JPH02275395A - Superconducting magnetic shield tube - Google Patents

Superconducting magnetic shield tube

Info

Publication number
JPH02275395A
JPH02275395A JP1097197A JP9719789A JPH02275395A JP H02275395 A JPH02275395 A JP H02275395A JP 1097197 A JP1097197 A JP 1097197A JP 9719789 A JP9719789 A JP 9719789A JP H02275395 A JPH02275395 A JP H02275395A
Authority
JP
Japan
Prior art keywords
layer
superconducting
substrate
superconducting layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1097197A
Other languages
Japanese (ja)
Other versions
JP2512142B2 (en
Inventor
Keiichiro Watanabe
敬一郎 渡邊
Hitoshi Yoshida
均 吉田
Hitoshi Sakai
均 酒井
Shuichiro Oki
沖 修一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1097197A priority Critical patent/JP2512142B2/en
Priority to EP90303984A priority patent/EP0393932B1/en
Priority to DE69018303T priority patent/DE69018303T2/en
Priority to CA002014716A priority patent/CA2014716C/en
Publication of JPH02275395A publication Critical patent/JPH02275395A/en
Priority to US07/800,731 priority patent/US5202305A/en
Application granted granted Critical
Publication of JP2512142B2 publication Critical patent/JP2512142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Measuring Magnetic Variables (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To cut off magnetism from a magnetic source appropriately by forming a cylindrical tube of a double-layer structure having a substrate and a superconducting layer at least from the magnetic source side, with said superconducting layer provided outside, for the magnetic source to be shielded. CONSTITUTION:A superconducting shield tube is formed by selecting materials of a substrate and a superconducting layer so that the thermal expansion coefficient of the substrate is equal substantially to that of the superconducting layer and by providing the superconducting layer inside. The substrate needs only to have a prescribed thermal expansion coefficient and various materials such as a metal material, a ceramic material or a glass material can be used therefor. As for a protective layer for protecting the superconducting layer, a material therefor needs only to be excellent in resistance to shock (or resistance to cold) and various materials such as the metal material, the ceramic material, the glass material or an organic material can be used.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は超電導磁気シールド筒に係り、更に詳しくは、
地磁気の如き微小磁気やリニアモーター等の強磁気を遮
蔽するために好適に使用することかできる超電導磁気シ
ールド筒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superconducting magnetic shield tube, and more specifically,
The present invention relates to a superconducting magnetic shield tube that can be suitably used to shield minute magnetism such as earth's magnetism and strong magnetism such as that of a linear motor.

[従来の技術] 近年、超電導特性を有する超電導材料で作製された超電
導マクネットを用い、核磁気共鳴コンピューター断層診
断装設(M RI :Magnetic Re5ona
nce Imaging ) 、磁気浮上列車などが実
用化されつつある。また、将来的にも核融合などの新エ
ネルギー開発、MHD発電などの新しいエネルギー変換
技術にも超電導マグネットの強磁界の適用が検討されて
いる。
[Prior Art] In recent years, nuclear magnetic resonance computed tomography diagnostic equipment (MRI) has been developed using a superconducting macnet made of a superconducting material having superconducting properties.
nce imaging), magnetic levitation trains, etc. are being put into practical use. Furthermore, in the future, the application of the strong magnetic field of superconducting magnets is being considered for new energy development such as nuclear fusion and new energy conversion technologies such as MHD power generation.

このようにMRI診断装置などの超電導マクネットを用
いた装置が利用された場合には、それに伴ない、これら
の装置から漏れ磁界が生し、外部に悪影響をもたらすこ
とかあり、問題となっている。一方、脳磁波(α波)等
の微小磁気を測定するに際しては、地磁気などの外部磁
界か影響すると、その正確な検出か困難になるという問
題も発生する。
When devices using superconducting macnets, such as MRI diagnostic devices, are used, leakage magnetic fields are generated from these devices, which can have an adverse effect on the outside, which poses a problem. There is. On the other hand, when measuring minute magnetism such as brain magnetic waves (α waves), there is a problem in that accurate detection becomes difficult when external magnetic fields such as terrestrial magnetism influence the measurement.

そこで、上記のような問題を解決するため、磁気源から
の磁気を遮蔽するための磁気シールド材料が要請されて
いる。
Therefore, in order to solve the above-mentioned problems, a magnetic shielding material for shielding magnetism from a magnetic source is required.

[発明が解決しようとする課題] 従来、磁気シールド材料として、高透磁率、低保磁力を
有する軟質の磁性材料か利用されていたか、大きな磁界
を遮蔽する場合にはシールド能力が低すぎ、一方低い磁
界の遮蔽の場合においても漏れ磁界を生ずる恐れかあっ
た。このため、シールト材料の体積を大きくし、シール
ド効果を高めることは可能であるが、シールド材料の重
量か増加することが避けられない、という問題かある。
[Problem to be solved by the invention] Conventionally, soft magnetic materials with high magnetic permeability and low coercive force have been used as magnetic shielding materials. Even in the case of low magnetic field shielding, there was a risk of leakage fields occurring. Therefore, although it is possible to increase the shielding effect by increasing the volume of the shielding material, there is a problem in that the weight of the shielding material inevitably increases.

[課題を解決するための手段] そこで、本発明者は上記従来の磁気シールド材料の問題
を解決するため鋭意検討を行なった結果、超電導層と基
板とを少なくとも有する二層構造から成る磁気シールド
筒が有効であることを見出し、本発明に到達した。
[Means for Solving the Problems] Therefore, as a result of intensive studies to solve the above-mentioned problems with conventional magnetic shielding materials, the inventors of the present invention have developed a magnetic shielding cylinder having a two-layer structure having at least a superconducting layer and a substrate. We have found that this is effective and have arrived at the present invention.

即ち、本発明によれば、遮蔽する磁気源に対して、該磁
気源側より基板、超電導層を少なくとも有する二層構造
からなり、該超電導層を内側とする円筒であることを特
徴とする超電導磁気シールド筒、か提供される。
That is, according to the present invention, the superconductor has a two-layer structure including at least a substrate and a superconducting layer from the magnetic source side with respect to the magnetic source to be shielded, and has a cylindrical shape with the superconducting layer on the inside. A magnetically shielded tube is provided.

また、本発明において、上記二層構造の超電導磁気シー
ルド筒において、超電導層と基板の間に中間層を設けて
三層構造とすると、中間層を設けない場合に比し、超電
導特性である臨界電流密度か向上し、好ましい。
In addition, in the present invention, in the superconducting magnetic shield cylinder having the two-layer structure, if an intermediate layer is provided between the superconducting layer and the substrate to form a three-layer structure, the criticality, which is a superconducting property, The current density is improved, which is preferable.

さらに、上記二層または三層構造の超電導磁気シールド
筒の超電導層の内側の磁気源側にこの超電導層を保5〜
するための保護層を設けた三層構造又は四層構造の超電
導磁気シールド筒とすることは、耐熱衝撃性が向上する
ことから好ましい。
Furthermore, this superconducting layer is placed on the magnetic source side inside the superconducting layer of the superconducting magnetic shield cylinder having the two-layer or three-layer structure.
It is preferable to use a superconducting magnetic shield cylinder having a three-layer structure or a four-layer structure provided with a protective layer for the purpose of improving thermal shock resistance.

[作用] 本発明は漏れ磁気や地磁気などの磁気源から適切に遮蔽
するための超電導磁気シールド筒で、超電導特性を有す
る超電導層とそれを支持する基板の二層構造により基本
的に構成されているものである。
[Function] The present invention is a superconducting magnetic shield tube for appropriately shielding from magnetic sources such as leakage magnetism and terrestrial magnetism, and basically consists of a two-layer structure of a superconducting layer having superconducting properties and a substrate supporting it. It is something that exists.

また、超電導特性あるいは#熱衝撃性の向上の観点から
、中間層または保護層を有する三層構造、保護層および
中間層を有する四層構造とすることも、好ましいもので
ある。
Further, from the viewpoint of improving superconducting properties or thermal shock properties, it is also preferable to have a three-layer structure having an intermediate layer or a protective layer, or a four-layer structure having a protective layer and an intermediate layer.

本発明の超電導磁気シールド筒において、基板の熱膨張
係数が超電導層の熱膨張係数と略凹等となるように、基
板および超電導層の材質を選択することか好ましい。同
様に、中間層または保護層を有する三層構造の場合も、
中間層及び基板の熱膨張係数が超電導層の熱膨張係数と
略凹等となるように、基板、中間層および超電導層の材
質を選択し、さらに保護層および中間層を有する四層構
造の場合には、中間層及び基板の熱膨張係数が、超電導
層の熱膨張係数と略凹等となるように、基板、中間層お
よび超電導層の材質を選択することか好ましい。
In the superconducting magnetic shield cylinder of the present invention, it is preferable to select materials for the substrate and the superconducting layer so that the thermal expansion coefficient of the substrate is approximately concave or the like with the thermal expansion coefficient of the superconducting layer. Similarly, in the case of a three-layer structure with an intermediate or protective layer,
In the case of a four-layer structure in which the materials of the substrate, intermediate layer, and superconducting layer are selected so that the thermal expansion coefficient of the intermediate layer and the substrate is approximately concave with the thermal expansion coefficient of the superconducting layer, and further includes a protective layer and an intermediate layer. In this case, it is preferable to select materials for the substrate, the intermediate layer, and the superconducting layer so that the thermal expansion coefficients of the intermediate layer and the substrate are substantially concave with the thermal expansion coefficient of the superconducting layer.

このように用いる基板および各層の熱膨張係数を上記し
た所定の関係に保持することか好ましいか、ここて、超
電導層の熱膨張係数と略凹等とは具体的には超電導層の
熱膨張係数の値に対し、約±5810−’/’Cの範囲
を云うものである。
Is it preferable to maintain the thermal expansion coefficients of the substrate and each layer used in this way in the predetermined relationships described above?Here, the thermal expansion coefficient of the superconducting layer and the approximately concave etc. specifically refer to the thermal expansion coefficient of the superconducting layer. This refers to a range of about ±5810-'/'C for the value of .

本発明で用いる超電導層としては特にその種類を限定す
るものではなく、例えばB j、 −S r −Ca−
Cu−0系、あるいはY−Ba−Cu−0系などが挙げ
られ、B1−5r−Ca−Cu−0系の場合にはBiz
SrzCaCu20Bの組成の結晶相を有するもの、Y
 −B a −Cu −0系の場合にはYBa。
The superconducting layer used in the present invention is not particularly limited in type; for example, Bj, -Sr-Ca-
Examples include Cu-0 system or Y-Ba-Cu-0 system, and in the case of B1-5r-Ca-Cu-0 system, Biz
One having a crystal phase with a composition of SrzCaCu20B, Y
-B a -Cu - YBa in the case of -0 system.

Cu、0.−Yの組成の結晶相を有するものが用いられ
る。
Cu, 0. A material having a crystal phase having a composition of -Y is used.

また、超電導層の厚さは、余り薄すぎると超電導電流か
小さくなって磁気シールド能が低くなり、厚くなりすぎ
ると基板との密着性か悪化する。
Moreover, if the thickness of the superconducting layer is too thin, the superconducting current will be small and the magnetic shielding ability will be low, and if it is too thick, the adhesion with the substrate will be deteriorated.

超電導層の厚さとしては、具体的には約0.2 I1m
〜2mm程度か適当である。
Specifically, the thickness of the superconducting layer is approximately 0.2 I1m.
Approximately 2 mm or so is appropriate.

基板としては、前記のように所定の熱膨張係数を有する
ものてあればよく、金属材料、セラミックス材料あるい
はガラス材料など各種の材料を用いることかできる。具
体的には、金属材料としては例えば、鉄、チタン、ベリ
リウム、ニッケル、ステンレス鋼等を挙げることができ
る。また、セラミックス材料としては、例えばスピネル
、アルミナ、イツトリア、ジルコニア、マクネシア等。
The substrate only needs to have a predetermined coefficient of thermal expansion as described above, and various materials such as metal materials, ceramic materials, or glass materials can be used. Specifically, examples of the metal material include iron, titanium, beryllium, nickel, and stainless steel. Further, examples of ceramic materials include spinel, alumina, ittria, zirconia, and macnesia.

ガラス材料としては、例えば各種の結晶化ガラス等を挙
げることかできる。
Examples of the glass material include various types of crystallized glass.

超電導層を保護するための保護層としては、耐熱衝撃性
(あるいは耐寒性)に優れた材料てあればよく、金属材
料、セラミックス材料、ガラス材料あるいは有機材料な
どの各種の材料を用いることかできる。
The protective layer for protecting the superconducting layer only needs to be made of a material with excellent thermal shock resistance (or cold resistance), and various materials such as metal materials, ceramic materials, glass materials, or organic materials can be used. .

次に、三層または四層構造とした場合において、基板と
超電導層の間に設ける中間層としては、金属材料、セラ
ミックス材料あるいはガラス材料など各種の材料を用い
ることかできる。具体的には、金属材料としては例えば
、白金、ニッケル等を挙げることができる。また、セラ
ミックス材料としては、例えばジルコニア等、ガラス材
料としては、例えば各種の結晶化ガラス等を挙げること
かできる。
Next, in the case of a three-layer or four-layer structure, various materials such as metal materials, ceramic materials, or glass materials can be used as the intermediate layer provided between the substrate and the superconducting layer. Specifically, examples of the metal material include platinum and nickel. Examples of the ceramic material include zirconia, and examples of the glass material include various crystallized glasses.

この中間層は、超電導層との反応性がないことが好まし
く、超電導層との反応性がある中間層を用いる場合には
二層構造とし、反応性かある中間層を基板側、反応性の
ない中間層を超電導層側とする。
This intermediate layer preferably has no reactivity with the superconducting layer. If an intermediate layer that is reactive with the superconducting layer is used, it has a two-layer structure, with the reactive intermediate layer facing the substrate and the reactive intermediate layer facing the substrate. The intermediate layer that is not included is considered to be the superconducting layer side.

中間層は、超電導層と基板を直接密着させることか難か
しい場合に用いられ、この場合超電導層及び基板の両方
に密着性の良好な中間層を選定することにより、より高
性能の磁気シールド筒を作製することかできる。
The intermediate layer is used when it is difficult to directly adhere the superconducting layer and the substrate.In this case, by selecting an intermediate layer with good adhesion to both the superconducting layer and the substrate, a higher performance magnetic shield cylinder can be created. It is possible to create

本発明は、上記のような基板、超電導層、好ましくは超
電導層の内側に設ける保護層、更に好ましくは基板と超
′1[導層間に設ける中間層とから構成されるものてあ
り、それを磁気源に対し、基板を外側、超電導層あるい
は保護層を内側とする円筒状に形成した磁気シールド筒
である。
The present invention comprises a substrate as described above, a superconducting layer, preferably a protective layer provided inside the superconducting layer, and more preferably an intermediate layer provided between the substrate and the superconducting layer. This is a magnetic shield tube formed into a cylindrical shape with the substrate on the outside and the superconducting layer or protective layer on the inside with respect to the magnetic source.

このような形状の磁気シールド筒では、円筒の長さと内
径の比を1.5以上とすることが円筒中央部ての磁気シ
ールド能を高め望ましい。
In a magnetically shielding cylinder having such a shape, it is desirable that the ratio of the length of the cylinder to its inner diameter be 1.5 or more to improve the magnetic shielding ability at the center of the cylinder.

なお1本発明の磁気シールド筒は、その端部において、
超電導層は基板円筒の内面を端部まで全体に被覆するこ
となく、基板円筒の端部より超電導層の端部が約5■以
上、好ましくは10+ui〜50II11の範囲短くし
て被覆すると、超電導層端部の剥離およびクラックの生
成が抑制され、望ましい。
Note that the magnetic shield cylinder of the present invention has, at its end,
The superconducting layer does not cover the entire inner surface of the substrate cylinder up to the end, but the superconducting layer is coated with the end of the superconducting layer shorter than the end of the substrate cylinder by about 5 cm or more, preferably in the range of 10+ui to 50II11. This is desirable because it suppresses peeling and crack formation at the edges.

次に、本発明の磁気シールド筒の製造方法の例を説明す
る。
Next, an example of a method for manufacturing a magnetic shield cylinder according to the present invention will be explained.

円筒状の基板の内表面上に、結晶相の主成分か、例えば
B1−5r−Ca−Cu−0系からなる超電導層をスプ
レー法によって塗布した後乾燥する。次いて、基板の種
類あるいは各層の種類によりそれぞれ異なる焼成条件に
より、例えば約8500C〜950℃の範囲の温度で約
0.5〜20時間程度焼成することにより、本発明の磁
気シールド筒が製造される。
On the inner surface of a cylindrical substrate, a superconducting layer consisting of a main component of a crystalline phase, for example, a B1-5r-Ca-Cu-0 system, is applied by a spray method and then dried. Next, the magnetic shield cylinder of the present invention is manufactured by firing under different firing conditions depending on the type of substrate or the type of each layer, for example, at a temperature in the range of about 8500C to 950C for about 0.5 to 20 hours. Ru.

なお、以上に説明した本発明の好ましい態様をまとめて
示せば、次の通りである。
The preferred embodiments of the present invention explained above are summarized as follows.

(a) 超電導層と基板の間に中間層を設けた超電導磁
気シールド筒。
(a) A superconducting magnetic shield tube with an intermediate layer between the superconducting layer and the substrate.

(b)超電導層の内側に該超電導層を保護する保護層を
設けた超電導磁気シールド筒。
(b) A superconducting magnetic shielding tube provided with a protective layer for protecting the superconducting layer inside the superconducting layer.

(C)基板の熱膨張係数かmW導層の熱膨張係数と略凹
等の超電導磁気シールド筒。
(C) A superconducting magnetic shield cylinder having a substantially concave shape with the thermal expansion coefficient of the substrate or the mW conductive layer.

(d)中間層及び基板の熱膨張係数が、超電導層の熱膨
張係数と略凹等の超電導磁気シールド筒。
(d) A superconducting magnetic shield tube in which the thermal expansion coefficients of the intermediate layer and the substrate are substantially concave with the thermal expansion coefficient of the superconducting layer.

(e)基板の円筒長さが超電導層の軸方向長さよりも長
い超電導磁気シールド筒。
(e) A superconducting magnetic shield tube in which the cylindrical length of the substrate is longer than the axial length of the superconducting layer.

(f)円筒長さと円筒内径の比が1.5以上である超電
導磁気シールド筒。
(f) A superconducting magnetic shield cylinder in which the ratio of cylinder length to cylinder inner diameter is 1.5 or more.

[実施例] (実施例1〜6及び比較例1〜4) −辺の長さか100 +u+て厚さかlIn1の各種金
属板の表面に結晶相の主成分かBi2Sr、(:acu
zoa−yの粉末をスプレー法にて乾燥後の厚さが約0
.1〜4oI11になるよう塗布し、乾燥後温度900
°Cで0.5時間の焼成条件で焼成して、金属基板上に
結晶相の主成分がBi25r2CaCu20゜7の超電
導セラミックス層が形成された金属板を得た。
[Example] (Examples 1 to 6 and Comparative Examples 1 to 4) The main component of the crystal phase, Bi2Sr, (:acu
After drying the zoa-y powder by spraying, the thickness is approximately 0.
.. Apply to 1 to 4oI11 and dry at a temperature of 900℃.
The metal plate was fired under the firing conditions of 0.5 hours at °C to obtain a metal plate in which a superconducting ceramic layer having a crystalline phase as a main component of Bi25r2CaCu20°7 was formed on the metal substrate.

基板金属は熱膨張係数が4j X to−6/’Cのコ
バールから19.7X 10−’/’Cの銅までの各種
材料とした。
The substrate metals were various materials ranging from Kovar with a coefficient of thermal expansion of 4j x to -6/'C to copper with a coefficient of thermal expansion of 19.7 x 10-'/'C.

その結果、表1に示す様に、熱膨張係数が4.7xlO
−6/’Cのコバールては剥離が生じ、8.9xlO−
6/−cのチタンから13.:IX 10−6/”Cの
ニッケルでは基板と良好な密着状態が達成され18.7
 X 10−6/℃のSO3:104ステンレスと19
.7X 10−6/’Cの銅では、再び剥離が生じた。
As a result, as shown in Table 1, the thermal expansion coefficient was 4.7xlO
-6/'C Kovar peeling occurred, 8.9xlO-
6/-c titanium to 13. : IX 10-6/”C nickel achieved good adhesion with the substrate, 18.7
x 10-6/℃ SO3:104 stainless steel and 19
.. Delamination occurred again with 7X 10-6/'C copper.

又、超電導セラミックス層の良好な密着状態が達成され
た金属板では、表1に示す通り、5ガウス以上の磁気シ
ールド能を有することが確認された。
Further, as shown in Table 1, it was confirmed that the metal plate in which the superconducting ceramic layer had a good adhesion state had a magnetic shielding ability of 5 Gauss or more.

(実施例7〜12及び比較例5〜6) −辺の長さか100 nIlで厚さか5mmの各種セラ
ミック板の表面に結晶相の主成分がYBa2C:u、0
フイの粉末をスプレー法にて乾燥後の厚さか約1〜2.
5I1mになるよう塗布し、乾燥後温度950°Cで1
0時間の焼成条件で焼成して、セラミック基板上に結晶
相の主成分がYBa2Cu、0フイの超電導セラミック
ス層か形成されたセラミック板を得た。
(Examples 7 to 12 and Comparative Examples 5 to 6) - On the surface of various ceramic plates with a side length of 100 nIl and a thickness of 5 mm, the main components of the crystal phase were YBa2C:u, 0
The thickness of the powder after drying is approximately 1 to 2 mm by spraying.
Coat it to a thickness of 5I1m, and after drying, apply it at a temperature of 950°C.
Firing was performed under the firing conditions for 0 hours to obtain a ceramic plate in which a superconducting ceramic layer having a crystalline phase of YBa2Cu as a main component and 0 phi was formed on the ceramic substrate.

基板セラミックは熱膨張係数が4.2 X 10−’/
’Cのジルコンから1:]、5x 10−6/ ’Cの
マグネシアまての各種材料とした。
The thermal expansion coefficient of the substrate ceramic is 4.2 x 10-'/
Various materials were prepared from zircon of 'C' to magnesia of 1:] and 5x 10-6/'C.

その結果、表2に示す様に、熱膨張係数が4.2XIO
−’/’Cのジルコンでは剥離が生じa、ax io−
’/’Cのアルミナから13.5x 10−6/ ’C
のマグネシアでは基板と良好な密着状態が達成され、所
定以上の磁気シールド能を有することが確認された。
As a result, as shown in Table 2, the thermal expansion coefficient was 4.2XIO
-'/'C zircon causes peeling a, ax io-
'/'C alumina to 13.5x 10-6/'C
It was confirmed that magnesia achieved good adhesion with the substrate and had magnetic shielding ability exceeding a specified level.

更に、超電導セラミックス層の残留カーボン量を測定し
たところ、第3図に示すように、残留カーボン量が0.
5wt%未満の時に高い臨界電流密度を有し、磁気シー
ルド能か高いことが分った。また同時に、超電導セラミ
ックス層の密度を測定したところ、相対密度80%以上
の高密度にすることが臨界電流密度を高め、磁気シール
ド能も高め得ることか分った。
Furthermore, when the amount of residual carbon in the superconducting ceramic layer was measured, as shown in FIG. 3, the amount of residual carbon was 0.
It was found that when it was less than 5 wt%, it had a high critical current density and had high magnetic shielding ability. At the same time, we measured the density of the superconducting ceramic layer and found that increasing the relative density to a high density of 80% or more can increase the critical current density and improve the magnetic shielding ability.

(以下、余白) (実施例13〜15) 一辺の長さか100■で厚さが51の各種ガラス板の表
面に結晶層の主成分がBi25r2CaCu20.イの
粉末をスプレー法にて乾燥後の厚さが約1mmになるよ
う塗布し、乾燥後900°Cて0.5時間の焼成条件て
焼成して、ガラス基板上に結晶相の主成分が11i2s
r2cacu206−Yの超電導セラミックスの層が形
成されたガラス板を得た。
(Hereinafter, blank spaces) (Examples 13 to 15) The main component of the crystal layer was Bi25r2CaCu20. The powder of A was applied to a dry thickness of approximately 1 mm using a spray method, and after drying, it was fired at 900°C for 0.5 hours to form the main component of the crystalline phase on the glass substrate. 11i2s
A glass plate on which a layer of superconducting ceramic r2cacu206-Y was formed was obtained.

基板ガラスは熱膨張係数が13.5x 10−’/ ’
Cから17.5X 10−6/’Cの結晶化ガラスとし
た。
The thermal expansion coefficient of the substrate glass is 13.5x 10-'/'
It was made into a crystallized glass of 17.5X 10-6/'C.

その結果、表3に示す様に、すべてのガラスで超電導セ
ラミックス層と良好な密着状態が達成され、また5ガウ
ス以上の磁気シールド能を有することか確認された。
As a result, as shown in Table 3, it was confirmed that all the glasses achieved good adhesion with the superconducting ceramic layer and had a magnetic shielding ability of 5 Gauss or more.

(以下、余白) (実施例16〜19) 実施例1て作成した超電導セラミックス層を形成した金
属板に於いて、更に超電導セラミックス層の表面に保護
層を設けて、液体窒素中に投下したときの耐熱衝撃性を
評価した。
(Hereinafter, blank spaces) (Examples 16 to 19) When the metal plate with the superconducting ceramic layer formed in Example 1 was further provided with a protective layer on the surface of the superconducting ceramic layer and dropped into liquid nitrogen. The thermal shock resistance was evaluated.

保護層としては、アルミニウム金属と耐寒性の合成樹脂
を選定した。
For the protective layer, we selected aluminum metal and cold-resistant synthetic resin.

その結果、表4に示す様に、どちらの保護層も液体窒素
中への投下試験ではセラミックスの耐熱衝撃性に比較し
て良好な効果を示した。
As a result, as shown in Table 4, both protective layers exhibited better thermal shock resistance than ceramics in the drop test into liquid nitrogen.

(以下、余白) 表4 (実施例20〜24) −・辺の長さか100■て厚さか1mmの各種金属板の
表面に、中間層としてカルシア安定化ジルコニア、白金
、ニッケル及びMgO・B2O3・SiO□ガラスを約
200 p−m形成し、更にその中間層の上に超電導セ
ラミックスとして結晶相の主成分かBi、5r2CaC
u20Q−Yの粉末をスプレー法にて乾燥後の厚さか約
10111になるよう塗布し、乾燥後9006Cで0.
5時間の焼成条件て焼成して、金属基板上に結晶相の主
成分かB !zsr2(:acuzo□7の超電導セラ
ミックス層が形成された金属板を得た。
(The following is a margin) Table 4 (Examples 20 to 24) - The surface of various metal plates with a side length of 100 mm and a thickness of 1 mm is coated with calcia-stabilized zirconia, platinum, nickel, and MgO B2O3 as an intermediate layer. Approximately 200 p-m of SiO□ glass is formed, and on top of the intermediate layer, the main components of the crystal phase, Bi, 5r2CaC, are added as superconducting ceramics.
Apply u20Q-Y powder using a spray method to a dry thickness of approximately 10111 mm, and after drying, apply 0.0 mm at 9006C.
After firing under the firing conditions for 5 hours, the main component of the crystalline phase was deposited on the metal substrate. A metal plate on which a superconducting ceramic layer of zsr2(:acuzo□7) was formed was obtained.

基板金属はチタン及びニッケルとした。The substrate metals were titanium and nickel.

その結果、表5に示す様に、どの中間層についても良好
な密着状態が達成され、さらに液体窒素中ての超電導特
性である臨界電流密度が中間層のない実施例1の場合に
比較して向上した。
As a result, as shown in Table 5, good adhesion was achieved for all intermediate layers, and the critical current density, which is a characteristic of superconductivity in liquid nitrogen, was lower than that of Example 1 without an intermediate layer. Improved.

(実施例24〜28) 実施例20〜23て作成した超電導セラミックス層を形
成した金属板に於いて、更に超電導セラミックス層の表
面に保護層を設けて、液体窒素中に投下したときの耐熱
衝撃性を評価した。
(Examples 24 to 28) In the metal plates on which the superconducting ceramic layers prepared in Examples 20 to 23 were formed, a protective layer was further provided on the surface of the superconducting ceramic layer, and thermal shock resistance was observed when dropped into liquid nitrogen. The gender was evaluated.

保護層としては、アルミニウム金属、耐寒性の合成樹脂
を選定した。
For the protective layer, aluminum metal and cold-resistant synthetic resin were selected.

その結果、表6に示す様に、どちらの保護層も液体窒素
中への投下試験で、保護層のない場合に比べて良好な耐
熱衝撃性を示した。
As a result, as shown in Table 6, both protective layers exhibited better thermal shock resistance than the case without the protective layer in the drop test into liquid nitrogen.

(以下、余白) (実施例29〜33、比較例7〜8) 肉厚1mm〜5mmの円筒状の各種基材の内表面上に超
電導セラミックス層を形成し、円筒状の磁気シールド体
を作成して、その磁気シールド効果を確認した。
(Hereinafter, blank spaces) (Examples 29 to 33, Comparative Examples 7 to 8) A superconducting ceramic layer was formed on the inner surface of various cylindrical base materials with a wall thickness of 1 mm to 5 mm to create a cylindrical magnetic shield body. The magnetic shielding effect was confirmed.

その結果、表7に示すように、円筒の長さと内径の比か
1.5以上の場合に、円筒中央部ての磁場の値か印加磁
場の1/100以下に低減され、充分な磁気シールド能
を有することが確認された。
As a result, as shown in Table 7, when the ratio of the length of the cylinder to the inner diameter is 1.5 or more, the value of the magnetic field at the center of the cylinder is reduced to 1/100 or less of the applied magnetic field, providing sufficient magnetic shielding. It was confirmed that it has the ability.

また、基板円筒の端部から、超電導セラミックス層端部
までの距離か10mm以上の場合に、超電導セラミック
ス層端部の剥離およびクラック生成か抑止され、磁気漏
れか防止されることか分かった。
It was also found that when the distance from the end of the substrate cylinder to the end of the superconducting ceramic layer was 10 mm or more, peeling and crack formation at the end of the superconducting ceramic layer were suppressed, and magnetic leakage was prevented.

(以下、余白) L記の各実施例について、基板とa電導セラミックス層
の8膨張係数の差に対して、基板と超電導セラミックス
層の接合性をグラフに表わしてみれば、第1図に示す如
くとなる。第1図に示すように、基板と超電導セラミッ
クス層の熱膨張係数か略等しい、すなわち、約±5 X
 10−6/’Cの範囲の差であれば両者の接合性か良
好であることがわかる。
(Hereinafter, blank space) For each of the examples listed in L, the bondability between the substrate and the superconducting ceramic layer is shown in a graph with respect to the difference in the coefficient of expansion between the substrate and the a-conducting ceramic layer, as shown in Figure 1. It will be like this. As shown in Figure 1, the thermal expansion coefficients of the substrate and the superconducting ceramic layer are approximately equal, that is, approximately ±5
It can be seen that the bondability between the two is good if the difference is within the range of 10-6/'C.

また、基板とa電導セラミックス層の熱膨張係数の差に
対する臨界電流密度を示すと、第2図の如くなり、やは
り、両者の差か約±5 X 10−’/”Cの範囲にあ
れば、臨界電流密度か高いことかわかる。
In addition, the critical current density with respect to the difference in thermal expansion coefficient between the substrate and the conductive ceramic layer is shown in Figure 2, and if the difference between the two is within the range of approximately ±5 x 10-'/''C. , it can be seen that the critical current density is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基板と超電導セラミックス層の熱膨張係数の差
に対する基板と超電導セラミックス層の接合性を示すグ
ラフ、第2図は基板と超電導セラミックス層の熱膨張係
数の差に対する臨界電流密度を示すグラフ、第3図は残
留カーボン量に対する臨界電流密度を示すグラフである
Figure 1 is a graph showing the bondability between the substrate and the superconducting ceramic layer relative to the difference in thermal expansion coefficient between the substrate and the superconducting ceramic layer, and Figure 2 is a graph showing the critical current density relative to the difference in thermal expansion coefficient between the substrate and the superconducting ceramic layer. , FIG. 3 is a graph showing the critical current density versus the amount of residual carbon.

Claims (1)

【特許請求の範囲】[Claims] (1)遮蔽する磁気源に対して、該磁気源側より基板、
超電導層を少なくとも有する二層構造からなり、該超電
導層を内側とする円筒であることを特徴とする超電導磁
気シールド筒。
(1) With respect to the magnetic source to be shielded, the substrate from the magnetic source side,
A superconducting magnetic shield tube comprising a two-layer structure having at least a superconducting layer and having a cylindrical shape with the superconducting layer on the inside.
JP1097197A 1989-04-17 1989-04-17 Superconducting magnetic shield cylinder Expired - Fee Related JP2512142B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1097197A JP2512142B2 (en) 1989-04-17 1989-04-17 Superconducting magnetic shield cylinder
EP90303984A EP0393932B1 (en) 1989-04-17 1990-04-12 Superconducting structure for magnetic shielding
DE69018303T DE69018303T2 (en) 1989-04-17 1990-04-12 Superconducting structure for magnetic shielding.
CA002014716A CA2014716C (en) 1989-04-17 1990-04-17 Superconducting structure for magnetic shielding
US07/800,731 US5202305A (en) 1989-04-17 1991-12-03 Superconducting structure for magnetic shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097197A JP2512142B2 (en) 1989-04-17 1989-04-17 Superconducting magnetic shield cylinder

Publications (2)

Publication Number Publication Date
JPH02275395A true JPH02275395A (en) 1990-11-09
JP2512142B2 JP2512142B2 (en) 1996-07-03

Family

ID=14185872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097197A Expired - Fee Related JP2512142B2 (en) 1989-04-17 1989-04-17 Superconducting magnetic shield cylinder

Country Status (1)

Country Link
JP (1) JP2512142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206695A (en) * 1990-11-30 1992-07-28 Ngk Insulators Ltd Oxide superconductor magnetic shield cylinder-shaped body and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231778A (en) * 1985-04-05 1986-10-16 Shimadzu Corp Superconducting shield

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231778A (en) * 1985-04-05 1986-10-16 Shimadzu Corp Superconducting shield

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206695A (en) * 1990-11-30 1992-07-28 Ngk Insulators Ltd Oxide superconductor magnetic shield cylinder-shaped body and manufacture thereof

Also Published As

Publication number Publication date
JP2512142B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US5486277A (en) High performance capacitors using nano-structure multilayer materials fabrication
EP2801983B1 (en) Superconducting wire and superconducting coil
JPH046094B2 (en)
EP0392661A2 (en) Substrate for ceramic superconductor with improved barrier
EP0561617B1 (en) Superconducting tube for shielding magnetic field
EP2780919B1 (en) High energy density storage device
JPH02306509A (en) Ceramic superconductor
US5202305A (en) Superconducting structure for magnetic shielding
EP0458441A2 (en) Nickel-based substrate for ceramic superconductor
JPH02275395A (en) Superconducting magnetic shield tube
JP2512141B2 (en) Superconducting magnetic shield cylinder
US5212013A (en) Inorganic wire insulation for super-conducting wire
JP2502098B2 (en) Superconducting magnetic shield
JPH02299295A (en) Superconductive magnetic shield plate
US5284825A (en) Contaminant diffusion barrier for a ceramic oxide superconductor coating on a substrate
JPS63313897A (en) Magnetic shielding body
WO1989003126A1 (en) Structure of superconductor wiring and process for its production
JPS63280469A (en) Composite superconducting shield plate and manufacture thereof
JP2519773B2 (en) Superconducting material
JP2567447B2 (en) Superconducting material
Mayrhofer et al. Improved Thermal Insulation Performance for Structured Metallic Coatings to Reduce Thermal Noise in Superinsulation
Grant Evaluation, construction and endurance testing of compression sealed pyrolytic boron nitride slot insulation
JPH0269997A (en) Ceramic superconductive magnetic shield and manufacture of the same
EP0426136B1 (en) Superconducting ceramic structure
JPH0529787A (en) Magnetic shield

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees