JP6238623B2 - Superconducting current lead - Google Patents

Superconducting current lead Download PDF

Info

Publication number
JP6238623B2
JP6238623B2 JP2013159228A JP2013159228A JP6238623B2 JP 6238623 B2 JP6238623 B2 JP 6238623B2 JP 2013159228 A JP2013159228 A JP 2013159228A JP 2013159228 A JP2013159228 A JP 2013159228A JP 6238623 B2 JP6238623 B2 JP 6238623B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
electrode
current lead
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013159228A
Other languages
Japanese (ja)
Other versions
JP2015032612A (en
Inventor
高橋 亨
亨 高橋
康雄 引地
康雄 引地
昌啓 箕輪
昌啓 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Cable Systems Co Ltd
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2013159228A priority Critical patent/JP6238623B2/en
Priority to PCT/JP2014/002573 priority patent/WO2015015680A1/en
Priority to CN201480042321.6A priority patent/CN105408969B/en
Publication of JP2015032612A publication Critical patent/JP2015032612A/en
Application granted granted Critical
Publication of JP6238623B2 publication Critical patent/JP6238623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、酸化物超電導線材を用いた超電導電流リードに関し、特に、超電導線材及び金属電極が補強部材に収容されてなる超電導電流リードに関する。   The present invention relates to a superconducting current lead using an oxide superconducting wire, and more particularly to a superconducting current lead in which a superconducting wire and a metal electrode are accommodated in a reinforcing member.

近年、超電導ケーブルや超電導マグネット等、超電導を利用した超電導応用機器の分野では、実用化に向けてさかんに研究、開発が行われている。一般に、超電導応用機器は低温部(低温容器)に設置され、常温部に設置された外部機器(例えば電源)と、電流リードを介して接続される。
超電導応用機器の運転は、極低温環境下で行われるため、低温部の断熱性が極めて重要となる。低温部の断熱性が悪く、低温部への熱侵入が大きいと、超電導応用機器の冷却効率が低下して超電導状態を維持するための冷却コストが増大することとなり、場合によっては超電導応用機器を運転できなくなってしまうためである。この低温部への熱侵入の経路としては、低温容器を伝熱する経路、電流リードを伝熱する経路が考えられる。
In recent years, in the field of superconducting applied equipment using superconductivity such as superconducting cables and superconducting magnets, research and development have been conducted for practical use. In general, a superconducting application device is installed in a low temperature part (low temperature container) and connected to an external device (for example, a power source) installed in the normal temperature part via a current lead.
Since the operation of superconducting equipment is performed in a cryogenic environment, the heat insulation of the low temperature part is extremely important. If the heat insulation property of the low temperature part is poor and the heat penetration into the low temperature part is large, the cooling efficiency of the superconducting application equipment will decrease and the cooling cost for maintaining the superconducting state will increase. This is because it becomes impossible to drive. As a path of heat penetration into the low temperature part, a path for transferring heat through the low temperature container and a path for transferring heat through the current leads are conceivable.

低温容器を介した熱侵入を防止するための手法としては、液体窒素等の冷媒及び超電導応用機器を収容する冷媒槽と、冷媒槽の外側に設けられる真空槽とを有する二重構造の低温容器が知られている。この低温容器によれば、真空断熱により低温部への熱侵入が低減される。   As a technique for preventing heat intrusion through a cryogenic vessel, a dual-structure cryogenic vessel having a refrigerant tank containing a refrigerant such as liquid nitrogen and a superconducting application device and a vacuum tank provided outside the refrigerant vessel It has been known. According to this low-temperature container, heat penetration into the low-temperature part is reduced by vacuum insulation.

電流リードを介した熱侵入を防止するための手法としては、酸化物超電導体を用いた超電導電流リードが提案されている。酸化物超電導体は、液体窒素温度以下では電気抵抗がゼロ、かつ熱伝導率が小さい(銅の数10分の1)。そのため、超電導電流リードにおいては、通電時にジュール熱の発生はなく、低温部への伝熱量も極めて小さくなる。したがって、超電導電流リードによれば、低温部への熱侵入が低減される。   As a technique for preventing heat intrusion through the current lead, a superconducting current lead using an oxide superconductor has been proposed. An oxide superconductor has zero electrical resistance and low thermal conductivity below the liquid nitrogen temperature (one tenth of copper). Therefore, in the superconducting current lead, Joule heat is not generated during energization, and the amount of heat transferred to the low temperature portion is extremely small. Therefore, according to the superconducting current lead, heat penetration into the low temperature portion is reduced.

一般に、超電導電流リードは、テープ状の超電導線材、超電導線材の一端部(高温側)に配置される第1の金属電極、及び超電導線材の他端部(低温側)に配置される第2の金属電極を備える。超電導線材と第1の金属電極及び第2の金属電極は、例えば半田付けにより接合される。
超電導線材、第1の金属電極、及び第2の金属電極とからなるリード本体は、補強部材内に位置決めした状態で収容され、支持される(例えば特許文献1)。補強部材は、低熱伝導性の材料(例えば繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)、ステンレス合金、ニッケル基合金、チタン合金等)で構成される。このように、リード本体が補強部材内に収容される場合、超電導線材は直線状に保持されるのが一般的である。
In general, a superconducting current lead is a tape-shaped superconducting wire, a first metal electrode disposed at one end (high temperature side) of the superconducting wire, and a second disposed at the other end (low temperature side) of the superconducting wire. A metal electrode is provided. The superconducting wire, the first metal electrode, and the second metal electrode are joined by soldering, for example.
A lead body composed of a superconducting wire, a first metal electrode, and a second metal electrode is accommodated and supported in a state of being positioned in the reinforcing member (for example, Patent Document 1). The reinforcing member is made of a material having low thermal conductivity (for example, fiber reinforced plastic (GFRP), stainless alloy, nickel-base alloy, titanium alloy, etc.). Thus, when the lead body is accommodated in the reinforcing member, the superconducting wire is generally held in a straight line.

特開平07−297025号公報Japanese Patent Application Laid-Open No. 07-297025

しかしながら、上述した超電導電流リードを極低温環境下で用いると、それぞれの構成部材が熱収縮するため、以下のような不具合が生じる。
例えば、超電導線材の熱収縮率が補強部材の熱収縮率よりも大きい場合、超電導線材の方が大きく収縮するため、超電導線材と金属電極との接合部(半田付け部分)に過大な負荷が生じ、損傷する虞がある。そして、接合部が損傷すると接続抵抗が大きくなるため、大電流を流すことが困難となる。
However, when the above-described superconducting current lead is used in a cryogenic environment, the respective components are thermally contracted, resulting in the following problems.
For example, when the thermal contraction rate of the superconducting wire is larger than the thermal contraction rate of the reinforcing member, the superconducting wire contracts more greatly, resulting in an excessive load at the joint (soldering part) between the superconducting wire and the metal electrode. There is a risk of damage. And if a junction part is damaged, since connection resistance will become large, it will become difficult to flow a big electric current.

一方、超電導線材の熱収縮率が補強部材の熱収縮率よりも小さい場合、超電導線材に撓みが生じるだけであり、一見、超電導線材と金属電極との接合部に過大な負荷は生じないように考えられる。しかし、超電導線材の熱伝導率と補強部材の熱伝導率は異なるため、冷却の進行度合いも異なる。すなわち、熱伝導率の高い超電導線材の方が冷却の進行が速く、冷却初期の収縮量は補強部材よりも超電導線材の方が大きくなる。したがって、やはり超電導線材と金属電極との接合部には過大な負荷が生じることとなる。特に、一般的な酸化物超電導線材は、熱伝導率の高いAgやCuからなる安定化層を有するため、かかる問題は顕著となる。   On the other hand, when the thermal contraction rate of the superconducting wire is smaller than the thermal contraction rate of the reinforcing member, the superconducting wire only bends. At first glance, an excessive load is not generated at the joint between the superconducting wire and the metal electrode. Conceivable. However, since the heat conductivity of the superconducting wire and the heat conductivity of the reinforcing member are different, the progress of cooling is also different. That is, the superconducting wire having a high thermal conductivity is more rapidly cooled, and the amount of shrinkage at the initial stage of cooling is larger in the superconducting wire than in the reinforcing member. Therefore, too much load is generated at the junction between the superconducting wire and the metal electrode. In particular, since a general oxide superconducting wire has a stabilizing layer made of Ag or Cu having high thermal conductivity, such a problem becomes remarkable.

本発明の目的は、冷却時の熱収縮により、超電導線材と金属電極との接合部が損傷するのを防止できる信頼性の高い超電導電流リードを提供することである。   An object of the present invention is to provide a highly reliable superconducting current lead capable of preventing damage to a joint portion between a superconducting wire and a metal electrode due to thermal contraction during cooling.

本発明に係る超電導電流リードは、金属基板上に中間層、超電導層、安定化層が順に積層されたテープ状の超電導線材と、
前記超電導線材の両端部に接合される金属電極と、
前記超電導線材と前記金属電極とを含むリード本体を収容する補強部材と、を備え、
前記リード本体は、前記超電導線材が前記金属電極間において撓みを有するように、所定の電極間距離で前記補強部材に収容されていることを特徴とする。
The superconducting current lead according to the present invention is a tape-shaped superconducting wire in which an intermediate layer, a superconducting layer, and a stabilizing layer are laminated in order on a metal substrate,
Metal electrodes bonded to both ends of the superconducting wire;
And a reinforcing member which yield volumes of lead body comprising said metal electrode and the superconducting wire,
The lead body is accommodated in the reinforcing member at a predetermined inter-electrode distance so that the superconducting wire has a bend between the metal electrodes.

本発明によれば、超電導線材に形成された撓みによって、冷却時に超電導線材に生じる熱収縮が吸収されるので、超電導線材と金属電極との接合部に過大な負荷が生じることはなく、高い信頼性が確保される。   According to the present invention, since the thermal contraction generated in the superconducting wire during cooling is absorbed by the bending formed in the superconducting wire, an excessive load is not generated at the joint between the superconducting wire and the metal electrode, and high reliability is achieved. Sex is secured.

本発明の一実施の形態に係る超電導電流リードを用いた超電導磁石装置を示す図である。It is a figure which shows the superconducting magnet apparatus using the superconducting current | flow lead which concerns on one embodiment of this invention. 実施の形態に係る超電導リードの外観図である。It is an external view of the superconducting lead which concerns on embodiment. 超電導線材の一般的な構成を示す図である。It is a figure which shows the general structure of a superconducting wire. 超電導電流リードをZ方向先端側から見た平面図である。It is the top view which looked at the superconducting current lead from the Z direction front end side. 図6におけるVI−VI矢視断面図である。It is VI-VI arrow sectional drawing in FIG. 超電導電流リードをY方向基端側から見た正面図である。It is the front view which looked at the superconducting current lead from the Y direction base end side. 図4におけるIV−IV矢視断面図である。It is IV-IV arrow sectional drawing in FIG. 超電導線材に形成される撓みを示す図である。It is a figure which shows the bending formed in a superconducting wire.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の一実施の形態に係る超電導電流リード10を用いた超電導磁石装置1を示す図である。図2は、超電導リード10の外観図である。図3は、超電導線材11の一般的な構成を示す図である。図4は、超電導電流リードをZ方向先端側から見た平面図である。図5は、図6におけるVI−VI矢視断面図である。図6は、超電導電流リードをY方向基端側から見た正面図である。図7は、図4におけるIV−IV矢視断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a superconducting magnet device 1 using a superconducting current lead 10 according to an embodiment of the present invention. FIG. 2 is an external view of the superconducting lead 10. FIG. 3 is a diagram showing a general configuration of the superconducting wire 11. FIG. 4 is a plan view of the superconducting current lead as viewed from the front end side in the Z direction. 5 is a cross-sectional view taken along the line VI-VI in FIG. FIG. 6 is a front view of the superconducting current lead as viewed from the base end side in the Y direction. 7 is a cross-sectional view taken along arrow IV-IV in FIG.

図1に示すように、超電導磁石装置1は、超電導電流リード10、常電導電流リード15、超電導コイル20、電源30、及び低温容器40等を備える。
低温容器40は、内側の容器41と外側の真空槽42とからなる二重構造を有する。容器41は冷凍機(図示略)に接続され、例えば液体ヘリウムによって内部を極低温(例えば77K)に保持される。真空槽42は真空ポンプ(図示略)に接続され、内部を真空状態に保持される。
As shown in FIG. 1, the superconducting magnet device 1 includes a superconducting current lead 10, a normal conducting current lead 15, a superconducting coil 20, a power source 30, a cryogenic container 40, and the like.
The cryogenic container 40 has a double structure composed of an inner container 41 and an outer vacuum chamber 42. The container 41 is connected to a refrigerator (not shown), and the interior thereof is held at a very low temperature (for example, 77 K) by, for example, liquid helium. The vacuum chamber 42 is connected to a vacuum pump (not shown), and the inside is kept in a vacuum state.

超電導コイル20は、超電導線材を巻線したコイルである。超電導コイル20は、低温部となる容器41内に配置される。超電導コイル20は、超電導電流リード10と接続するためのコイル電極21を有する。
電源30は、常温部となる低温容器40外に配置される。電源30は、常電導電流リード15及び超電導電流リード10を介して、超電導コイル20に電流を供給する。常電導電流リード15は、例えば銅線である。
The superconducting coil 20 is a coil wound with a superconducting wire. The superconducting coil 20 is disposed in a container 41 serving as a low temperature part. The superconducting coil 20 has a coil electrode 21 for connecting to the superconducting current lead 10.
The power source 30 is disposed outside the low-temperature container 40 serving as a normal temperature part. The power supply 30 supplies current to the superconducting coil 20 via the normal conducting current lead 15 and the superconducting current lead 10. The normal conductive current lead 15 is, for example, a copper wire.

超電導電流リード10は、超電導線材11、第1の電極12、第2の電極13、及び補強部材14を有する。超電導電流リード10は、容器41内に配置される。超電導線材11の高温側となる一端部は第1の電極12に接続され、低温側となる他端部は第2の電極13に接続される。
本実施の形態では、超電導線材11を1本用いた超電導電流リード10について説明するが、本発明は、後述する実施例2のように、超電導線材11を複数本有する超電導電流リードに適用することもできる。
The superconducting current lead 10 includes a superconducting wire 11, a first electrode 12, a second electrode 13, and a reinforcing member 14. The superconducting current lead 10 is disposed in the container 41. One end of the superconducting wire 11 on the high temperature side is connected to the first electrode 12, and the other end on the low temperature side is connected to the second electrode 13.
In this embodiment, a superconducting current lead 10 using one superconducting wire 11 will be described. However, the present invention is applied to a superconducting current lead having a plurality of superconducting wires 11 as in Example 2 described later. You can also.

超電導線材11は、図3に示すように、超電導層113を有するテープ状の線材である。超電導線材11は、例えばテープ状の金属基板111上に、中間層112、超電導層113、安定化層114が順に形成された積層構造を有する。   The superconducting wire 11 is a tape-like wire having a superconducting layer 113 as shown in FIG. The superconducting wire 11 has a laminated structure in which, for example, an intermediate layer 112, a superconducting layer 113, and a stabilizing layer 114 are formed in this order on a tape-shaped metal substrate 111.

金属基板111は、Ni合金(例えばハステロイ(登録商標))、W−Mo系、Fe−Cr系(例えばオーステナイト系ステンレス)、又はFe−Ni系の材料に代表される低磁性の無配向金属基板である。   The metal substrate 111 is a low magnetic non-oriented metal substrate typified by a Ni alloy (for example, Hastelloy (registered trademark)), W-Mo, Fe-Cr (for example, austenitic stainless steel), or Fe-Ni material. It is.

中間層112は、例えば金属基板111からの元素の拡散が超電導層113に及ぶのを防止するための第1の中間層(拡散防止層)と、超電導層113の結晶を一定の方向に配向させるための第2の中間層(配向層)など、複数の中間層を有する。第1の中間層は、例えばガリウムドープ酸化亜鉛層(GZO)又はイットリウム安定化ジルコニア層(YSZ)で構成される。第1の中間層の成膜には、例えばイオンビームアシスト蒸着法(IBAD:Ion Beam Assisted Deposition)を適用できる。第2の中間層は、例えば酸化セリウム層(CeO)で構成される。第2の中間層の成膜には、例えばRFスパッタ法を適用できる。 The intermediate layer 112 has, for example, a first intermediate layer (diffusion prevention layer) for preventing the diffusion of elements from the metal substrate 111 to reach the superconducting layer 113, and orients crystals of the superconducting layer 113 in a certain direction. A plurality of intermediate layers, such as a second intermediate layer (alignment layer). The first intermediate layer is composed of, for example, a gallium-doped zinc oxide layer (GZO) or an yttrium-stabilized zirconia layer (YSZ). For example, an ion beam assisted deposition (IBAD) can be applied to form the first intermediate layer. The second intermediate layer is composed of, for example, a cerium oxide layer (CeO 2 ). For example, an RF sputtering method can be applied to form the second intermediate layer.

超電導層113は、例えばRE系超電導体(RE:Y、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbから選択される1又は2種以上の希土類元素)等の酸化物超電導体で構成される。RE系超電導体としては、YBaCuで表されるイットリウム系超電導体が代表的である。超電導層113の成膜には、有機金属体積法(MOD:Metal-organic deposition)、パルスレーザー蒸着法(PLD:Pulsed Laser Deposition)、スパッタ法、又は有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)を適用できる。 The superconducting layer 113 is, for example, an oxidation of an RE-based superconductor (RE: one or more rare earth elements selected from Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb). Consists of superconductors. A typical example of the RE-based superconductor is an yttrium-based superconductor represented by YBa 2 Cu 3 O 7 . The superconducting layer 113 is formed by metal-organic deposition (MOD), pulsed laser deposition (PLD), sputtering, or metal organic chemical vapor deposition (MOCVD). Vapor Deposition) can be applied.

超電導層113には、Y、Zr、Sn、Ti、Ceのうち少なくとも1つを含む50μm以下の酸化物粒子が磁束ピンニング点として分散していることが好ましい。この場合、超電導層113の成膜法としては、三フッ化酢酸塩(TFA)を用いたTFA−MOD法が好適である。例えば、TFAを含むBa溶液中に、Baと親和性の高いZr含有ナフテン酸塩等を混合することにより、RE系超電導体からなる超電導層113に、Zrを含む酸化物粒子(BaZrO)を磁束ピンニング点として分散させることができる。なお、超電導層113中に磁束ピンニング点を分散する手法は、公知の技術を適用することができる(例えば特開2012−059468号公報)。
超電導層113中に磁束ピンニング点を分散させることにより、超電導線材11が湾曲した状態で用いられても、磁場の影響を受けにくく、安定した超電導特性が発揮される。
In the superconducting layer 113, it is preferable that 50 μm or less oxide particles containing at least one of Y, Zr, Sn, Ti, and Ce are dispersed as magnetic flux pinning points. In this case, as a method for forming the superconducting layer 113, a TFA-MOD method using trifluoroacetate (TFA) is suitable. For example, a Zr-containing oxide particle (BaZrO 3 ) is added to the superconducting layer 113 made of a RE-based superconductor by mixing a Zr-containing naphthenate having a high affinity with Ba into a Ba solution containing TFA. It can be distributed as flux pinning points. A known technique can be applied to the method of dispersing the magnetic flux pinning points in the superconducting layer 113 (for example, JP 2012-059468 A).
By dispersing the magnetic flux pinning points in the superconducting layer 113, even if the superconducting wire 11 is used in a curved state, it is hardly affected by the magnetic field and exhibits stable superconducting characteristics.

安定化層114は、超電導層113を保護するとともに、超電導状態が部分的に破れて抵抗が発生(常電導転移)した場合に電流を迂回させるための層である。安定化層114は、電気抵抗率が低く、熱伝導率の高い材料で構成されるのが好ましく、例えばAg又はCuで構成される。安定化層114の成膜には、例えばスパッタ法を適用できる。   The stabilization layer 114 is a layer for protecting the superconducting layer 113 and bypassing the current when the superconducting state is partially broken and resistance is generated (normal conducting transition). The stabilization layer 114 is preferably made of a material having a low electrical resistivity and a high thermal conductivity, for example, Ag or Cu. For example, a sputtering method can be applied to form the stabilization layer 114.

超電導線材11の熱収縮率は、主として金属基板111に依存する。室温から77Kに冷却した際のハステロイの熱収縮率は、0.204%である。また、超電導線材11の熱伝導率は、主として金属基板111及び安定化層114に依存する。77Kにおけるハステロイの熱伝導率は5.164W/(m・K)であり、Agの熱伝導率は237.3W/(m・K)である。   The thermal contraction rate of the superconducting wire 11 mainly depends on the metal substrate 111. The thermal contraction rate of Hastelloy when cooled from room temperature to 77K is 0.204%. Further, the thermal conductivity of the superconducting wire 11 mainly depends on the metal substrate 111 and the stabilization layer 114. The thermal conductivity of Hastelloy at 77K is 5.164 W / (m · K), and the thermal conductivity of Ag is 237.3 W / (m · K).

第1の電極12(高温側電極)及び第2の電極13(低温側電極)は、銅又は銅合金等の金属材料で構成される。第1の電極12は、容器41の底面近傍に配置され、導体引出部(図示略)を介して常電導電流リード15に接続される。第1の電極12の近傍の温度は、例えば77Kである。第2の電極13は、超電導コイル20の近傍に配置され、超電導コイル20のコイル電極21に接続される。第2の電極13の近傍の温度は、例えば4.2Kである。   The 1st electrode 12 (high temperature side electrode) and the 2nd electrode 13 (low temperature side electrode) are comprised with metal materials, such as copper or a copper alloy. The first electrode 12 is disposed in the vicinity of the bottom surface of the container 41 and connected to the normal conductive current lead 15 through a conductor lead-out portion (not shown). The temperature in the vicinity of the first electrode 12 is, for example, 77K. The second electrode 13 is disposed in the vicinity of the superconducting coil 20 and connected to the coil electrode 21 of the superconducting coil 20. The temperature in the vicinity of the second electrode 13 is, for example, 4.2K.

第1の電極12及び第2の電極13は、それぞれ長さ方向(X方向)における一方の端面に、超電導線材11を固定するための固定溝12a、13aを有する。固定溝12a、13aの幅方向(Y方向)両端は、開放されていてもよいし、閉塞されていてもよい。固定溝12a、13aの高さ(Z方向)は、超電導線材11の厚みよりも若干大きく設定される。固定溝12a、13aの深さ(X方向)は、超電導線材11と強固に接合し、接続抵抗が充分小さく、かつ支持できる程度であればよい。   The first electrode 12 and the second electrode 13 each have fixing grooves 12a and 13a for fixing the superconducting wire 11 on one end face in the length direction (X direction). Both ends in the width direction (Y direction) of the fixing grooves 12a and 13a may be opened or closed. The heights (Z direction) of the fixing grooves 12 a and 13 a are set slightly larger than the thickness of the superconducting wire 11. The depth (X direction) of the fixing grooves 12a and 13a only needs to be such that it can be firmly joined to the superconducting wire 11, the connection resistance is sufficiently small, and can be supported.

第1の電極12の固定溝12aには、超電導線材11の一方の端部が固定溝12aの底部に突き当たるまで挿入される。第2の電極13の固定溝13aには、超電導線材11の他方の端部が固定溝13aの底部に突き当たるまで挿入される。超電導線材11と固定溝12a、13aの隙間には溶融半田が充填される。すなわち、超電導線材11と第1の電極12及び第2の電極13は、半田付けにより接合され、電気的に接続される。   The first electrode 12 is inserted into the fixed groove 12a until one end of the superconducting wire 11 hits the bottom of the fixed groove 12a. The other end of the superconducting wire 11 is inserted into the fixed groove 13a of the second electrode 13 until it hits the bottom of the fixed groove 13a. The gap between the superconducting wire 11 and the fixing grooves 12a and 13a is filled with molten solder. That is, the superconducting wire 11 and the first electrode 12 and the second electrode 13 are joined and electrically connected by soldering.

このように、超電導電流リード11においては、固定溝12a、13aに超電導線材11が挿入されて接合されるので、リード本体の組立工程が極めて容易であり、また超電導電流リード11の小型化を図る上でも有用である。   Thus, since the superconducting wire 11 is inserted and joined to the fixing grooves 12a and 13a in the superconducting current lead 11, the assembly process of the lead body is extremely easy, and the superconducting current lead 11 is miniaturized. Also useful above.

補強部材14は、超電導線材11よりも熱伝導率が低い。これにより、外部からの熱侵入量を低減することができる。
熱侵入量を低減する観点からは、GFRPが好適である。77KにおけるGFRPの熱伝導率は0.39W/(m・K)であり、超電導線材11の熱伝導率よりも著しく小さい。また、77KにおけるGFRPの熱収縮率は0.213%であり、超電導線材11の熱収縮率よりも大きい。
一方、超電導線材11が破損したときに超電導磁石装置1を保護する観点からは、バイパスとして機能するステンレス合金、ニッケル基合金、チタン合金等が好適である。77Kにおけるステンレス合金(SUS304、SUS316)の熱伝導率は7.9W/(m・K)であり、超電導線材11の熱伝導率よりも小さい。また、77Kにおけるステンレス合金(SUS304)の熱収縮率は0.281であり、熱伝導線材11の熱収縮率よりも大きい。
The reinforcing member 14 has a lower thermal conductivity than the superconducting wire 11. Thereby, the amount of heat penetration from the outside can be reduced.
From the viewpoint of reducing the amount of heat penetration, GFRP is preferred. The thermal conductivity of GFRP at 77 K is 0.39 W / (m · K), which is significantly smaller than the thermal conductivity of the superconducting wire 11. Moreover, the thermal contraction rate of GFRP at 77 K is 0.213%, which is larger than the thermal contraction rate of the superconducting wire 11.
On the other hand, from the viewpoint of protecting the superconducting magnet device 1 when the superconducting wire 11 is damaged, a stainless alloy, nickel-base alloy, titanium alloy, or the like that functions as a bypass is preferable. The thermal conductivity of the stainless alloy (SUS304, SUS316) at 77K is 7.9 W / (m · K), which is smaller than the thermal conductivity of the superconducting wire 11. Further, the heat shrinkage rate of the stainless alloy (SUS304) at 77K is 0.281, which is larger than the heat shrinkage rate of the heat conductive wire 11.

補強部材14は、超電導線材11の両端部に第1の電極12と第2の電極13が接合されたリード本体を、所定の電極間距離(第1の電極12と第2の電極13の離間距離)となるように位置決めした状態で収容する。補強部材14は、中空の直方体部材であり、天面が開口した収容部142及び開口を閉塞する蓋部141を有する。収容部142にリード本体が収容された後、収容部142の開口を閉塞するように蓋部141が接着される。なお、収容部142及び蓋部141には、部分的に開口が形成されていてもよい。   The reinforcing member 14 has a lead body in which the first electrode 12 and the second electrode 13 are joined to both ends of the superconducting wire 11, and a predetermined inter-electrode distance (separation between the first electrode 12 and the second electrode 13. It accommodates in the state positioned so that it may become (distance). The reinforcing member 14 is a hollow rectangular parallelepiped member, and includes a housing part 142 whose top surface is open and a lid part 141 that closes the opening. After the lead main body is accommodated in the accommodating portion 142, the lid portion 141 is bonded so as to close the opening of the accommodating portion 142. Note that an opening may be partially formed in the accommodating portion 142 and the lid portion 141.

収容部142にはリード本体が収容され、所定の電極間距離となるように位置決めされる。具体的には、リード本体の位置決めを行うための位置決め部(図示略)を補強部材14に設けておき、これを利用して第1の電極12及び第2の電極13を所定の位置に固定する。   The lead 142 is accommodated in the accommodating portion 142 and is positioned so as to have a predetermined inter-electrode distance. Specifically, a positioning portion (not shown) for positioning the lead body is provided in the reinforcing member 14, and the first electrode 12 and the second electrode 13 are fixed at predetermined positions using this. To do.

本実施の形態では、リード本体が補強部材14に収容されたときに、超電導線材11が第1の電極12と第2の電極13との電極間において撓みを有する。超電導線材11に形成される撓みを図8に示す。   In the present embodiment, when the lead body is accommodated in the reinforcing member 14, the superconducting wire 11 is bent between the first electrode 12 and the second electrode 13. FIG. 8 shows the deflection formed in the superconducting wire 11.

図8Aに示すように、超電導線材11の露出長Lscは、超電導線材11の全長から固定溝12a、13aの深さ(X方向の長さ)を除いた長さである。このリード本体を補強部材14に収容したときの電極間距離Leが超電導線材11の露出長Lscよりも短ければ、図8Bに示すように、超電導線材11に撓み量ΔDの撓みが形成される。   As shown in FIG. 8A, the exposed length Lsc of the superconducting wire 11 is a length obtained by removing the depth of the fixing grooves 12 a and 13 a (length in the X direction) from the entire length of the superconducting wire 11. If the inter-electrode distance Le when the lead body is accommodated in the reinforcing member 14 is shorter than the exposed length Lsc of the superconducting wire 11, a deflection of a deflection amount ΔD is formed in the superconducting wire 11 as shown in FIG. 8B.

例えば、固定溝12a、13aのそれぞれの深さを25mm、超電導線材11の全長を151mmとした場合、超電導線材11の露出長Lscは101mmとなる。このリード本体を補強部材14に収容したときの電極間距離Leが100mmの場合、1mm分の撓みが形成されることになる。   For example, when the depth of each of the fixing grooves 12a and 13a is 25 mm and the total length of the superconducting wire 11 is 151 mm, the exposed length Lsc of the superconducting wire 11 is 101 mm. When the inter-electrode distance Le when the lead body is accommodated in the reinforcing member 14 is 100 mm, a deflection of 1 mm is formed.

ここで、撓み率ΔD/Leは、0.5%以上であることが好ましい。撓み率ΔD/Leを0.5%以上とすることにより、冷却時に超電導線材11に生じる熱収縮は撓みによって確実に吸収されるので、超電導線材11と第1の電極12及び第2の電極13との接合部に過大な負荷がかかるのを確実に防止することができる。   Here, the deflection rate ΔD / Le is preferably 0.5% or more. By setting the deflection rate ΔD / Le to 0.5% or more, the thermal contraction that occurs in the superconducting wire 11 during cooling is reliably absorbed by the deflection, so the superconducting wire 11, the first electrode 12, and the second electrode 13 are absorbed. It is possible to reliably prevent an excessive load from being applied to the joint portion.

なお、超電導線材11に生じる熱収縮を吸収する観点からは、撓み率ΔD/Leの上限は特に制限されない。しかし、撓みが大きすぎると補強部材14に収容するのが困難となったり、超電導特性が低下したりする虞がある。かかる観点から、撓み率ΔD/Leは10%以下であることが好ましい。   Note that the upper limit of the deflection rate ΔD / Le is not particularly limited from the viewpoint of absorbing thermal shrinkage generated in the superconducting wire 11. However, if the deflection is too large, it may be difficult to accommodate in the reinforcing member 14 or the superconducting characteristics may be deteriorated. From this point of view, the deflection rate ΔD / Le is preferably 10% or less.

このように、実施の形態に係る超電導電流リード10は、金属基板111上に中間層112、超電導層113、安定化層114が順に積層されたテープ状の超電導線材11と、超電導線材11の両端部に接合される金属電極(第1の電極12、第2の電極13)と、超電導線材11と金属電極(12、13)とを含むリード本体を、所定の電極間距離Leとなるように位置決めした状態で収容する補強部材14と、を備える。そして、超電導線材11は、金属電極(12、13)間において撓みを有する。   As described above, the superconducting current lead 10 according to the embodiment includes the tape-shaped superconducting wire 11 in which the intermediate layer 112, the superconducting layer 113, and the stabilizing layer 114 are sequentially laminated on the metal substrate 111, and both ends of the superconducting wire 11. The lead body including the metal electrodes (first electrode 12 and second electrode 13) bonded to the portion, the superconducting wire 11 and the metal electrodes (12, 13) is set to a predetermined inter-electrode distance Le. And a reinforcing member 14 accommodated in a positioned state. And the superconducting wire 11 has bending between metal electrodes (12, 13).

超電導電流リード10において、補強部材14がGFRPやステンレス合金等で構成される場合、超電導線材11の熱収縮率は補強部材14の熱収縮率よりも小さい。この場合、熱伝導率の高い超電導線材11の方が冷却の進行が速く、冷却初期の収縮量は補強部材14よりも超電導線材11の方が大きくなるため、超電導線材11に撓みが形成されていなければ、超電導線材11と第1の電極12及び第2の電極13との接合部に過大な負荷が生じる。
超電導電流リード10によれば、超電導線材11に形成された撓みによって、冷却時に超電導線材11に生じる熱収縮が吸収されるので、超電導線材11と第1の電極12及び第2の電極13との接合部に過大な負荷が生じることはなく、高い信頼性が確保される。
In the superconducting current lead 10, when the reinforcing member 14 is made of GFRP, stainless steel, or the like, the thermal contraction rate of the superconducting wire 11 is smaller than the thermal contraction rate of the reinforcing member 14. In this case, the superconducting wire 11 having a higher thermal conductivity is faster in cooling, and the amount of shrinkage in the initial stage of cooling is larger in the superconducting wire 11 than in the reinforcing member 14, so that the superconducting wire 11 is bent. Otherwise, an excessive load is generated at the junction between the superconducting wire 11 and the first electrode 12 and the second electrode 13.
According to the superconducting current lead 10, heat shrinkage that occurs in the superconducting wire 11 during cooling is absorbed by the bending formed in the superconducting wire 11, so that the superconducting wire 11, the first electrode 12, and the second electrode 13 An excessive load is not generated at the joint, and high reliability is ensured.

また、超電導線材11の熱収縮率が補強部材14の熱収縮率よりも大きい場合は、冷却初期だけでなく、運転中の極低温環境下においても、熱収縮量の差によって超電導線材11と第1の電極12及び第2の電極13との接合部に過大な負荷が生じる。この場合も、超電導線材11に撓みを形成することにより、超電導線材11に生じる熱収縮を吸収し、超電導線材11と第1の電極12及び第2の電極13との接合部に過大な負荷が生じるのを防止することができる。   Further, when the thermal contraction rate of the superconducting wire 11 is larger than the thermal contraction rate of the reinforcing member 14, not only in the initial stage of cooling but also in the cryogenic environment during operation, the superconducting wire 11 and the superconducting wire 11 differ from the superconducting wire 11 due to the difference in thermal contraction amount. An excessive load is generated at the junction between the first electrode 12 and the second electrode 13. Also in this case, by forming a deflection in the superconducting wire 11, the thermal contraction generated in the superconducting wire 11 is absorbed, and an excessive load is applied to the joint between the superconducting wire 11, the first electrode 12, and the second electrode 13. It can be prevented from occurring.

[実施例1]
実施例1では、YBCOからなる超電導層を有する1本の超電導線材を用意し、この両端部に、表面に錫めっき処理が施された無酸素銅製の金属電極を接合し、さらにGFRP製の補強部材に収容して、超電導電流リードを作製した。電極間距離Leは100mmとし、電極間における超電導線材の撓み率は、超電導線材の全長を変化させることにより、1%、2%、5%、20%となるようにした。
[Example 1]
In Example 1, one superconducting wire having a superconducting layer made of YBCO is prepared, and an oxygen-free copper metal electrode having a surface plated with tin is bonded to both ends thereof, and a GFRP reinforcement is further provided. A superconducting current lead was prepared by being housed in the member. The interelectrode distance Le was 100 mm, and the deflection rate of the superconducting wire between the electrodes was changed to 1%, 2%, 5%, and 20% by changing the total length of the superconducting wire.

[参照例1]
参照例1では、実施例1と同様の構成を有する超電導電流リードを、撓み率が0.3%となるように作製した。
[Reference Example 1]
In Reference Example 1, a superconducting current lead having the same configuration as in Example 1 was produced so that the deflection rate was 0.3%.

実施例1及び参照例1に係る超電導電流リードについて、極低温環境下における臨界電流特性を評価した。具体的には、超電導電流リードの金属電極に熱伝導板を取り付け、伝導冷却により超電導電流リード全体が73〜78Kとなるように冷却し、臨界電流値Ic(設計値200A)を測定した。なお、外部磁場は0T(自己磁場中)とした。評価結果を表1に示す。   The superconducting current leads according to Example 1 and Reference Example 1 were evaluated for critical current characteristics in a cryogenic environment. Specifically, a heat conduction plate was attached to the metal electrode of the superconducting current lead, and the whole superconducting current lead was cooled by conduction cooling to 73 to 78K, and the critical current value Ic (design value 200A) was measured. The external magnetic field was 0T (in a self magnetic field). The evaluation results are shown in Table 1.

Figure 0006238623
Figure 0006238623

[実施例2]
実施例2では、YBCOからなる超電導層を有する超電導線材を2本用意し、これらの金属基板面同士を貼着して複合型の超電導線材を作製した。そして、この複合型の超電導線材を幅方向に2本並設した両端部に、表面に錫めっき処理が施された無酸素銅製の金属電極を接合し、さらにGFRP製の補強部材に収容して、超電導電流リードを作製した。つまり、実施例2では4本の超電導線材を用いた超電導電流リードを作製した。電極間距離Leは100mmとし、電極間における超電導線材の撓み率は、超電導線材の全長を変化させることにより、1.2%、2%、6%、18%となるようにした。
[Example 2]
In Example 2, two superconducting wires having a superconducting layer made of YBCO were prepared, and these metal substrate surfaces were bonded together to produce a composite type superconducting wire. Then, an oxygen-free copper metal electrode whose surface is tin-plated is joined to both ends of the two composite superconducting wires arranged side by side in the width direction, and further accommodated in a reinforcing member made of GFRP. A superconducting current lead was produced. That is, in Example 2, a superconducting current lead using four superconducting wires was produced. The interelectrode distance Le was 100 mm, and the deflection rate of the superconducting wire between the electrodes was changed to 1.2%, 2%, 6%, and 18% by changing the total length of the superconducting wire.

[参照例2]
参照例2では、実施例2と同様の構成を有する超電導電流リードを、撓み率が0.4%となるように作製した。
[Reference Example 2]
In Reference Example 2, a superconducting current lead having the same configuration as in Example 2 was produced so that the deflection rate was 0.4%.

実施例2及び参照例2に係る超電導電流リードについて、極低温環境下における臨界電流特性を評価した。具体的には、超電導電流リードの金属電極に熱伝導板を取り付け、伝導冷却により超電導電流リード全体が73〜78Kとなるように冷却し、臨界電流値Ic(設計値800A)を測定した。なお、外部磁場は0T(自己磁場中)とした。評価結果を表2に示す。   The superconducting current leads according to Example 2 and Reference Example 2 were evaluated for critical current characteristics in a cryogenic environment. Specifically, a heat conduction plate was attached to the metal electrode of the superconducting current lead, and the whole superconducting current lead was cooled by conduction cooling to 73 to 78K, and the critical current value Ic (design value 800A) was measured. The external magnetic field was 0T (in a self magnetic field). The evaluation results are shown in Table 2.

Figure 0006238623
Figure 0006238623

表1、2に示すように、撓み率ΔD/Leが0.5%以上である実施例1及び実施例2では、設計値とほぼ同等の臨界電流特性が得られた。これより、超電導線材に撓みを形成するという本発明の有効性が確認された。なお、実施例1−4、実施例2−4では、設計値通りの臨界電流特性が得られたが、超電導線材が大きく撓み、補強部材への収容が困難であった。このように、実施例1−4、実施例2−4は実用的ではないため、表1、表2では参考例として示した。   As shown in Tables 1 and 2, in Example 1 and Example 2 in which the deflection rate ΔD / Le was 0.5% or more, critical current characteristics almost equal to the design values were obtained. This confirmed the effectiveness of the present invention to form a deflection in the superconducting wire. In Examples 1-4 and 2-4, the critical current characteristics as designed were obtained, but the superconducting wire was greatly bent and it was difficult to accommodate the reinforcing member. Thus, since Example 1-4 and Example 2-4 are not practical, it showed as a reference example in Table 1 and Table 2.

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 超電導磁石装置
10 超電導電流リード
11 超電導線材
111 金属基板
112 中間層
113 超電導層
114 安定化層
12 第1の電極(金属電極)
13 第2の電極(金属電極)
14 補強部材
15 常電導電流リード
20 超電導コイル
30 電源
40 低温容器
DESCRIPTION OF SYMBOLS 1 Superconducting magnet apparatus 10 Superconducting current lead 11 Superconducting wire 111 Metal substrate 112 Intermediate layer 113 Superconducting layer 114 Stabilizing layer 12 First electrode (metal electrode)
13 Second electrode (metal electrode)
14 Reinforcing member 15 Normal conducting current lead 20 Superconducting coil 30 Power source 40 Cryogenic container

Claims (8)

金属基板上に中間層、超電導層、安定化層が順に積層されたテープ状の超電導線材と、
前記超電導線材の両端部に接合される金属電極と、
前記超電導線材と前記金属電極とを含むリード本体を収容する補強部材と、を備え、
前記リード本体は、前記超電導線材が前記金属電極間において撓みを有するように、所定の電極間距離で前記補強部材に収容されていることを特徴とする超電導電流リード。
A tape-shaped superconducting wire in which an intermediate layer, a superconducting layer, and a stabilizing layer are laminated in order on a metal substrate;
Metal electrodes bonded to both ends of the superconducting wire;
And a reinforcing member which yield volumes of lead body comprising said metal electrode and the superconducting wire,
The lead body is accommodated in the reinforcing member at a predetermined inter-electrode distance so that the superconducting wire is bent between the metal electrodes.
前記電極間距離をL1、前記超電導線材のたわみ量をΔDとしたとき、ΔD/L1で表される撓み率が0.5%以上であることを特徴とする請求項1に記載の超電導電流リード。   2. The superconducting current lead according to claim 1, wherein a deflection rate represented by ΔD / L1 is 0.5% or more, where L1 is a distance between the electrodes and ΔD is a deflection amount of the superconducting wire. . 前記金属電極は、一端面に固定溝を有し、
前記固定溝に前記超電導線材の端部が挿入され、接合されることにより、前記金属電極と前記超電導線材とが電気的に接続されることを特徴とする請求項1又は2に記載の超電導電流リード。
The metal electrode has a fixing groove on one end surface,
The superconducting current according to claim 1 or 2, wherein the metal electrode and the superconducting wire are electrically connected by inserting and joining an end portion of the superconducting wire into the fixed groove. Lead.
前記補強部材は、前記超電導線材よりも熱伝導性の低い材料で構成されることを特徴とする請求項1から3のいずれか一項に記載の超電導電流リード。   4. The superconducting current lead according to claim 1, wherein the reinforcing member is made of a material having lower thermal conductivity than the superconducting wire. 5. 前記補強部材は、繊維強化プラスチックで構成されることを特徴とする請求項1から4のいずれか一項に記載の超電導電流リード。   The superconducting current lead according to any one of claims 1 to 4, wherein the reinforcing member is made of a fiber reinforced plastic. 前記超電導層がTFA−MOD法により形成され、
前記超電導層中に、Y、Zr、Sn、Ti、Ceのうち少なくとも1つを含む50μm以下の酸化物粒子が磁束ピンニング点として分散していることを特徴とする請求項1から5のいずれか一項に記載の超電導電流リード。
The superconducting layer is formed by a TFA-MOD method,
6. The oxide particle of 50 μm or less containing at least one of Y, Zr, Sn, Ti, and Ce is dispersed as a magnetic flux pinning point in the superconducting layer. The superconducting current lead according to one item.
前記安定化層が、Agで構成されることを特徴とする請求項1から6のいずれか一項に記載の超電導電流リード。   The superconducting current lead according to any one of claims 1 to 6, wherein the stabilization layer is made of Ag. 前記金属電極から露出する前記超電導線材の露出長は、前記所定の電極間距離よりも長いことを特徴とする請求項1から7のいずれか一項に記載の超電導電流リード。  The superconducting current lead according to any one of claims 1 to 7, wherein an exposed length of the superconducting wire exposed from the metal electrode is longer than the predetermined inter-electrode distance.
JP2013159228A 2013-07-31 2013-07-31 Superconducting current lead Active JP6238623B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013159228A JP6238623B2 (en) 2013-07-31 2013-07-31 Superconducting current lead
PCT/JP2014/002573 WO2015015680A1 (en) 2013-07-31 2014-05-15 Superconducting current lead
CN201480042321.6A CN105408969B (en) 2013-07-31 2014-05-15 Superconductive current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013159228A JP6238623B2 (en) 2013-07-31 2013-07-31 Superconducting current lead

Publications (2)

Publication Number Publication Date
JP2015032612A JP2015032612A (en) 2015-02-16
JP6238623B2 true JP6238623B2 (en) 2017-11-29

Family

ID=52431246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013159228A Active JP6238623B2 (en) 2013-07-31 2013-07-31 Superconducting current lead

Country Status (3)

Country Link
JP (1) JP6238623B2 (en)
CN (1) CN105408969B (en)
WO (1) WO2015015680A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573789B (en) * 2018-06-29 2024-04-19 宁波健信超导科技股份有限公司 Fixing device for high-temperature superconductive current lead

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468888B2 (en) * 1994-11-29 2003-11-17 株式会社東芝 Current leads for superconducting devices
JPH08339915A (en) * 1995-06-09 1996-12-24 Fuji Electric Co Ltd Current lead for superconducting device
US6864430B2 (en) * 1999-09-09 2005-03-08 Southwire Company Superconducting cable having a flexible former
JP2006253592A (en) * 2005-03-14 2006-09-21 Sumitomo Heavy Ind Ltd Superconducting coil and its manufacturing method
JP2010098270A (en) * 2008-10-20 2010-04-30 Sumitomo Electric Ind Ltd Superconducting coil apparatus
JP5675232B2 (en) * 2010-09-07 2015-02-25 昭和電線ケーブルシステム株式会社 Superconducting current lead
JP2012064323A (en) * 2010-09-14 2012-03-29 Swcc Showa Cable Systems Co Ltd Superconductive current lead
KR101798659B1 (en) * 2011-04-27 2017-11-16 엘에스전선 주식회사 Super-conducting cable device

Also Published As

Publication number Publication date
JP2015032612A (en) 2015-02-16
WO2015015680A1 (en) 2015-02-05
CN105408969B (en) 2018-03-20
CN105408969A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
EP2741370A1 (en) Method for joining second generation rebco high temperature superconductors using partial micro-melting diffusion welding by direct contact of high temperature superconductors and for recovering superconducting characteristics by oxygen supply annealing heat treatment
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP2007266149A (en) Method of connecting superconductive wire rod, and superconductive wire rod
JP5724029B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP2013175293A (en) Superconductive current lead, current lead device, and superconducting magnet device
JP5022279B2 (en) Oxide superconducting current lead
JP5675232B2 (en) Superconducting current lead
JP6238623B2 (en) Superconducting current lead
JP6678509B2 (en) Superconducting tape wire, superconducting current lead using superconducting tape, permanent current switch and superconducting coil
JP6444549B2 (en) Superconducting current lead
JP5789696B1 (en) Superconducting current lead and method of manufacturing superconducting current lead
JP2018055990A (en) Superconductive current lead and oxide superconducting wire material
JP5925827B2 (en) Superconducting current lead
JP6314022B2 (en) Superconducting current lead and method of manufacturing superconducting current lead
JP6353334B2 (en) Superconducting current lead
JP5882402B2 (en) Superconducting current lead
JP2009230912A (en) Oxide superconductive current lead
JP2012064323A (en) Superconductive current lead
JP6125350B2 (en) Superconducting wire connection and superconducting current lead
JP2015122163A (en) Superconductive current lead
JP2015185423A (en) Superconductive current lead
JP2015162427A (en) Superconductive current lead
JP3766448B2 (en) Superconducting current lead
JP2014179526A (en) Current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350