼成条件で焼成して、セラミック基板上に結
晶相の主成分がYBa2Cu:507−yの超′尼導セ
ラミックス層か形成されたセラミック板を得た。
(Hereinafter, blank spaces) (Examples 7 to 11 and Comparative Examples 5 to 6) - The main component of the crystal phase was YBa on the surface of various square ceramic plates with a side length of 120 i++s and a thickness of 5 I 1 m.
Powder of 2C11107-Y was applied by spraying to a thickness of about 1 mm after drying, with the side length 51 mm shorter than the edge of the substrate, and then dried at a temperature of 950°C for 10 hours. By firing under the firing conditions, a ceramic plate was obtained in which a superconducting ceramic layer having a main crystalline phase of YBa2Cu:507-y was formed on a ceramic substrate.

基板セラミックは熱膨張係数か4.2 x 10−’/
”Cのジルコンからl:1.5x 10−’/ ’Cの
マクネシアまでの各種材料とした。
The coefficient of thermal expansion of the ceramic substrate is 4.2 x 10-'/
Various materials were used, ranging from zircon with a value of 1.5 x 10-'/'C to manesia with a value of 1.5 x 10-'/'C.

その結果、表2に示す様に、熱膨張係数か4.2×lO
″6/℃のジルコンでは剥離が生じ8.8X to−’
/’Cのアルミナから13.5X 10−6/’Cノ”
?’グネー1/7では基板と良好な密着状態が達成され
、所定以上の磁気シールド能を有することが確認された
As a result, as shown in Table 2, the thermal expansion coefficient was 4.2×lO
``6/℃ zircon causes peeling 8.8X to-'
/'C alumina to 13.5X 10-6/'C'
? It was confirmed that 'Gune 1/7 achieved good adhesion with the substrate and had a magnetic shielding ability exceeding a predetermined level.

(実施例12〜14) −・辺の長さか120 mmで厚さか5■の正方形の各
種ガラス板の表面に結晶層の主成分か旧。Sr、CaC
u20o−yの粉末をスプレー法にて乾燥後の厚さが約
f■で、−辺の長さか110園鳳になるよう基板端部よ
り5■短くして塗布し、乾燥後900℃で0.5時間の
焼成条件で焼成して、ガラス基板上に結晶相の主成分か
Bi25r2CaCu20.イの超電導セラミックスの
層が形成されたガラス板を得た。
(Examples 12 to 14) - The main component of a crystal layer was formed on the surface of various square glass plates with a side length of 120 mm and a thickness of 5 cm. Sr, CaC
Apply U20O-Y powder by spraying to a thickness of approximately f■ after drying, 5cm shorter than the edge of the substrate so that the length of the - side is 110cm, and after drying, apply at 900℃ to 0. After firing under the firing conditions for .5 hours, the main component of the crystal phase, Bi25r2CaCu20. A glass plate on which a superconducting ceramic layer was formed was obtained.

基板ガラスは熱膨張係数が13.5X 10−’/”C
から17.5x 10−’/’Cの結晶化ガラスとした
The thermal expansion coefficient of the substrate glass is 13.5X 10-'/”C
It was made into a crystallized glass of 17.5x 10-'/'C.

その結果、表3に示す様に、すべてのガラスで、tfl
電導セラミックス層と良好な密着状態が達成され、また
5ガウス以上の磁気シールド能を有することか確認され
た。
As a result, as shown in Table 3, tfl
It was confirmed that good adhesion with the conductive ceramic layer was achieved and that it had a magnetic shielding ability of 5 Gauss or more.

(以下、余白) (実施例15〜1B) 実施例1て作成した超電導セラミ・ンクス層を形成した
金属板に於いて、更に超電導セラミ・ンクス層の表面に
保護層を設けて、液体窒素中に役−tしたときの耐熱衝
撃性を評価した。
(Hereinafter, blank spaces) (Examples 15 to 1B) In the metal plate on which the superconducting ceramic layer formed in Example 1 was formed, a protective layer was further provided on the surface of the superconducting ceramic layer, and the metal plate was placed in liquid nitrogen. Thermal shock resistance was evaluated when exposed to heat.

保護層としては、アルミニウム金属と耐寒性の合成樹脂
を選定した。
For the protective layer, we selected aluminum metal and cold-resistant synthetic resin.

その結果、表4に示す様に、どちらの保lI層も液体窒
素中への投下試験ではセラミ・ンクスの耐熱衝撃性に比
較して良好な効果を示した。
As a result, as shown in Table 4, both of the lI layers exhibited better thermal shock resistance than Ceraminx in the drop test into liquid nitrogen.

(以下、余白) 表4 (実施例19〜23) 一辺の長さか120 amで厚さか1mmの正方形の各
種金属板の表面に、中間層としてカルシア安定化ジルコ
ニア、白金、ニッケル及びI!gO・B20ユ・Sin
(The following is a margin) Table 4 (Examples 19 to 23) Calcia-stabilized zirconia, platinum, nickel and I! gO・B20 Yu・Sin
.

ガラスを約200 gm形成し、更にその中間層の上に
超電導セラミックスとして結晶相の主成分が旧2Sr2
CaCu206−yの粉末をスプレー法にて乾燥後の厚
さか約1腸層で、−辺の長さが110m5になるよう基
板端部より5層−短くして塗布し、乾燥後900°Cで
0.5時間の焼成条件で焼成して、金属基板上に結晶相
の主成分がBi25r2CaCu20a−yの超電導セ
ラミックス層が形成された金属板を得た。
Approximately 200 g of glass is formed, and superconducting ceramic is formed on the intermediate layer, the main component of the crystal phase being old 2Sr2.
CaCu206-y powder was applied by spraying to a thickness of about 1 layer after drying, 5 layers shorter than the edge of the substrate so that the side length was 110 m5, and after drying it was heated at 900°C. Firing was performed under the firing conditions for 0.5 hours to obtain a metal plate in which a superconducting ceramic layer having a crystalline phase as a main component of Bi25r2CaCu20a-y was formed on the metal substrate.

基板金属はチタン及びニッケルとした。The substrate metals were titanium and nickel.

その結果、表5に示す様に、どの中間層についても良好
な密着状態が達成され、さらに液体窒素中ての超電導特
性である臨界電流密度が中間層のない実施例1の場合に
比較して向上した。
As a result, as shown in Table 5, good adhesion was achieved for all intermediate layers, and the critical current density, which is a characteristic of superconductivity in liquid nitrogen, was lower than that of Example 1 without an intermediate layer. Improved.

(実施例23〜27) 実施例19〜22で作成した超電導セラミックス層を形
成した金属板に於いて、更に超電導セラミックス層の表
面に保護層を設けて、液体窒素中に投下したときの耐熱
衝撃性を評価した。
(Examples 23 to 27) In the metal plates on which the superconducting ceramic layers prepared in Examples 19 to 22 were formed, a protective layer was further provided on the surface of the superconducting ceramic layer, and the thermal shock resistance when dropped into liquid nitrogen. The gender was evaluated.

保護層としては、アルミニウム金属、耐寒性の合成樹脂
を選定した。
For the protective layer, aluminum metal and cold-resistant synthetic resin were selected.

その結果、表6に示す様に、どちらの保護層も液体窒素
中への投下試験で、保護層のない場合に比べて良好な耐
熱衝撃性を示した。
As a result, as shown in Table 6, both protective layers exhibited better thermal shock resistance than the case without the protective layer in the drop test into liquid nitrogen.

(以下、余白) (実施例28〜34、比較例7) 肉厚1m−〜5amの正方形または正六角形で各種火き
さを有する各種材料からなる基材の表面上に超電導セラ
ミックス層を形成して単位磁気シール1−板とし、その
単位磁気シールド板を組合せて、−辺の長さか1−膳の
正方形の磁気シールドパネルを作成し、その磁気シール
ド効果を確認した。
(Hereinafter, blank spaces) (Examples 28 to 34, Comparative Example 7) A superconducting ceramic layer was formed on the surface of a square or regular hexagonal base material with a wall thickness of 1 m to 5 am and made of various materials having various scoribilities. The unit magnetic shield plates were combined to form a square magnetic shield panel with a side length of -1 or 1, and its magnetic shielding effect was confirmed.

その結果、表7に示すように、磁気シールド板の周の延
べ長さL (c寵)と面1s(c鵬2)の比L/Sか0
.4cm−’未満の場合に、印加磁場か1/10以下に
低減され、充分な磁気シールド能を有することか確認さ
れた。
As a result, as shown in Table 7, the ratio L/S of the total circumferential length L (c) of the magnetic shield plate to the surface 1s (cpeng 2) is 0.
.. When it was less than 4 cm-', the applied magnetic field was reduced to 1/10 or less, and it was confirmed that the magnetic field had sufficient magnetic shielding ability.

(以下、余白) 磁気シールド板の周の延べ長さL (cm)と面積S(
am2)の比L/Sと磁場比の関係をグラフに示すと、
第1図の如くとなり、L/Sが0.4cm−’未満の場
合に印加磁場が1710以下に低減され、充分な磁気シ
ールド能を有することがわかる。
(Hereafter, blank space) Total length L (cm) of the circumference of the magnetic shield plate and area S (
When the relationship between the ratio L/S of am2) and the magnetic field ratio is shown in a graph,
As shown in FIG. 1, it can be seen that when L/S is less than 0.4 cm-', the applied magnetic field is reduced to 1710 or less, and there is sufficient magnetic shielding ability.

[発明の効果] 以上説明した通り、本発明の超電導磁気シールド板にお
いては、目的とする磁気源からの磁気を適切に遮蔽する
ことができるほか、機械的な強度か向上して耐久性に優
れ、堆扱いが容易となる。
[Effects of the Invention] As explained above, the superconducting magnetic shield plate of the present invention not only can appropriately shield the magnetism from the intended magnetic source, but also has improved mechanical strength and excellent durability. , making it easier to handle the compost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気シールド板の周の延べ長さL(cm)と面
積S (cm”)の比L/Sと磁場比の関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between the ratio L/S of the circumferential length L (cm) and the area S (cm'') of the magnetic shield plate and the magnetic field ratio.

Claims (1)

【特許請求の範囲】[Claims] (1)超電導層、基板を少なくとも有する二層構造から
なることを特徴とする超電導磁気シールド板。
(1) A superconducting magnetic shield plate characterized by having a two-layer structure including at least a superconducting layer and a substrate.
JP1120686A 1989-04-17 1989-05-15 Superconductive magnetic shield plate Pending JPH02299295A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1120686A JPH02299295A (en) 1989-05-15 1989-05-15 Superconductive magnetic shield plate
EP90303984A EP0393932B1 (en) 1989-04-17 1990-04-12 Superconducting structure for magnetic shielding
DE69018303T DE69018303T2 (en) 1989-04-17 1990-04-12 Superconducting structure for magnetic shielding.
CA002014716A CA2014716C (en) 1989-04-17 1990-04-17 Superconducting structure for magnetic shielding
US07/800,731 US5202305A (en) 1989-04-17 1991-12-03 Superconducting structure for magnetic shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120686A JPH02299295A (en) 1989-05-15 1989-05-15 Superconductive magnetic shield plate

Publications (1)

Publication Number Publication Date
JPH02299295A true JPH02299295A (en) 1990-12-11

Family

ID=14792445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120686A Pending JPH02299295A (en) 1989-04-17 1989-05-15 Superconductive magnetic shield plate

Country Status (1)

Country Link
JP (1) JPH02299295A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629278A (en) * 1985-07-05 1987-01-17 Shimadzu Corp Super conductive shielding body
JPS63233577A (en) * 1987-03-23 1988-09-29 Osaka Pref Gov Superconducting magnetic shielding body
JPS63248184A (en) * 1987-04-02 1988-10-14 Sumitomo Electric Ind Ltd Electromagnetic-wave shielding material
JPS63258098A (en) * 1987-04-15 1988-10-25 Fujikura Ltd Superconducting electromagnetic shield
JPS63318800A (en) * 1987-06-23 1988-12-27 Asahi Chem Ind Co Ltd Magnetic field shielding material
JPS6460913A (en) * 1987-09-01 1989-03-08 Furukawa Electric Co Ltd Ceramic superconductive base board
JPS6481116A (en) * 1987-09-21 1989-03-27 Fujikura Ltd Superconductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629278A (en) * 1985-07-05 1987-01-17 Shimadzu Corp Super conductive shielding body
JPS63233577A (en) * 1987-03-23 1988-09-29 Osaka Pref Gov Superconducting magnetic shielding body
JPS63248184A (en) * 1987-04-02 1988-10-14 Sumitomo Electric Ind Ltd Electromagnetic-wave shielding material
JPS63258098A (en) * 1987-04-15 1988-10-25 Fujikura Ltd Superconducting electromagnetic shield
JPS63318800A (en) * 1987-06-23 1988-12-27 Asahi Chem Ind Co Ltd Magnetic field shielding material
JPS6460913A (en) * 1987-09-01 1989-03-08 Furukawa Electric Co Ltd Ceramic superconductive base board
JPS6481116A (en) * 1987-09-21 1989-03-27 Fujikura Ltd Superconductor

Similar Documents

Publication Publication Date Title
Bruzzone et al. High temperature superconductors for fusion magnets
Matsushita et al. Innovative superconducting force-free cable concept
EP0631331B1 (en) Method of preparing high-temperature superconducting wire
Feng et al. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor
US5202305A (en) Superconducting structure for magnetic shielding
EP0490594A2 (en) Superconductive device for shielding of magnetic field and manufacturing method therefor
WO2014051823A2 (en) Multi-filament superconducting composites
JPH02299295A (en) Superconductive magnetic shield plate
EP0488790B1 (en) Superconductive tube for magnetic shielding and manufacturing method therefor
JPS63313897A (en) Magnetic shielding body
JPH02275395A (en) Superconducting magnetic shield tube
JP3121946B2 (en) Oxide superconducting magnetic shielding structure
JP2013186966A (en) Oxide superconducting wire and manufacturing method therefor
JPH02275394A (en) Superconducting magnetic shield tube
JPH011209A (en) superconductor magnet
JP2604665B2 (en) Superconducting magnetic shield container and method of manufacturing the same
JPS63258098A (en) Superconducting electromagnetic shield
EP0426136B1 (en) Superconducting ceramic structure
Shimoyama Superconducting joints for the 1.3 GHz persistent NMR magnet under JST-Mirai Program
JPH02114600A (en) Magnetic shield assembly
JP2525855B2 (en) Superconducting material
JPH0740493A (en) Manufacture of ceramic superconducting laminate
JPH02114598A (en) Magnetic shielding sheet
JPS63259979A (en) Connection structure between oxide superconductor and normal conductor
JPH01151298A (en) Superconducting electromagnetic shield body