JP2011222346A - High-temperature superconductor and high-temperature superconducting coil using the same - Google Patents

High-temperature superconductor and high-temperature superconducting coil using the same Download PDF

Info

Publication number
JP2011222346A
JP2011222346A JP2010091214A JP2010091214A JP2011222346A JP 2011222346 A JP2011222346 A JP 2011222346A JP 2010091214 A JP2010091214 A JP 2010091214A JP 2010091214 A JP2010091214 A JP 2010091214A JP 2011222346 A JP2011222346 A JP 2011222346A
Authority
JP
Japan
Prior art keywords
temperature superconducting
conductor
wires
coil
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010091214A
Other languages
Japanese (ja)
Inventor
Taizo Tosaka
泰造 戸坂
Hiroshi Miyazaki
寛史 宮崎
Kei Koyanagi
圭 小柳
Kenji Tazaki
賢司 田崎
Masami Urata
昌身 浦田
Shigeru Ioka
茂 井岡
Yusuke Ishii
祐介 石井
Tsutomu Kurusu
努 来栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010091214A priority Critical patent/JP2011222346A/en
Publication of JP2011222346A publication Critical patent/JP2011222346A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature superconductor featuring an increased freedom of coil design capable of dislocation inside of coil using narrow high-temperature superconducting wire and a high-temperature superconducting coil formed by winding the foregoing around the core.SOLUTION: Tape-like high-temperature superconducting wires 2 comprising a metal substrate layer 4, an electrical insulator interlayer 5, and an oxide superconductive layer 6, those which being laminated in that order, are arranged in parallel to the wide-surface direction with a minute clearance provided in between, and a plurality of the parallelized high-temperature superconducting wires 2 are concatenated in the lengthwise direction at predetermined intervals at connecting sections 10. The parallelized high-temperature superconducting wires 2 have the order in which each layer thereof are laminated is reversed between the two high-temperature superconducting wires 2 and between the corresponding high-temperature superconducting wires 2 adjacent in the lengthwise direction at connecting sections 10. The four high-temperature superconducting wires 2 are electrically connected with each other at connecting sections 10 by two sheets of connecting-use high-temperature superconducting wires 3, the end portions thereof being fixed to the upper and lower surfaces of the high-temperature superconducting wires 2.

Description

本発明の実施形態は、酸化物超電導層を設けて形成された高温超電導導体及び高温超電導コイルに関する。   Embodiments described herein relate generally to a high-temperature superconducting conductor and a high-temperature superconducting coil formed by providing an oxide superconducting layer.

高温・高磁場中での臨界電流特性に優れた、例えばY(イットリウム)やGd(ガドリニウム)などの希土類元素系の酸化物超電導層を、ハステロイ(Hastelloy;登録商標)等で形成された金属基板上に積層した酸化セリウム等の中間層の上に形成した、第2世代線材と呼ばれる高温超電導線が製造されるようになってきた。それに伴い、この高温超電導線を用いて、例えば、磁気共鳴画像診断装置(MRI)や超電導エネルギー貯蔵装置(SMES)、半導体製造装置などの超電導応用機器に内蔵される超電導コイルを製作することが進められている。   Metal substrate formed of a rare earth element-based oxide superconducting layer, such as Y (yttrium) or Gd (gadolinium), which has excellent critical current characteristics in a high temperature and high magnetic field, formed of Hastelloy (registered trademark) or the like High-temperature superconducting wires called second generation wires formed on an intermediate layer such as cerium oxide laminated thereon have been manufactured. Accordingly, using this high-temperature superconducting wire, for example, a superconducting coil built into superconducting application equipment such as a magnetic resonance diagnostic imaging apparatus (MRI), a superconducting energy storage apparatus (SMES), and a semiconductor manufacturing apparatus is being advanced. It has been.

そして、超電導コイルを製作する際には、通電電流値を増やすように設計するため、高温超電導線は、幅が広い金属基板を用いて製造した幅広のものとすることが考えられる。しかし、図20に示すように、高温超電導線100を幅広のものとした場合には、励消磁などによって斜線矢印で示す変動磁界(dB/dt)を受けると、変動磁界(dB/dt)を遮蔽するように、高温超電導線100内には輸送電流(I)とは別に磁化電流(I)が発生し、偏流による通電容量の低減及び交流損失の発生が問題となり、その影響は、高温超電導線100の幅が広くなるほど大きくなる。 And when manufacturing a superconducting coil, in order to design so that an energization current value may be increased, it is possible that the high temperature superconducting wire is a wide one manufactured using a wide metal substrate. However, as shown in FIG. 20, in the case where the high temperature superconducting wire 100 is wide, when the variable magnetic field (dB / dt) indicated by the hatched arrow is received due to excitation demagnetization or the like, the variable magnetic field (dB / dt) is changed. As shielded, a magnetizing current (I M ) is generated in the high-temperature superconducting wire 100 in addition to the transport current (I T ), and there is a problem of reduction in current carrying capacity due to drift current and generation of AC loss. The width of the high temperature superconducting wire 100 increases as the width increases.

こうした問題に対しては、巻線する際に幅が狭く細い複数の高温超電導線を重ね合わせる方法がとられる。ただし、高温超電導線を重ね合わせた場合には、経験磁場の違いによる偏流を発生させないようにするために、重ね合わせた高温超電導線の相対的な位置を変えること、すなわち、転位が必要となる。しかし、テープ状の高温超電導線の相対的な位置をコイル内部で変えることは困難である。   In order to solve such a problem, a method of superposing a plurality of high-temperature superconducting wires having a narrow width when winding is used. However, when superposed high-temperature superconducting wires are superposed, it is necessary to change the relative position of the superposed high-temperature superconducting wires, that is, dislocation, in order not to generate a drift due to a difference in empirical magnetic fields. . However, it is difficult to change the relative position of the tape-shaped high-temperature superconducting wire inside the coil.

そのため、超電導コイルを複数のユニットコイルを積層し、接続する構成とし、その接続部で高温超電導線の相対的な位置関係を変えることによって転位するようにすることが知られている。   Therefore, it is known that the superconducting coil has a structure in which a plurality of unit coils are laminated and connected, and the dislocation is performed by changing the relative positional relationship of the high-temperature superconducting wire at the connecting portion.

例えば、ダブルパンケーキ型超電導コイルの少なくとも1つのユニットにおける超電導導体の一端において内周側に位置する超電導層の巻数を外周側の巻数よりも多くし、他端において両超電導層の相互位置を転位するよう構成する。あるいは、複数枚の高温超電導テープ材を巻き回したコイルユニットを複数個積層した高温超電導コイルで、各コイルユニット間での高温超電導テープ材の接続を、少なくとも2組のテープ材は、一方のコイルユニットの内側からn番目に巻かれた高温超電導テープ材と、他方のコイルユニットの内側からm番目(n≠m)に巻かれた高温超電導テープ材とを接続して、高温超電導テープ材の作るループを貫く磁束の和が略0とするよう構成する。あるいはまた、超電導コイルを、2本の超電導テープ線を束ねて巻線した第1のコイルと第2のコイルによるダブルパンケーキ形状とし、第1のコイルと第2のコイルの最内層に位置する2本の超電導テープ線のみを円周方向の任意の一箇所で入れ替えて構成する等である。   For example, the number of turns of the superconducting layer located on the inner circumference side at one end of the superconducting conductor in at least one unit of a double pancake type superconducting coil is larger than the number of turns on the outer circumference side, and the mutual position of both superconducting layers is shifted at the other end. Configure to Alternatively, a high-temperature superconducting coil in which a plurality of coil units each having a plurality of high-temperature superconducting tape materials wound thereon are stacked, and the connection of the high-temperature superconducting tape material between each coil unit is at least two sets of tape materials. A high-temperature superconducting tape material wound nth from the inside of the unit and a high-temperature superconducting tape material mth (n ≠ m) from the inside of the other coil unit are connected to form a high-temperature superconducting tape material. The sum of the magnetic fluxes penetrating the loop is configured to be substantially zero. Alternatively, the superconducting coil is formed in a double pancake shape by a first coil and a second coil wound by bundling two superconducting tape wires, and is located in the innermost layer of the first coil and the second coil. For example, only two superconducting tape wires are replaced at any one location in the circumferential direction.

特開平10−308306号公報Japanese Patent Laid-Open No. 10-308306 特開2002−184618号公報JP 2002-184618 A 特開2009−246118号公報JP 2009-246118 A

しかしながら、複数のユニットコイルを積層し、その接続部で高温超電導線を転位しようとした場合には、経験磁場が同じであるユニットコイルの数と、重ね合わせた高温超電導線の数とを同じにする必要があり、これが設計する上での厳しい制約条件となる。例えば、円筒型の超電導コイルおいて、ユニットコイルの接続部のみで高温超電導線を転位しようとすると、磁場分布の対称性からユニットコイルを2つずつ積層した構成としなければならず、重ね合わせる高温超電導線の枚数は2枚にする必要があった。このため、こうした従来方法では、通電容量の低減や交流損失の発生を抑制するために高温超電導線の幅を狭くしようとした場合に、コイル形状及び寸法を自由に設計できないという問題が生じる。   However, when a plurality of unit coils are stacked and the high-temperature superconducting wire is transferred at the connection, the number of unit coils having the same empirical magnetic field and the number of superposed high-temperature superconducting wires are the same. This is a severe constraint in designing. For example, in a cylindrical superconducting coil, if a high-temperature superconducting wire is to be displaced only at the connecting portion of the unit coil, the unit coil must be stacked two by two due to the symmetry of the magnetic field distribution, and the high temperature to be superposed The number of superconducting wires needed to be two. For this reason, in such a conventional method, there is a problem that the coil shape and dimensions cannot be freely designed when trying to narrow the width of the high-temperature superconducting wire in order to reduce the current carrying capacity and suppress the occurrence of AC loss.

こうした状況に鑑みて本発明はなされたもので、その目的とするところは、幅が狭い高温超電導線を用いた場合でも、コイル形状及び寸法の設計自由度を確保するため、コイル内部での転位が可能となる高温超電導導体と、この高温超電導導体を巻き回して形成した高温超電導コイルを提供することにある。   The present invention has been made in view of such circumstances, and the purpose of the present invention is to achieve dislocation within the coil in order to ensure the degree of freedom in design of the coil shape and dimensions even when a high-temperature superconducting wire having a narrow width is used. An object of the present invention is to provide a high-temperature superconducting conductor that can be used, and a high-temperature superconducting coil formed by winding the high-temperature superconducting conductor.

高温超電導導体の実施形態は、金属基板層、電気絶縁体の中間層及び酸化物超電導層の各層を順に積層してなる所定長のテープ状の高温超電導線を、互いの間に微小間隙を設け幅広面が同一面を形成するよう平行に並べて並列化し、かつ並列化した前記高温超電導線を、長手方向に所定間隔を設けて接続部で複数連接した高温超電導導体であって、前記並列化した高温超電導線は、並列化したうちの少なくとも1本の前記高温超電導線における各層の積層順が他の前記高温超電導線における各層の積層順と逆となっており、前記接続部は、前記並列化した高温超電導線の連接方向に隣接するもの同士の各端部の上下面に、平板状の2枚の接続用高温超電導線をそれぞれ電気的に接続するように固着することによって形成されている。   In the embodiment of the high-temperature superconducting conductor, a tape-shaped high-temperature superconducting wire having a predetermined length formed by sequentially laminating a metal substrate layer, an intermediate layer of an electrical insulator and an oxide superconducting layer is provided with a minute gap therebetween. A high-temperature superconducting conductor in which a plurality of the high-temperature superconducting wires arranged in parallel and arranged in parallel so that the wide surfaces form the same surface and connected in parallel at a predetermined interval in the longitudinal direction is the parallelized In the high-temperature superconducting wire, the stacking order of the layers in at least one of the high-temperature superconducting wires out of parallel is opposite to the stacking order of the layers in the other high-temperature superconducting wires, and the connecting portion is connected in parallel The two high-temperature superconducting wires for connection are fixed to the upper and lower surfaces of each end portion adjacent to each other in the connecting direction of the high-temperature superconducting wires so as to be electrically connected to each other.

また、高温超電導コイルの実施形態は、前記高温超電導導体を巻き回し、コイル成形した後に熱硬化性合成樹脂を含浸させて巻線部が形成されている。   In the embodiment of the high-temperature superconducting coil, the high-temperature superconducting conductor is wound and coil-molded, and then impregnated with a thermosetting synthetic resin to form a winding portion.

本発明によれば、コイル設計を行う際にコイル形状及び寸法の設計自由度を十分に確保することができ、設計が容易となり、コイル製作時の巻線作業を容易に実施することができる高温超電導導体を得ることができる。さらには変動磁界(dB/dt)を発生させた場合に、通電容量の低減や交流損失の発生が少ない高温超電導コイルを得ることができる。   According to the present invention, when designing a coil, a sufficient degree of freedom in design of the coil shape and dimensions can be ensured, the design becomes easy, and the winding work during coil manufacture can be easily performed. A superconducting conductor can be obtained. Furthermore, when a fluctuating magnetic field (dB / dt) is generated, it is possible to obtain a high-temperature superconducting coil with reduced current carrying capacity and less AC loss.

第1の実施形態における高温超電導導体を示す斜視図である。It is a perspective view which shows the high-temperature superconducting conductor in 1st Embodiment. 図1に示す高温超電導導体の断面図で、図2(a)は断面Uにおける矢視方向の断面図であり、図2(b)は断面Vにおける矢視方向の断面図である。2A is a cross-sectional view of the high-temperature superconducting conductor shown in FIG. 1, FIG. 2A is a cross-sectional view in the direction of the arrow in the cross-section U, and FIG. (a)および(b)は、各々図1に示す高温超電導導体における輸送電流(I)の経路を示す斜視図である。(A) And (b) is a perspective view which shows the path | route of the transport current ( IT ) in the high temperature superconducting conductor shown in FIG. 1, respectively. 図1に示す高温超電導導体における変動磁界(dB/dt)が印加された場合の誘導電界(E)の状態を示す斜視図である。It is a perspective view which shows the state of the induction electric field (E) when the fluctuation magnetic field (dB / dt) in the high temperature superconducting conductor shown in FIG. 1 is applied. 第1の実施形態における高温超電導コイルを示す斜視図である。It is a perspective view which shows the high temperature superconducting coil in 1st Embodiment. 図5に示す高温超電導コイルにおけA部の部分断面図である。It is a fragmentary sectional view of the A section in the high temperature superconducting coil shown in FIG. 第1の実施形態における高温超電導導体の第1の変形態を示す部分斜視図である。It is a fragmentary perspective view which shows the 1st modification of the high temperature superconducting conductor in 1st Embodiment. 第1の実施形態における高温超電導導体の第2の変形態を示す部分斜視図である。It is a fragmentary perspective view which shows the 2nd modification of the high temperature superconducting conductor in 1st Embodiment. 第1の実施形態における高温超電導導体の第3の変形態を示す部分斜視図である。It is a fragmentary perspective view which shows the 3rd modification of the high temperature superconducting conductor in 1st Embodiment. 第1の実施形態における高温超電導導体の第4の変形態を示す部分斜視図である。It is a fragmentary perspective view which shows the 4th modification of the high temperature superconducting conductor in 1st Embodiment. 第1の実施形態における高温超電導導体の第5の変形態を示す部分斜視図である。It is a fragmentary perspective view which shows the 5th modification of the high temperature superconducting conductor in 1st Embodiment. 第1の実施形態における高温超電導導体の第6の変形態を示す部分斜視図である。It is a fragmentary perspective view which shows the 6th modification of the high temperature superconducting conductor in 1st Embodiment. 第1の実施形態における高温超電導コイルの第1の変形態を示す高温超電導導体の斜視図で、図13(a)は高温超電導導体における磁場(B)と磁束(φ)を説明する図であり、図13(b)は高温超電導導体における誘導電界(E)を示す図である。FIG. 13A is a perspective view of a high-temperature superconducting conductor showing a first modification of the high-temperature superconducting coil in the first embodiment, and FIG. 13A is a diagram for explaining a magnetic field (B) and a magnetic flux (φ) in the high-temperature superconducting conductor. FIG. 13B is a diagram showing an induced electric field (E) in the high-temperature superconducting conductor. 第1の実施形態における高温超電導コイルの第2の変形態におけA部の部分断面図である。It is a fragmentary sectional view of the A section in the 2nd modification of the high temperature superconducting coil in a 1st embodiment. 第2の実施形態における高温超電導導体の要部を示す斜視図である。It is a perspective view which shows the principal part of the high temperature superconducting conductor in 2nd Embodiment. 図15に示す高温超電導導体の要部の断面図で、図16(a)は断面Wにおける矢視方向の断面図であり、図16(b)は断面Xにおける矢視方向の断面図である。15A is a cross-sectional view of the main part of the high-temperature superconducting conductor shown in FIG. 15, FIG. 16A is a cross-sectional view in the direction of the arrow in the cross-section W, and FIG. . 第2の実施形態における高温超電導導体を示す斜視図である。It is a perspective view which shows the high-temperature superconducting conductor in 2nd Embodiment. 図17に示す高温超電導導体の断面図で、図18(a)は断面Yにおける矢視方向の断面図であり、図18(b)は断面Zにおける矢視方向の断面図である。17A is a cross-sectional view of the high-temperature superconducting conductor shown in FIG. 17, FIG. 18A is a cross-sectional view in the direction of arrow in cross-section Y, and FIG. (a)および(b)は、各々図17に示す高温超電導導体における輸送電流(I)の経路を示す斜視図である。(A) And (b) is a perspective view which shows the path | route of the transport current ( IT ) in the high temperature superconducting conductor shown in FIG. 17, respectively. 従来の技術を説明するための高温超電導線の斜視図である。It is a perspective view of the high temperature superconducting wire for demonstrating the prior art.

(第1の実施形態)
第1の実施形態を図1乃至図6により説明する。また、本実施形態における高温超電導導体の第1の変形形態を図7により、第2の変形形態を図8により、第3の変形形態を図9により、第4の変形形態を図10により、第5の変形形態を図11により、第6の変形形態を図12によりそれぞれ説明する。また、本実施形態における高温超電導コイルの第1の変形形態を図13により、第2の変形形態を図14によりそれぞれ説明する。
(First embodiment)
A first embodiment will be described with reference to FIGS. Further, the first modified embodiment of the high-temperature superconducting conductor in the present embodiment is shown in FIG. 7, the second modified embodiment is shown in FIG. 8, the third modified embodiment is shown in FIG. 9, and the fourth modified embodiment is shown in FIG. The fifth modification will be described with reference to FIG. 11, and the sixth modification will be described with reference to FIG. Further, a first modification of the high-temperature superconducting coil in the present embodiment will be described with reference to FIG. 13, and a second modification will be described with reference to FIG.

先ず図1乃至図4に示すように、高温超電導導体1は、2本の対をなす所定長のテープ状高温超電導線2と、複数の対をなす高温超電導線2を長手方向に連接するための幅広面(テープ面)の幅が高温超電導線2の幅の略2倍に形成された方形平板状接続用高温超電導線3とによって構成されている。高温超電導線2と接続用高温超電導線3は、図2に示すように、テープ状の金属基板層4の上にそれぞれ等幅に形成された中間層5、酸化物超電導層6、保護層7を順に積層した多層構造となっている。   First, as shown in FIGS. 1 to 4, the high-temperature superconducting conductor 1 connects two pairs of tape-like high-temperature superconducting wires 2 and a plurality of pairs of high-temperature superconducting wires 2 in the longitudinal direction. The wide flat surface (tape surface) is formed of a rectangular flat plate connecting high temperature superconducting wire 3 having a width approximately twice that of the high temperature superconducting wire 2. As shown in FIG. 2, the high-temperature superconducting wire 2 and the connecting high-temperature superconducting wire 3 include an intermediate layer 5, an oxide superconducting layer 6, and a protective layer 7 formed on the tape-like metal substrate layer 4 at equal widths. It has a multilayer structure in which are stacked in order.

金属基板層4は、例えば、ニッケル基合金のハステロイ(Hastelloy;登録商標)やステンレス鋼などで形成されており、この金属基板層4の上に積層された中間層5は、例えば、酸化セリウムや酸化マグネシウムなどの電気絶縁体の単層もしくは複数層構成となっている。また、中間層5の上に積層された酸化物超電導層6は、例えば、Y(イットリウム)やGd(ガドリニウム)といった希土類(Re)元素が含まれるRe123系などの厚さが、例えば数μmと非常に薄い酸化物層となっている。   The metal substrate layer 4 is formed of, for example, a nickel-based alloy Hastelloy (registered trademark), stainless steel, or the like. The intermediate layer 5 laminated on the metal substrate layer 4 is, for example, cerium oxide or It has a single-layer or multi-layer structure of an electrical insulator such as magnesium oxide. In addition, the oxide superconducting layer 6 laminated on the intermediate layer 5 has a thickness of, for example, several μm, such as a Re123 system containing a rare earth (Re) element such as Y (yttrium) or Gd (gadolinium). It is a very thin oxide layer.

さらに、酸化物超電導層6の上に積層された保護層7は、例えば、Au(金)やAg(銀)などで形成されている。そして、積層された金属基板層4から保護層7までの全層には、例えば、Cu(銅)等で形成された安定化層8が被覆されている。なお、安定化層8については、金属テープを半田付けすることにより被覆するものでもよく、また多層構造をなしている全層を被覆せず、片方の幅広面のみを覆うようにしてもよい。   Furthermore, the protective layer 7 laminated on the oxide superconducting layer 6 is made of, for example, Au (gold) or Ag (silver). And all the layers from the laminated metal substrate layer 4 to the protective layer 7 are covered with a stabilizing layer 8 made of, for example, Cu (copper) or the like. The stabilizing layer 8 may be coated by soldering a metal tape, or may not cover all the layers having a multilayer structure and cover only one wide surface.

また、高温超電導導体1を構成する対をなしている2本のテープ状高温超電導線2は、間に微小間隙を設けるようにして、それぞれの幅広面が表裏面(上下面)となるようにして平行に並べられて並列化されており、さらに並列化された2本の高温超電導線2は、各層の積層順が上下逆になっていて、例えば一方の高温超電導線2は金属基板層4が上側に、他方の高温超電導線2は金属基板層4が下側に位置するようになっている。さらにまた、連接した際の前対である2本の高温超電導線2に、所定間隔を設けて長手方向に連接される次の対である後対の2本のテープ状高温超電導線2では、一方の高温超電導線2は金属基板層4が下側に、他方の高温超電導線2は金属基板層4が上側に位置するようになっており、所定間隔を設けて長手方向に隣接する前対、後対の各対応する高温超電導線2の間でも各層の積層順が上下逆となっている。   The two tape-shaped high-temperature superconducting wires 2 forming a pair constituting the high-temperature superconducting conductor 1 are provided with a minute gap between them so that the wide surfaces thereof are the front and back surfaces (upper and lower surfaces). The two high-temperature superconducting wires 2 that are arranged in parallel are arranged in parallel, and the stacking order of the layers is reversed upside down. For example, one of the high-temperature superconducting wires 2 is the metal substrate layer 4. Is located on the upper side, and the metal substrate layer 4 is located on the lower side of the other high-temperature superconducting wire 2. Furthermore, in the two pairs of tape-like high temperature superconducting wires 2 that are the next pair that are connected in the longitudinal direction with a predetermined interval to the two high temperature superconducting wires 2 that are the front pair when connected, One high-temperature superconducting wire 2 has the metal substrate layer 4 on the lower side, and the other high-temperature superconducting wire 2 has the metal substrate layer 4 on the upper side. The stacking order of the layers is also reversed between the corresponding high-temperature superconducting wires 2 in the rear pair.

また、前対、後対の2対の高温超電導線2を長手方向前後に接続する接続用高温超電導線3は、隣接する前対、後対の4本の高温超電導線2の端部上下面に、半田9により電気的に接続されるようにそれぞれ固着され、4本の高温超電導線2を2枚の接続用高温超電導線3により挟んだ接続部10が構成されて、前対、後対の4本の高温超電導線2の接続が行われる。そして、2対の高温超電導線2の下面に固着される接続用高温超電導線3の各層の積層順は、図2(a)に図1の断面Uでの矢視方向の断面図を示すように、前対の一方の高温超電導線2の積層順と同じで、金属基板層4が下側に位置し、上面に固着される接続用高温超電導線3は、逆に、前対の他方の高温超電導線2の積層順と同じで、金属基板層4が上側に位置するようになっている。   The connecting high-temperature superconducting wires 3 for connecting the two pairs of high-temperature superconducting wires 2 in the longitudinal direction are the upper and lower surfaces of the ends of the four adjacent high-temperature superconducting wires 2 in the front and rear pairs. Are connected to each other so as to be electrically connected to each other by a solder 9, and a connecting portion 10 in which four high-temperature superconducting wires 2 are sandwiched by two connecting high-temperature superconducting wires 3 is formed. These four high-temperature superconducting wires 2 are connected. The stacking order of the layers of the connecting high-temperature superconducting wire 3 fixed to the lower surfaces of the two pairs of high-temperature superconducting wires 2 is as shown in FIG. Further, the same as the stacking order of the one pair of high-temperature superconducting wires 2 of the front pair, the metal substrate layer 4 is located on the lower side, and the connecting high-temperature superconducting wire 3 fixed to the upper surface It is the same as the stacking order of the high-temperature superconducting wires 2, and the metal substrate layer 4 is located on the upper side.

なお、接続用高温超電導線3の各層の積層順は、後対の2本の高温超電導線2に対し図2(b)に図1の断面Vでの矢視方向の断面図を示すように前対の場合とは逆で、下面に固着される接続用高温超電導線3と他方の高温超電導線2の積層順が同じであり、上面に固着される接続用高温超電導線3と一方の高温超電導線2の積層順が同じである。   Note that the stacking order of each layer of the high-temperature superconducting wire 3 for connection is as shown in FIG. 2 (b) with respect to the two pairs of high-temperature superconducting wires 2 shown in FIG. Contrary to the case of the previous pair, the connecting high-temperature superconducting wire 3 fixed to the lower surface and the other high-temperature superconducting wire 2 are stacked in the same order, and the connecting high-temperature superconducting wire 3 fixed to the upper surface and one of the high-temperature superconducting wires 2 The stacking order of the superconducting wires 2 is the same.

そして、上述のように構成された高温超電導導体1では、中間層5が電気絶縁体で構成されているため、酸化物超電導層6に流れる電流は、中間層5を貫通する方向には流れ出し難くい。したがって、上下の接続用高温超電導線3が固着されて2対の高温超電導線2が連接された接続部10では、酸化物超電導層6に流れる電流は、次のように流れる。   In the high-temperature superconducting conductor 1 configured as described above, since the intermediate layer 5 is formed of an electrical insulator, the current flowing through the oxide superconducting layer 6 is unlikely to flow out in a direction penetrating the intermediate layer 5. Yes. Therefore, in the connection part 10 where the upper and lower connecting high-temperature superconducting wires 3 are fixed and the two pairs of high-temperature superconducting wires 2 are connected, the current flowing in the oxide superconducting layer 6 flows as follows.

すなわち、前対の高温超電導線2と接続用高温超電導線3の接続部分においては、断面Uでの断面図である図2(a)に実線矢印で示すように、一方の高温超電導線2からは上面に固着された接続用高温超電導線3の方向に、また他方の高温超電導線2からは下面に固着された接続用高温超電導線3の方向に流れることになる。さらに、後対の高温超電導線2と接続用高温超電導線3の接続部分においては、断面Vでの断面図である図2(b)に実線矢印で示すように、上面に固着された接続用高温超電導線3から他方の高温超電導線2の方向に、また下面に固着された接続用高温超電導線3から一方の高温超電導線2の方向に流れることになる。   That is, at the connecting portion between the high-temperature superconducting wire 2 and the connecting high-temperature superconducting wire 3, as shown by a solid line arrow in FIG. Flows in the direction of the connecting high temperature superconducting wire 3 fixed on the upper surface, and from the other high temperature superconducting wire 2 in the direction of the connecting high temperature superconducting wire 3 fixed on the lower surface. Further, in the connection portion between the high-temperature superconducting wire 2 and the high-temperature superconducting wire 3 for connection, as shown by a solid line arrow in FIG. It flows from the high temperature superconducting wire 3 to the other high temperature superconducting wire 2 and from the connecting high temperature superconducting wire 3 fixed to the lower surface to the one high temperature superconducting wire 2.

これにより、高温超電導導体1に流れる輸送電流(I)の経路は、接続用高温超電導線3を省略する図3に実線矢印で示すように、前対の高温超電導線2の上流対の他方の高温超電導線2を流れた輸送電流(I)は、接続部10で前対の高温超電導線2の一方の高温超電導線2に流れる経路を変え、さらに、次の後対の高温超電導線2の他方の高温超電導線2に接続部10で流れる経路を変える。同様に、前対の高温超電導線2の上流である更に前の対の一方の高温超電導線2を流れた輸送電流(I)は、接続部10で前対の高温超電導線2の他方の高温超電導線2に流れる経路を変え、さらに、次の後対の高温超電導線2の一方の高温超電導線2に接続部10で流れる経路を変える。 Thereby, the path of the transport current (I T ) flowing in the high temperature superconductor 1 is the other of the upstream pair of the high temperature superconductor 2 of the preceding pair as shown by the solid arrow in FIG. The transport current (I T ) flowing through the high-temperature superconducting wire 2 changes the path that flows to one high-temperature superconducting wire 2 of the front-side high-temperature superconducting wire 2 at the connection portion 10. The path of the connecting portion 10 to the other high-temperature superconducting wire 2 is changed. Similarly, the transport current (I T ) flowing through one high-temperature superconducting wire 2 upstream of the previous pair of high-temperature superconducting wires 2 is the other current of the front-side high-temperature superconducting wire 2 at the connection 10. The path that flows to the high-temperature superconducting wire 2 is changed, and further, the path that flows to the one high-temperature superconducting wire 2 of the next pair of high-temperature superconducting wires 2 is changed.

このように、高温超電導導体1では、長手方向に連接した複数対の高温超電導線2を流れる経路を接続部10で変えながら輸送電流(I)は流れることになる。その結果、高温超電導導体1は、各接続部10で転位した場合と同様の効果を得ることができることになる。すなわち、高温超電導導体1は、輸送電流(I)の流れる経路が制限されることから、変動磁界(dB/dt)が印加された場合に発生する誘導電界(E)は、図4に実線矢印、点線矢印で示すように、キャンセルされることになり、磁化電流(I)の発生が抑制される。なお、図4では、並列化した対をなす高温超電導線2をそれぞれ実線、点線で示している。 As described above, in the high-temperature superconducting conductor 1, the transport current (I T ) flows while changing the path through the plural pairs of high-temperature superconducting wires 2 connected in the longitudinal direction at the connecting portion 10. As a result, the high-temperature superconducting conductor 1 can obtain the same effects as those obtained when dislocations are made at each connection portion 10. That is, in the high-temperature superconducting conductor 1, since the path through which the transport current ( IT ) flows is limited, the induced electric field (E) generated when the fluctuating magnetic field (dB / dt) is applied is shown by a solid line in FIG. As indicated by the arrows and dotted arrows, it is canceled and the generation of the magnetizing current (I M ) is suppressed. In FIG. 4, the high-temperature superconducting wires 2 forming a parallel pair are indicated by a solid line and a dotted line, respectively.

また、積層構造が逆の高温超電導線2同士を並列化して長手方向に接続用高温超電導線3を用いて複数対連接するようにして高温超電導導体1を構成しているので、接続部10は簡単な構成となり、その製作は容易となる。さらに、巻線を行う場合も、立体交差等による厚さの増大もないことから、巻線作業も容易となる。   In addition, since the high temperature superconducting conductors 1 are configured in such a manner that a plurality of high temperature superconducting wires 2 having the opposite laminated structure are arranged in parallel and connected in pairs in the longitudinal direction using the high temperature superconducting wires 3 for connection. The construction is simple and the manufacture is easy. Furthermore, even when winding is performed, the thickness is not increased by a three-dimensional intersection or the like, so that the winding work is facilitated.

以上の通り、高温超電導導体1は、輸送電流(I)が流れる経路を接続部10で転位させた場合と同様に制限されるため、変動磁界(dB/dt)が印加された場合に発生する誘導電界(E)がキャンセルされ、磁化電流(I)の発生が抑制される。これにより、通電容量の低減や交流損失の発生が少なく、しかも高温超電導導体1の製作が容易なものとなる。そして、高温超電導線2が狭幅のものであっても、コイル設計等を行う際にコイル形状及び寸法の設計自由度を十分に確保することができ、設計が容易となり、コイル製作時の巻線作業も容易なものとなる。 As described above, the high-temperature superconducting conductor 1 is restricted in the same manner as when the path through which the transport current ( IT ) flows is dislocated at the connection portion 10, and thus is generated when a variable magnetic field (dB / dt) is applied. The induced electric field (E) is canceled and the generation of the magnetizing current (I M ) is suppressed. As a result, the current carrying capacity is reduced and the occurrence of AC loss is small, and the high-temperature superconducting conductor 1 can be easily manufactured. Even when the high-temperature superconducting wire 2 has a narrow width, it is possible to ensure a sufficient degree of freedom in designing the coil shape and dimensions when performing coil design, etc., making the design easy and winding at the time of coil manufacture. Line work is also easy.

次に上述の高温超電導導体1を用いた高温超電導コイルを説明する。図5及び図6において、31は高温超電導コイルであり、この高温超電導コイル31の巻線部32は、転位が施された高温超電導導体1の全周囲にターン間絶縁材33を被覆し、その後に、例えば同心円状に高温超電導導体1を巻き重ね、所謂、シングルパンケーキ形状の所定形状となるよう巻き回し、コイル成形を行った後、さらに、例えば熱硬化性合成樹脂のエポキシ樹脂等の含浸材34の含浸がなされて形成されている。   Next, a high temperature superconducting coil using the above-described high temperature superconducting conductor 1 will be described. 5 and 6, reference numeral 31 denotes a high-temperature superconducting coil, and the winding portion 32 of the high-temperature superconducting coil 31 covers the entire periphery of the high-temperature superconducting conductor 1 to which dislocation has been applied, and then turns-insulating material 33 Further, for example, the high-temperature superconducting conductor 1 is concentrically wound, wound into a so-called single pancake-shaped predetermined shape, coil-formed, and further impregnated with, for example, a thermosetting synthetic resin epoxy resin or the like The material 34 is formed by impregnation.

そして、高温超電導コイル31に電流を流した際には、図5中に実線矢印で示すように巻線部32に磁場(B)が発生する。発生した磁場(B)は、その方向を矢印方向、強さの程度を実線の太さで示すような分布を有するものとなる。なお、高温超電導コイル31は、巻線部32に図示しない端子等が設けられており、端子等を介して取り付けるようにすることによって、例えば、磁気共鳴画像診断装置(MRI)や超電導エネルギー貯蔵装置(SMES)、単結晶引き上げ装置などの超電導応用機器に用いられる。   When a current is passed through the high temperature superconducting coil 31, a magnetic field (B) is generated in the winding part 32 as indicated by the solid line arrow in FIG. The generated magnetic field (B) has such a distribution that the direction is indicated by the arrow and the strength is indicated by the thickness of the solid line. Note that the high-temperature superconducting coil 31 is provided with a terminal (not shown) or the like in the winding portion 32, and is attached via the terminal or the like, for example, a magnetic resonance imaging diagnosis apparatus (MRI) or a superconducting energy storage device. (SMES), used for superconducting applications such as single crystal pulling equipment.

このように、上述の1次転位がなされた高温超電導導体1を巻き回して高温超電導コイル31を形成しているため、高温超電導コイル31に変動磁場を発生させた場合においても、通電容量の低減や交流損失の発生が少なくなる。すなわち、本実施形態の高温超電導コイル31は、変動磁界(dB/dt)が印加された場合に通電容量の低減や交流損失の発生が少ない高温超電導導体1を用いて製作しているため、変動磁界(dB/dt)を発生させた場合に、通電容量の低減や交流損失の発生が少ない高温超電導コイル31とすることができる。   As described above, since the high-temperature superconducting coil 31 is formed by winding the high-temperature superconducting conductor 1 subjected to the primary dislocation described above, even when a fluctuating magnetic field is generated in the high-temperature superconducting coil 31, the conduction capacity is reduced. And less AC loss. That is, the high-temperature superconducting coil 31 of the present embodiment is manufactured using the high-temperature superconducting conductor 1 with reduced current carrying capacity and less AC loss when a varying magnetic field (dB / dt) is applied. When a magnetic field (dB / dt) is generated, the high-temperature superconducting coil 31 can be reduced in current carrying capacity and AC loss.

なお、上記の本実施形態の高温超電導導体1では、高温超電導導体1の接続用高温超電導線3を方形平板状とし、高温超電導線2の上下面を同位置で挟むように固着したが、例えば図7乃至図9に示す高温超電導導体の第1乃至第3の変形形態のようにしてもよい。   In the high-temperature superconducting conductor 1 of the present embodiment, the high-temperature superconducting wire 3 for connection of the high-temperature superconducting conductor 1 has a rectangular flat plate shape and is fixed so as to sandwich the upper and lower surfaces of the high-temperature superconducting wire 2 at the same position. You may make it like the 1st thru | or 3rd modification of the high temperature superconducting conductor shown in FIG. 7 thru | or FIG.

すなわち、図7に示す第1の変形形態の高温超電導導体1aは、接続用高温超電導線15は、並列化した対の高温超電導線2と同幅の六角形状の平板で、高温超電導導体1の長手方向の対向する頂点の左右辺が、長手方向に対して90度未満の所定の角度θとなっている長手方向に対し左右対称の形状となっている。一般に、テープ線はその厚みが増すほど曲げるために必要な力が増え、コイル等の巻線をする際に曲げ難くなり、また厚さが急激に変化する接続部10と接続部10以外の境界部分には、巻線等の際に応力が集中して酸化物超電導層6に機械的ダメージを与えて超電導特性を劣化させてしまう虞がある。   That is, in the high-temperature superconducting conductor 1a of the first modification shown in FIG. 7, the connecting high-temperature superconducting wire 15 is a hexagonal flat plate having the same width as the paired parallel high-temperature superconducting wires 2, and the high-temperature superconducting conductor 1 The left and right sides of the vertices facing each other in the longitudinal direction are symmetrical with respect to the longitudinal direction having a predetermined angle θ of less than 90 degrees with respect to the longitudinal direction. In general, as the thickness of the tape wire increases, the force required to bend increases, it becomes difficult to bend when winding a coil or the like, and the boundary other than the connection portion 10 and the connection portion 10 where the thickness changes rapidly. There is a risk that stress concentrates on the part when winding or the like, and mechanically damages the oxide superconducting layer 6 to deteriorate the superconducting characteristics.

しかし、接続用高温超電導線15を六角形状、あるいは例示しないが長手方向に対し左右対称の多角形状、長円形状などとして長手方向に幅寸法を先端方向に向けて漸減させる等変えることにより、曲げ難さが急激に変化せず、境界部分に応力が集中し難くなる。   However, the high-temperature superconducting wire 15 for connection is bent by changing the width dimension gradually in the longitudinal direction in the longitudinal direction, such as a hexagonal shape or a polygonal shape or an elliptical shape that is not symmetrical to the longitudinal direction. The difficulty does not change abruptly, making it difficult for stress to concentrate at the boundary.

図8に示す第2の変形形態の高温超電導導体1bは、接続部10の方形の接続用高温超電導線3の長手方向端部に段差解消部材16を設けた構成としている。段差解消部材16は、例えば銅やステンレス鋼などの金属や、ポリイミド樹脂のカプトン(Kapton;登録商標)やメタ系アラミド樹脂のノーメックス(Nomex;登録商標)などでなる方形薄板で、その厚さを長手方向に接続用高温超電導線3と同じ厚さから漸減するように形成されている。こうした形状を有するため、第1の変形形態と同様に、接続部10と接続部10以外の境界部分で曲げ難さが急激に変化せず、境界部分に応力が集中し難くなる。なお、段差解消部材16の厚さの変化は段階的に変化するものであっても、また方形状に限らず二等辺三角形状であってもよい。   The high-temperature superconducting conductor 1b of the second modification shown in FIG. 8 has a structure in which a step eliminating member 16 is provided at the longitudinal direction end of the rectangular connecting high-temperature superconducting wire 3 of the connecting portion 10. The step eliminating member 16 is, for example, a rectangular thin plate made of metal such as copper or stainless steel, polyimide resin Kapton (registered trademark), or meta-aramid resin Nomex (registered trademark). It is formed so as to gradually decrease from the same thickness as the high-temperature superconducting wire 3 for connection in the longitudinal direction. Since it has such a shape, similarly to the first modification, bending difficulty does not change abruptly at the boundary portion other than the connection portion 10 and the connection portion 10, and stress does not easily concentrate on the boundary portion. Note that the thickness change of the step eliminating member 16 may be changed stepwise, or may be an isosceles triangle shape without being limited to a square shape.

さらに、図9に示す第3の変形形態の高温超電導導体1cは、方形平板状の接続用高温超電導線3で、高温超電導線2の上下面を同位置で挟まずに、上面側と下面側とで長手方向に端部位置を異なるようにずらして挟むようにする。これにより、第1の変形形態と同様に、接続部10と接続部10以外の境界部分で曲げ難さが急激に変化しなくなり、境界部分に応力が集中し難くなる。図示しないが上面側と下面側とに設ける接続用高温超電導線の長手方向の寸法を異なるものとしてもよい。   Further, the high-temperature superconducting conductor 1c of the third modification shown in FIG. 9 is a rectangular flat plate-shaped high-temperature superconducting wire 3, and the upper and lower sides are not sandwiched between the upper and lower surfaces of the high-temperature superconducting wire 2 at the same position. The end positions are shifted in the longitudinal direction so as to be different. Thereby, similarly to the first modification, the bending difficulty does not change abruptly at the boundary portion other than the connection portion 10 and the connection portion 10, and the stress is less likely to concentrate on the boundary portion. Although not shown, the length in the longitudinal direction of the connecting high-temperature superconducting wire provided on the upper surface side and the lower surface side may be different.

また、上記の本実施形態の高温超電導導体1では、高温超電導導体1の対をなす2本の高温超電導線2は、その端部に接続用高温超電導線3を固着して並列化した形態となっているが、例えば図10乃至図12に示す高温超電導導体の第4乃至第6の変形形態のようにしてもよい。   In the high-temperature superconducting conductor 1 of the present embodiment, the two high-temperature superconducting wires 2 forming a pair of the high-temperature superconducting conductors 1 have a configuration in which the connecting high-temperature superconducting wires 3 are fixed to each other in parallel. However, for example, the fourth to sixth modifications of the high-temperature superconducting conductor shown in FIGS. 10 to 12 may be used.

すなわち、図10に示す第4の変形形態の高温超電導導体1dでは、2本の高温超電導線2は、間に微小間隙を設け、それぞれの幅広面が表裏面となるようにし平行に並べられた状態で、例えば銅やステンレス鋼などの可撓性を有する金属製形状維持部材のテープ線17が上下面に半田付け等により固着されることにより、あるいは図示しないがテープ線17を平行に並べられた2本の高温超電導線2の周囲に巻きつけることによって一体化されている。   That is, in the high-temperature superconducting conductor 1d of the fourth modification shown in FIG. 10, the two high-temperature superconducting wires 2 are arranged in parallel so that a minute gap is provided between them and the respective wide surfaces are the front and back surfaces. In this state, for example, the tape wire 17 of a flexible metal shape maintaining member such as copper or stainless steel is fixed to the upper and lower surfaces by soldering or the like, or although not shown, the tape wires 17 are arranged in parallel. The two high-temperature superconducting wires 2 are integrated by being wound around them.

このようにすることで、並列化した高温超電導線2の形状が維持でき、巻線作業等する際の取り扱いが容易となり、一体化されていない場合に、取り扱う際に生じる2本の高温超電導線2の間隔が離れるなどして接続用高温超電導線3を用いて一体化されている接続部10の境界部分に応力が集中し、酸化物超電導層6に機械的ダメージを与えて超電導特性を劣化させてしまう虞があるのが、接続部10以外の2本の高温超電導線2を一体化することで防止でき、超電導特性の劣化の虞がなくなる。なお、形状維持部材のテープ線17を、例えばポリイミド樹脂のカプトン(Kapton;登録商標)やメタ系アラミド樹脂のノーメックス(Nomex;登録商標)などの絶縁材料で形成して2本の高温超電導線2の周囲に巻きつけ一体化するようにすれば、形状の維持と共にコイル製作の際のターン間絶縁とすることができる。   By doing so, the shape of the paralleled high-temperature superconducting wires 2 can be maintained, handling during winding work is facilitated, and two high-temperature superconducting wires generated when handling when not integrated. The stress is concentrated on the boundary portion of the connecting portion 10 integrated using the high-temperature superconducting wire 3 for connection due to the separation of the distance 2 and the like, causing mechanical damage to the oxide superconducting layer 6 and degrading the superconducting characteristics. This can be prevented by integrating the two high-temperature superconducting wires 2 other than the connecting portion 10, and there is no possibility of deterioration of superconducting characteristics. The shape maintaining member tape wire 17 is made of an insulating material such as polyimide resin Kapton (registered trademark) or meta-aramid resin Nomex (registered trademark), for example, to form two high-temperature superconducting wires 2. If the coil is wound around and integrated with each other, insulation between turns can be achieved while maintaining the shape and manufacturing the coil.

また、図11に示す第5の変形形態の高温超電導導体1eでは、平行に並べられた2本の高温超電導線2の全周囲を、微小間隙を設けた両線間を含めて、例えばポリイミド樹脂のカプトン(Kapton;登録商標)やホルマール樹脂などの絶縁材料で形成した可撓性を有する形状維持部材の被覆材18で被覆して一体化されている。このようにすることで、並列化した高温超電導線2の形状が維持でき、巻線作業等する際の取り扱いが容易となり、超電導特性を劣化させる虞がなくなる。そして、被覆材18をコイル製作の際のターン間絶縁とすることができる。   Further, in the high temperature superconducting conductor 1e of the fifth modification shown in FIG. 11, the entire circumference of the two high temperature superconducting wires 2 arranged in parallel, including the space between both wires provided with a minute gap, is, for example, a polyimide resin. It is integrated by covering with a covering material 18 of a flexible shape maintaining member formed of an insulating material such as Kapton (registered trademark) or formal resin. By doing so, the shape of the paralleled high-temperature superconducting wires 2 can be maintained, handling during winding work and the like can be facilitated, and there is no possibility of deteriorating superconducting characteristics. And the coating | covering material 18 can be used as the insulation between turns at the time of coil manufacture.

さらに、図12に示す第6の変形形態の高温超電導導体1fは、平行に並べられた安定化層8を個々に有さず、他の積層構造を前述の高温超電導線2と同じくする2本の高温超電導線2aの全周囲に、形状維持部材を兼ねるよう安定化層8aを、例えば銅めっき等を覆うように施して一体化した、安定化層8aを金属保護層とした構成となっている。このようにすることで、並列化した高温超電導線2aの形状が維持でき、巻線作業等する際の取り扱いが容易となり、超電導特性を劣化させる虞がなくなる。   Further, the high-temperature superconducting conductor 1f of the sixth modification shown in FIG. 12 does not have the stabilizing layers 8 arranged in parallel, and the other laminated structure is the same as the high-temperature superconducting wire 2 described above. The stabilization layer 8a is integrally formed by covering the entire periphery of the high-temperature superconducting wire 2a with a stabilization layer 8a so as to serve also as a shape maintaining member, for example, so as to cover copper plating or the like. Yes. By doing so, the shape of the paralleled high-temperature superconducting wires 2a can be maintained, handling during winding work and the like is facilitated, and there is no possibility of deteriorating superconducting characteristics.

さらにまた、上記の本実施形態における高温超電導コイル31の高温超電導導体1を、例えば図13に示す高温超電導コイルの第1の変形形態のようにしてもよい。   Furthermore, the high-temperature superconducting conductor 1 of the high-temperature superconducting coil 31 in the present embodiment may be configured as, for example, a first modification of the high-temperature superconducting coil shown in FIG.

図5に示すように、高温超電導コイル31が発生する磁場(B)の強度と方向はコイル内部に分布しているため、高温超電導導体1に印加される磁場(B)も、高温超電導導体1の長手方向に分布することになる。このことから、図13において、本変形形態の高温超電導コイルに用いられる高温超電導導体1gは、転位間隔で面積積分した磁束(φ)が等しくなるように、印加される磁場(B)の分布に合わせて転位の位置、すなわち長手方向に連接した複数対の高温超電導線2bを接続用高温超電導線3で接続する位置(接続部10の間隔)が決定されている。なお、高温超電導線2bは、前述の高温超電導線2と同じ積層構成を有するものとなっている。   As shown in FIG. 5, since the strength and direction of the magnetic field (B) generated by the high temperature superconducting coil 31 is distributed inside the coil, the magnetic field (B) applied to the high temperature superconducting conductor 1 is also the high temperature superconducting conductor 1. Will be distributed in the longitudinal direction. From this, in FIG. 13, the high-temperature superconducting conductor 1g used in the high-temperature superconducting coil of this modification has a distribution of the applied magnetic field (B) so that the magnetic flux (φ) integrated by the dislocation interval is equal. At the same time, the position of dislocation, that is, the position (interval of the connecting portion 10) at which a plurality of pairs of high-temperature superconducting wires 2b connected in the longitudinal direction are connected by the connecting high-temperature superconducting wire 3 is determined. The high temperature superconducting wire 2b has the same layered structure as the high temperature superconducting wire 2 described above.

このように高温超電導コイルの高温超電導導体1gが形成されているので、適正に誘導電界(E)のキャンセルを行うことができ、高温超電導コイルに変動磁界(dB/dt)を発生させた場合においても、通電容量の低減や交流損失の発生が少なくなる。すなわち、本変形形態によれば、上述のような誘導電界(E)のキャンセルが適正になされるよう転位の位置を決定した高温超電導導体1gを用いて高温超電導コイルを製作することで、変動磁界(dB/dt)を発生させた場合に、通電容量の低減や交流損失の発生が少ない高温超電導コイルとすることができる。なお、図13では、高温超電導導体1gの並列化した対をなす高温超電導線2をそれぞれ実線、点線で示し、実線で示す片方だけについて図示したが、点線で示す他方も同様となっている。   Since the high-temperature superconducting conductor 1g of the high-temperature superconducting coil is formed as described above, the induction electric field (E) can be canceled appropriately, and a variable magnetic field (dB / dt) is generated in the high-temperature superconducting coil. However, the current carrying capacity is reduced and the occurrence of AC loss is reduced. That is, according to this modification, a high-temperature superconducting coil is manufactured using the high-temperature superconducting conductor 1g in which the position of the dislocation is determined so that the induction electric field (E) is appropriately canceled as described above. When (dB / dt) is generated, a high-temperature superconducting coil with reduced current carrying capacity and less AC loss can be obtained. In FIG. 13, the high-temperature superconducting wires 2 forming a parallel pair of the high-temperature superconducting conductors 1g are shown by solid lines and dotted lines, respectively, and only one of them indicated by the solid lines is shown, but the other shown by the dotted lines is the same.

さらに、上記の本実施形態における高温超電導コイル31を、例えば図14に示す高温超電導コイルの第2の変形形態のようにしてもよい。   Furthermore, the high-temperature superconducting coil 31 in the present embodiment may be a second modification of the high-temperature superconducting coil shown in FIG. 14, for example.

すなわち、図14において、高温超電導コイル31aの巻線部32aは、ターン間絶縁材33を被覆した高温超電導導体1が、片方の幅広面の外表面に等幅に形成された離形材35を設け離形処理するようにして巻き回され、所定形状にコイル成形された後、含浸材34の含浸がなされて形成されている。離形材35は、例えば、フッ素系樹脂、パラフィン、各種グリース、シリコーンオイル等で形成されている。   That is, in FIG. 14, the winding portion 32 a of the high-temperature superconducting coil 31 a includes a release material 35 in which the high-temperature superconducting conductor 1 covering the inter-turn insulating material 33 is formed on the outer surface of one wide surface with a uniform width. It is formed by being wound so as to be provided and released, coiled into a predetermined shape, and then impregnated with an impregnating material 34. The release material 35 is made of, for example, fluorine resin, paraffin, various greases, silicone oil, or the like.

これにより、高温超電導コイル31aを冷却する際に、高温超電導導体1の高温超電導線2に働く力が緩和され、超電導特性の劣化を抑制することができる。すなわち、高温超電導導体1に用いる高温超電導線2は、厚さ(テープ厚)方向の非常に弱い引張り力でも機械的なダメージを受けて超電導特性が劣化する。一方、コイル製作で用いられる含浸材34、例えばエポキシ樹脂は、高温超電導コイル31aに用いられる他の部材の材質と比べて熱収縮率が大きいため、特に高温超電導コイル31aを冷却する際に高温超電導線2の厚さ(テープ厚)方向に引張り力が生じる。このため、高温超電導導体1の高温超電導線2の厚さ方向の面である幅広面の片方の外表面と含浸材34との間に離形材35を介在させる離形処理をすることで、作用する引張り力が緩和されることになって、超電導特性の劣化が抑制される。その結果、高温超電導コイル31aの冷却時等に生じる高温超電導導体1における超電導特性劣化の虞を少なくすることができる。   Thereby, when cooling the high temperature superconducting coil 31a, the force acting on the high temperature superconducting wire 2 of the high temperature superconducting conductor 1 is relaxed, and deterioration of superconducting characteristics can be suppressed. That is, the high-temperature superconducting wire 2 used for the high-temperature superconducting conductor 1 is mechanically damaged even by a very weak tensile force in the thickness (tape thickness) direction, and the superconducting characteristics deteriorate. On the other hand, since the impregnating material 34 used in coil manufacture, for example, epoxy resin, has a higher thermal shrinkage rate than the material of other members used in the high-temperature superconducting coil 31a, the high-temperature superconducting material is particularly effective when cooling the high-temperature superconducting coil 31a. A tensile force is generated in the direction of the thickness of the wire 2 (tape thickness). For this reason, by performing a mold release treatment in which the mold release material 35 is interposed between one outer surface of the wide surface which is the surface in the thickness direction of the high temperature superconducting wire 2 of the high temperature superconducting conductor 1 and the impregnating material 34, The acting tensile force is relaxed, and the deterioration of the superconducting characteristics is suppressed. As a result, it is possible to reduce the risk of deterioration of superconducting characteristics in the high-temperature superconducting conductor 1 that occurs when the high-temperature superconducting coil 31a is cooled.

(第2の実施形態)
次に第2の実施形態を図15乃至図19により説明する。なお、本実施形態は、第1の実施形態の高温超電導導体1を1次転位導体として高次(2次)の転位導体である高温超電導導体を構成したものであるため、第1の実施形態と同一部分には同一符号を付して説明を省略し、第1の実施形態と異なる本発明の実施形態の構成について説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In the present embodiment, since the high-temperature superconducting conductor 1 of the first embodiment is used as a primary dislocation conductor, a high-temperature superconducting conductor that is a higher-order (secondary) dislocation conductor is configured. The same reference numerals are given to the same parts and the description thereof is omitted, and the configuration of the embodiment of the present invention different from the first embodiment will be described.

先ず図15及び図16により説明する。符号21は1次転位導体であり、この1次転位導体21は第1の実施形態の高温超電導導体1と同様に構成されている。そして、1次転位導体21の長手方向端部、すなわち、所定長の対をなしている2本の高温超電導線2の長手方向端部には、1本の高温超電導線2の端部上面に端部用高温超電導線22が半田9により固着されている。端部用高温超電導線22は、高温超電導線2の厚さと同寸法の段差が形成された略Z形状に曲折されたもので、高温超電導線2と等幅に形成されており、高温超電導線2と同様に、金属基板層4の上に中間層5、酸化物超電導層6、保護層7を順に積層した多層構造となっていて、積層された全層を覆うように安定化層8が被覆されている。なお、長手方向前後となる前後対の各高温超電導線2間の接続は、接続用高温超電導線3により行われている。   First, a description will be given with reference to FIGS. Reference numeral 21 denotes a primary dislocation conductor, and the primary dislocation conductor 21 is configured similarly to the high-temperature superconducting conductor 1 of the first embodiment. Further, the longitudinal end of the primary dislocation conductor 21, that is, the longitudinal end of the two high-temperature superconducting wires 2 forming a pair with a predetermined length is provided on the upper surface of the end of the single high-temperature superconducting wire 2. An end high-temperature superconducting wire 22 is fixed by solder 9. The end high-temperature superconducting wire 22 is bent into a substantially Z shape in which a step having the same dimension as the thickness of the high-temperature superconducting wire 2 is formed. The high-temperature superconducting wire 22 is formed in the same width as the high-temperature superconducting wire 2. 2, a multilayer structure in which an intermediate layer 5, an oxide superconducting layer 6, and a protective layer 7 are sequentially laminated on the metal substrate layer 4, and the stabilization layer 8 is formed so as to cover all the laminated layers. It is covered. In addition, the connection between the high-temperature superconducting wires 2 of the front and rear pairs in the longitudinal direction is made by a connecting high-temperature superconducting wire 3.

また、1次転位導体21の対をなしている2本の高温超電導線2は、間に微小間隙を設け、幅広面が表裏面となるようにして平行に並べられて並列化されている。そして、図16(a)に図15の断面Wでの矢視方向の断面図を示すように、並列化された2本の高温超電導線2は、各層の積層順が上下逆になっていて、一方の高温超電導線2は金属基板層4が上側に、他方の高温超電導線2は金属基板層4が下側に位置するようになっている。また、他方の高温超電導線2の端部上面に固着された端部用高温超電導線22の各層の積層順は、金属基板層4が上側に位置するようになっている。さらに、図16(b)に図15の断面Xでの矢視方向の断面図を示すように、最先端部では、一方の高温超電導線2と端部用高温超電導線22とは各層の積層順が同じで、並列した状態となっている。   Further, the two high-temperature superconducting wires 2 forming a pair of primary dislocation conductors 21 are arranged in parallel so that a minute gap is provided between them and the wide surface is the front and back surfaces. As shown in FIG. 16 (a), which is a cross-sectional view in the direction of the arrow in the cross section W of FIG. 15, the two high-temperature superconducting wires 2 arranged in parallel have their layers stacked upside down. In one high temperature superconducting wire 2, the metal substrate layer 4 is positioned on the upper side, and in the other high temperature superconducting wire 2, the metal substrate layer 4 is positioned on the lower side. Further, the stacking order of the layers of the end high-temperature superconducting wire 22 fixed to the upper surface of the other end of the high-temperature superconducting wire 2 is such that the metal substrate layer 4 is positioned on the upper side. Further, as shown in FIG. 16 (b), which is a cross-sectional view in the direction of the arrow in cross section X of FIG. 15, one high-temperature superconducting wire 2 and end high-temperature superconducting wire 22 are laminated in the most advanced portion. The order is the same and they are in parallel.

次に図17乃至図19により説明する。23は高温超電導導体であり、この高温超電導導体23は、上記のように構成された1次転位導体21を用いて2次の転位を施すようにして形成されている。この高温超電導導体23では、1次転位導体21が、上述した第1の実施形態の高温超電導導体1における高温超電導線2に対応するものとして考えることができ、下記するように、同様な形をなすように接続がなされている。   Next, a description will be given with reference to FIGS. Reference numeral 23 denotes a high-temperature superconducting conductor, and this high-temperature superconducting conductor 23 is formed so as to perform secondary dislocations using the primary dislocation conductor 21 configured as described above. In this high-temperature superconducting conductor 23, the primary dislocation conductor 21 can be considered as corresponding to the high-temperature superconducting wire 2 in the high-temperature superconducting conductor 1 of the first embodiment described above. Connections are made as expected.

高温超電導導体23は、対をなしている2本の高温超電導線2によりそれぞれが形成されて組み合わされた2つの1次転位導体21と、組み合わされた1次転位導体21を複数組、長手方向に連接する幅広面(テープ面)の幅が1次転位導体21の幅の略2倍(高温超電導線2の幅の略4倍)に形成された方形平板状の接続用高温超電導線24とによって構成されている。この接続用高温超電導線24は、図16に示すように高温超電導線2、端部用高温超電導線22と同様、テープ状の金属基板層4の上にそれぞれ等幅に形成された中間層5、酸化物超電導層6、保護層7を順に積層した多層構造となっている。   The high-temperature superconducting conductor 23 is composed of two primary dislocation conductors 21 formed by combining two high-temperature superconducting wires 2 forming a pair, and a plurality of the combined primary dislocation conductors 21 in the longitudinal direction. A rectangular flat plate-shaped high-temperature superconducting wire 24 having a wide surface (tape surface) connected to the primary dislocation conductor 21 and having a width approximately twice that of the primary dislocation conductor 21 (approximately four times the width of the high-temperature superconducting wire 2); It is constituted by. As shown in FIG. 16, the connecting high-temperature superconducting wire 24 is an intermediate layer 5 formed on the tape-like metal substrate layer 4 with a uniform width, like the high-temperature superconducting wire 2 and the end high-temperature superconducting wire 22. The oxide superconducting layer 6 and the protective layer 7 are laminated in order.

また、高温超電導導体23を構成する組み合わされた2つの1次転位導体21は、間に微小間隙を設けるようにして、それぞれの幅広面が表裏面(上下面)となるようにして平行に並べられて並列化され、並列化された2つの1次転位導体21は、端部用高温超電導線22が固着されている端部での各層の積層順が上下逆になっていて、連接方向の前の組である前組における一方側の1次転位導体21は金属基板層4が下側に、他方側の1次転位導体21は金属基板層4が上側に位置するようになっている。さらに、前組の1次転位導体21に、所定間隔を設けて長手方向に連接される次の組(後の組)である後組の2つの1次転位導体21では、一方側の1次転位導体21は金属基板層4が上側に、他方側の1次転位導体21は金属基板層4が下側に位置するようになっている。   The two primary dislocation conductors 21 that constitute the high-temperature superconducting conductor 23 are arranged in parallel so that a minute gap is provided between them and the wide surfaces thereof are the front and back surfaces (upper and lower surfaces). The two primary dislocation conductors 21 that have been parallelized and paralleled have the stacking order of the layers at the end to which the high-temperature superconducting wire 22 for the end is fixed in the upside down direction. The primary dislocation conductor 21 on one side in the previous set, which is the previous set, has the metal substrate layer 4 on the lower side, and the primary dislocation conductor 21 on the other side has the metal substrate layer 4 on the upper side. Further, in the two primary dislocation conductors 21 in the rear group, which is the next group (later group) connected in the longitudinal direction with a predetermined interval to the primary dislocation conductor 21 in the previous group, the primary primary conductor on one side The dislocation conductor 21 has the metal substrate layer 4 on the upper side, and the other primary dislocation conductor 21 has the metal substrate layer 4 on the lower side.

さらにまた、長手方向に隣接し前後となる2組の各対をなしている1次転位導体21の端部の上下面、すなわち、端部を形成する高温超電導線2と端部用高温超電導線22の上下面には、電気的に接続されるよう半田9により接続用高温超電導線24がそれぞれ固着されて接続部25が構成され、2組の1次転位導体21の接続が行われる。そして、2組の1次転位導体21の下面に固着される接続用高温超電導線24の各層の積層順は、図18(a)に図17の断面Yでの矢視方向の断面図を示すように、前組の一方側の1次転位導体21の積層順と同じで、金属基板層4が下側に位置し、上面に固着される接続用高温超電導線24は、逆に、前組の他方側の1次転位導体21の積層順と同じで、金属基板層4が上側に位置するようになっている。   Furthermore, the upper and lower surfaces of the ends of the primary dislocation conductors 21 that are paired in the longitudinal direction and adjacent to each other, that is, the high-temperature superconducting wire 2 forming the ends and the high-temperature superconducting wires for the ends. The high-temperature superconducting wires 24 for connection are fixed to the upper and lower surfaces 22 by solder 9 so as to be electrically connected to each other, so that a connection portion 25 is formed, and two sets of primary dislocation conductors 21 are connected. Then, the stacking order of each layer of the high temperature superconducting wire 24 for connection fixed to the lower surface of the two sets of primary dislocation conductors 21 is shown in FIG. Thus, in the same order as the stacking order of the primary dislocation conductors 21 on one side of the previous set, the high-temperature superconducting wire 24 for connection with the metal substrate layer 4 positioned on the lower side and fixed on the upper surface is, conversely, The same as the stacking order of the primary dislocation conductors 21 on the other side, the metal substrate layer 4 is located on the upper side.

なお、接続用高温超電導線24の各層の積層順は、後組の2つの1次転位導体21に対し図18(b)に図17の断面Zでの矢視方向の断面図を示すように、前組の場合とは逆で、下面に固着される接続用高温超電導線24と他方側の1次転位導体21の積層順が同じであり、上面に固着される接続用高温超電導線24と一方側の1次転位導体21の積層順が同じである。   Note that the stacking order of each layer of the high-temperature superconducting wire 24 for connection is as shown in FIG. 18 (b) with respect to the two primary dislocation conductors 21 in the rear group, as shown in the cross-sectional view in the direction of the arrow Z in FIG. Contrary to the case of the previous set, the connection high-temperature superconducting wire 24 fixed to the lower surface and the primary dislocation conductor 21 on the other side have the same stacking order, and the connecting high-temperature superconducting wire 24 fixed to the upper surface is The stacking order of the primary dislocation conductors 21 on the one side is the same.

そして、上述のように構成された高温超電導導体23では、第1の実施形態と同様に、中間層5が電気絶縁体で構成されているため、酸化物超電導層6に流れる電流は、中間層5を貫通する方向には流れ出し難くい。したがって、上下の接続用高温超電導線24が固着されて、前後の2組の1次転位導体21が連接された接続部25では、酸化物超電導層6に流れる電流は、次のように流れる。   In the high-temperature superconducting conductor 23 configured as described above, the intermediate layer 5 is formed of an electrical insulator, as in the first embodiment, so that the current flowing through the oxide superconducting layer 6 is the intermediate layer. It is difficult to flow out in the direction penetrating 5. Therefore, the current flowing in the oxide superconducting layer 6 flows as follows in the connection portion 25 in which the upper and lower connecting high-temperature superconducting wires 24 are fixed and the two pairs of primary dislocation conductors 21 in the front and rear are connected.

すなわち、前組の1次転位導体21と接続用高温超電導線24の接続部分においては、断面Yでの断面図の図18(a)に実線矢印で示すように、一方側の1次転位導体21からは上面に固着された接続用高温超電導線24の方向に、また他方側の1次転位導体21からは下面に固着された接続用高温超電導線24の方向に流れることになる。さらに、後組の1次転位導体21と接続用高温超電導線24の接続部分においては、断面Zでの断面図の図18(b)に実線矢印で示すように、上面に固着された接続用高温超電導線24から他方側の1次転位導体21の方向に、また下面に固着された接続用高温超電導線24から一方側の1次転位導体21の方向に流れることになる。   That is, at the connecting portion between the primary dislocation conductor 21 and the connecting high-temperature superconducting wire 24 in the previous group, as shown by the solid line arrow in FIG. From 21, it flows in the direction of the connecting high temperature superconducting wire 24 fixed on the upper surface, and from the primary dislocation conductor 21 on the other side in the direction of the connecting high temperature superconducting wire 24 fixed on the lower surface. Further, at the connection portion of the rear primary dislocation conductor 21 and the connecting high-temperature superconducting wire 24, as shown by the solid line arrow in FIG. It flows in the direction from the high-temperature superconducting wire 24 to the primary dislocation conductor 21 on the other side, and from the connecting high-temperature superconducting wire 24 fixed to the lower surface to the primary dislocation conductor 21 on the one side.

これにより、1次転位導体21に流れる輸送電流(I)の経路は、接続用高温超電導線3,24を省略する図19に実線矢印で示すように、前組の2つの1次転位導体21における一方側の1次転位導体21を流れた輸送電流(I)は、接続部25で後組における他方側の1次転位導体21に流れる経路を変える。同様に、前組における他方側の1次転位導体21を流れた輸送電流(I)は、接続部25で後組における一方側の1次転位導体21に流れる経路を変えることになる。なお、各組の1次転位導体21では、第1の実施例におけると同様に、それらの対をなしている2本の高温超電導導体1の間を、接続部10で一方から他方へ、あるいは逆に他方から一方へと輸送電流(I)は、経路を変えながら流れる。 Thereby, the path of the transport current (I T ) flowing through the primary dislocation conductor 21 is the two primary dislocation conductors of the previous set as shown by solid arrows in FIG. 19 where the high temperature superconducting wires 3 and 24 for connection are omitted. The transport current (I T ) that has flowed through the primary dislocation conductor 21 on one side in 21 changes the path that flows to the primary dislocation conductor 21 on the other side in the rear group at the connection portion 25. Similarly, the transport current (I T ) that flows through the primary dislocation conductor 21 on the other side in the previous group changes the path that flows to the primary dislocation conductor 21 on the one side in the rear group at the connection portion 25. In each group of primary dislocation conductors 21, as in the first embodiment, between the two high-temperature superconducting conductors 1 forming a pair, one is connected to the other by the connecting portion 10, or Conversely, the transport current (I T ) flows from one side to the other while changing the path.

このように、高温超電導導体23では、長手方向に連接した複数組の1次転位導体21を流れる経路を変えながら輸送電流(I)は流れることになる。その結果、高温超電導導体23は、各接続部10,25で転位した場合と同様の効果を得ることができることになる。すなわち、前述した第1の実施形態と同様に、高温超電導導体23は、輸送電流(I)の流れる経路が制限され、変動磁界(dB/dt)が印加された場合に、1次転位導体21の電流経路に発生する誘導電界(E)はキャンセルされることになり、磁化電流(I)の発生が抑制される。 As described above, in the high-temperature superconducting conductor 23, the transport current (I T ) flows while changing the path through the plural sets of primary dislocation conductors 21 connected in the longitudinal direction. As a result, the high-temperature superconducting conductor 23 can obtain the same effects as those obtained when dislocations are made at the connection portions 10 and 25. That is, as in the first embodiment described above, the high-temperature superconducting conductor 23 has a primary dislocation conductor when the path through which the transport current ( IT ) flows is limited and a variable magnetic field (dB / dt) is applied. The induced electric field (E) generated in the current path 21 is canceled, and the generation of the magnetizing current (I M ) is suppressed.

また、積層構造が逆の高温超電導線2を並列化して対としたものを複数対長手方向に連接すると共に、対にした高温超電導線2を1次転位導体21とし、同様に、積層構造が逆の1次転位導体21を並列化して組としたものを複数組長手方向に連接するようにして高温超電導導体23を構成しているので、接続部10,25は簡単な構成となり、その製作は容易となる。さらに、巻線を行う場合も、立体交差等による厚さの増大もないことから、巻線作業も容易となる。   Further, a plurality of pairs of high-temperature superconducting wires 2 having a reverse laminated structure are connected in parallel in the longitudinal direction, and the paired high-temperature superconducting wires 2 are used as primary dislocation conductors 21. Since the high-temperature superconducting conductor 23 is constituted by connecting a plurality of sets of reverse primary dislocation conductors 21 in parallel to each other in the longitudinal direction, the connecting portions 10 and 25 have a simple configuration and are manufactured. Becomes easy. Furthermore, even when winding is performed, the thickness is not increased by a three-dimensional intersection or the like, so that the winding work is facilitated.

以上の通り、高温超電導導体23は、輸送電流(I)が流れる経路を接続部10,25で転位させた場合と同様に制限されるため、変動磁界(dB/dt)が印加された場合に発生する誘導電界(E)がキャンセルされ、磁化電流(I)の発生が抑制される。これにより、通電容量の低減や交流損失の発生が少なく、しかも高温超電導導体23の製作が容易である。そして、高温超電導線2が狭幅のものであっても、コイル設計等を行う際にコイル形状及び寸法の設計自由度を十分に確保することができ、設計が容易となり、コイル製作時の巻線作業も容易なものとなる。 As described above, the high-temperature superconducting conductor 23 is restricted in the same manner as when the path through which the transport current (I T ) flows is transferred at the connection portions 10 and 25, and therefore, when a variable magnetic field (dB / dt) is applied. The induced electric field (E) generated in is canceled and the generation of the magnetizing current (I M ) is suppressed. As a result, the current carrying capacity is reduced and the occurrence of AC loss is small, and the high-temperature superconducting conductor 23 can be easily manufactured. Even when the high-temperature superconducting wire 2 has a narrow width, it is possible to ensure a sufficient degree of freedom in designing the coil shape and dimensions when performing coil design, etc., making the design easy and winding at the time of coil manufacture. Line work is also easy.

なお、転位が2次の転位導体を得る場合について上述したが、転位が3次の転位導体を得る場合は、2次の転位導体を用い、これを、上記における1次転位導体21に置き換えて同様の方法によって構成すればよく、さらに転位を多くした高次(複数次)化する場合には、同様の方法を繰り返していけば得ることができる。   The case where a dislocation is obtained as a secondary dislocation conductor has been described above. However, when a dislocation is obtained as a tertiary dislocation conductor, a secondary dislocation conductor is used, and this is replaced with the primary dislocation conductor 21 described above. What is necessary is just to comprise by the same method, and when making it higher order (multiple order) which increased dislocation, it can obtain by repeating the same method.

すなわち、第1の実施形態の高温超電導導体1を1次転位導体21とし、p次(低次)転位導体(p≧1)からより転位を高次化した(p+1)次(高次)転位導体の高温超電導導体を得る場合、p次(低次)の低次転位導体に、端部での高温超電導線2の各層の積層方向を同方向にし、また端部を同一面にする端部用高温超電導線を電気的に接続する。そして、高温超電導線2の各層の積層方向が同方向となった低次転位導体により、端部での高温超電導線2の各層の積層方向が逆となるようにして並列化を行い並列化した低次転位導体を得る。   That is, the high-temperature superconducting conductor 1 of the first embodiment is used as the primary dislocation conductor 21, and the (p + 1) th order (higher order) dislocation with higher dislocations than the pth order (lower order) dislocation conductor (p ≧ 1). When obtaining a high-temperature superconducting conductor, a p-order (low-order) low-order dislocation conductor has the same stacking direction of each layer of the high-temperature superconducting wire 2 at the end, and the end is the same plane. Electrically connect high-temperature superconducting wires. Then, the low-order dislocation conductors in which the layers of the high-temperature superconducting wires 2 are laminated in the same direction are parallelized by making the layering directions of the layers of the high-temperature superconducting wires 2 at the ends reverse. A low-order dislocation conductor is obtained.

さらに、この並列化した低次転位導体に、接続部で連接する他の並列化した低次転位導体を、長手方向に隣接する各低次転位導体の間でも端部での高温超電導線2の各層の積層方向が逆となるよう、また端部間に長手方向の所定間隔を設けるようにして配置する。配置された連接する前後の各並列化した低次転位導体の4つの低次転位導体を接続用高温超電導線で電気的に接続して接続部での連接を行い、(p+1)次化(高次)した高温超電導導体を得る。これを繰り返すことで、さらに高次の複数次化した高温超電導導体とすることができる。   Further, the paralleled low-order dislocation conductor is connected to another parallel-ordered low-order dislocation conductor that is connected at the connecting portion, and the high-temperature superconducting wire 2 at the end portion is connected between the low-order dislocation conductors adjacent in the longitudinal direction. The layers are arranged so that the stacking direction is reversed, and a predetermined interval in the longitudinal direction is provided between the end portions. Four low-order dislocation conductors arranged in parallel before and after the arranged low-order dislocation conductors are electrically connected by a high-temperature superconducting wire for connection, and connected at the connection portion, and (p + 1) order (high Next, a high-temperature superconducting conductor is obtained. By repeating this, it is possible to obtain a higher-order multiple-order high-temperature superconducting conductor.

また、本実施形態の高温超電導導体23も、前述の第1の実施形態の各変形形態と同目的で同様に、接続部25を構成したり、並列化した1次転位導体21をテープ線17や被覆材18などにより一体化したりするようにしてもよい。   In addition, the high-temperature superconducting conductor 23 of the present embodiment is also configured with the connecting portion 25 or the parallel primary dislocation conductor 21 connected to the tape wire 17 in the same manner as each modification of the first embodiment. Or may be integrated by a covering material 18 or the like.

そして、高温超電導導体23を捲き回すことにより形成した高温超電導コイル(不図示)は、前述の第1の実施形態と同様に、変動磁界(dB/dt)が印加された場合に通電容量の低減や交流損失の発生が少ない高温超電導導体23を用いて製作しているため、変動磁界(dB/dt)を発生させた場合に、通電容量の低減や交流損失の発生が少ない高温超電導コイルとすることができる。   A high-temperature superconducting coil (not shown) formed by rolling the high-temperature superconducting conductor 23 reduces the current carrying capacity when a varying magnetic field (dB / dt) is applied, as in the first embodiment. And a high-temperature superconducting coil 23 that generates less AC loss, and therefore, when a fluctuating magnetic field (dB / dt) is generated, a high-temperature superconducting coil that reduces current carrying capacity and generates less AC loss. be able to.

以上の実施形態よれば、高温超電導導体においては、コイル形成に際し、幅が狭い高温超電導線を用いてのコイル内部での転位が可能となり、コイル形状及び寸法の設計自由度を十分に確保することができ、また高温超電導コイルにおいては、コイル設計が容易で、コイル製作時の巻線作業等も容易なものとすることができる。   According to the above embodiment, in the high-temperature superconducting conductor, when forming the coil, dislocation within the coil using a narrow high-temperature superconducting wire is possible, and sufficient design freedom of the coil shape and dimensions is ensured. In addition, in the high-temperature superconducting coil, the coil design is easy, and the winding work at the time of coil manufacture can be facilitated.

1,1a,1b,1c,1d,1e,1f,1g,23…高温超電導導体、2,2a,2b…高温超電導線、3,15,24…接続用高温超電導線、4…金属基板層、5…中間層、6…酸化物超電導層、7…保護層、8,8a…安定化層、9…半田、10,25…接続部、16…段差解消部材、17…テープ線、18…被覆材、21…一次転位導体、22…端部用高温超電導線、31,31a…高温超電導コイル、32,32a…巻線部、33…ターン間絶縁材、34…含浸材、35…離形材 1, 1a, 1b, 1c, 1d, 1e, 1f, 1g, 23 ... high temperature superconducting conductor, 2, 2a, 2b ... high temperature superconducting wire, 3, 15, 24 ... high temperature superconducting wire for connection, 4 ... metal substrate layer, DESCRIPTION OF SYMBOLS 5 ... Intermediate | middle layer, 6 ... Oxide superconducting layer, 7 ... Protective layer, 8, 8a ... Stabilizing layer, 9 ... Solder 10, 25 ... Connection part, 16 ... Level | step difference elimination member, 17 ... Tape wire, 18 ... Covering 21 ... primary dislocation conductor, 22 ... high temperature superconducting wire for end, 31, 31a ... high temperature superconducting coil, 32, 32a ... winding part, 33 ... inter-turn insulating material, 34 ... impregnating material, 35 ... release material

Claims (12)

金属基板層、電気絶縁体の中間層及び酸化物超電導層の各層を順に積層してなる所定長のテープ状の高温超電導線を、互いの間に微小間隙を設け幅広面が同一面を形成するよう平行に並べて並列化し、かつ並列化した前記高温超電導線を、長手方向に所定間隔を設けて接続部で複数連接した高温超電導導体であって、
前記並列化した高温超電導線は、並列化したうちの少なくとも1本の前記高温超電導線における各層の積層順が他の前記高温超電導線における各層の積層順と逆となっており、 前記接続部は、前記並列化した高温超電導線の連接方向に隣接するもの同士の各端部の上下面に、平板状の2枚の接続用高温超電導線をそれぞれ電気的に接続するように固着することによって形成されていることを特徴とする高温超電導導体。
A tape-shaped high-temperature superconducting wire having a predetermined length, which is formed by sequentially laminating a metal substrate layer, an intermediate layer of an electrical insulator, and an oxide superconducting layer in order, has a small gap between each other and forms a wide surface on the same surface. A high-temperature superconducting conductor in which a plurality of the high-temperature superconducting wires arranged side by side in parallel and connected in parallel in the longitudinal direction with a predetermined interval are connected,
In the paralleled high-temperature superconducting wire, the stacking order of each layer in at least one of the paralleled high-temperature superconducting wires is opposite to the stacking order of each layer in the other high-temperature superconducting wire, and the connection portion is The two high-temperature superconducting wires for connection are fixed to the upper and lower surfaces of each end of the parallel-connected high-temperature superconducting wires adjacent to each other so as to be electrically connected to each other. A high-temperature superconducting conductor characterized in that
前記並列化した高温超電導線は、2本の前記高温超電導線でなり、且つ前記接続部で所定間隔を設けて隣接する2つの前記並列化した高温超電導線は、長手方向に隣接する各対応の前記高温超電導線との間とも各層の積層順が逆となっていると共に、前記接続部での2つの前記並列化した高温超電導線の4本の前記高温超電導線の電気的接続が、前記接続用高温超電導線によりなされていることを特徴とする請求項1記載の高温超電導導体。   The paralleled high-temperature superconducting wires are the two high-temperature superconducting wires, and the two paralleled high-temperature superconducting wires adjacent to each other at a predetermined interval in the connecting portion are adjacent to each other in the longitudinal direction. The stacking order of each layer is reversed between the high-temperature superconducting wires and the electrical connection of the four high-temperature superconducting wires of the two paralleled high-temperature superconducting wires at the connection portion is the connection. 2. The high-temperature superconducting conductor according to claim 1, wherein the high-temperature superconducting conductor is made of a high-temperature superconducting wire. 請求項2記載の高温超電導導体を1次転位導体とし、低次転位導体を用いて転位を複数次化した高次転位導体の高温超電導導体であって、
前記低次転位導体の端部で高温超電導線の各層の積層方向が同じ向きになるように、端部用高温超電導線が電気的に接続されていると共に、前記高温超電導線各層の積層方向が同じ向きに揃えられた前記低次転位導体が、端部での前記高温超電導線各層の積層方向が逆になるように並列化されており、かつ並列化された前記低次転位導体と、接続部で長手方向に所定間隔を設けて連接される並列化された前記低次転位導体とが、4つの低次単位導体の長手方向に隣り合うもの同士の端部の前記高温超電導線各層の積層方向が逆になるようにして電気的に接続がなされていることを特徴とする高温超電導導体。
A high-temperature superconducting conductor of a high-order dislocation conductor in which the high-temperature superconducting conductor according to claim 2 is a primary dislocation conductor, and the dislocations are multi-ordered using a low-order dislocation conductor,
The high-temperature superconducting wires for ends are electrically connected so that the lamination directions of the layers of the high-temperature superconducting wires are the same at the ends of the low-order dislocation conductors, and the lamination directions of the layers of the high-temperature superconducting wires are The low-order dislocation conductors aligned in the same direction are paralleled so that the stacking direction of each layer of the high-temperature superconducting wire at the end is reversed, and connected to the paralleled low-order dislocation conductors Lamination of the respective layers of the high-temperature superconducting wires at the ends of the four low-order unit conductors adjacent to each other in the longitudinal direction of the low-order dislocation conductors that are connected in parallel at a predetermined interval in the longitudinal direction. A high-temperature superconducting conductor characterized by being electrically connected so that the directions are reversed.
前記接続用高温超電導線の長手方向の端部の形状が、長手方向に対して幅寸法を先端方向に向けて漸減させるものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の高温超電導導体。   The shape of the end portion in the longitudinal direction of the high-temperature superconducting wire for connection is one in which the width dimension is gradually decreased in the distal direction with respect to the longitudinal direction. The high-temperature superconducting conductor according to item. 前記接続用高温超電導線の長手方向の端部に段差解消部材を配置したことを特徴とする請求項1乃至請求項3のいずれか1項に記載の高温超電導導体。   4. The high-temperature superconducting conductor according to claim 1, wherein a step eliminating member is disposed at an end portion in a longitudinal direction of the high-temperature superconducting wire for connection. 5. 前記接続用高温超電導線の長手方向の端部の位置が、前記高温超電導導体の上下面の両側で異なることを特徴とする請求項1乃至請求項3のいずれか1項に記載の高温超電導導体。   4. The high temperature superconducting conductor according to claim 1, wherein the position of the end portion in the longitudinal direction of the connecting high temperature superconducting wire is different on both sides of the upper and lower surfaces of the high temperature superconducting conductor. 5. . 可撓性があるテープ線を固着もしくは巻きつけたことを特徴とする請求項1乃至請求項6のいずれか1項に記載の高温超電導導体。   The high-temperature superconducting conductor according to any one of claims 1 to 6, wherein a flexible tape wire is fixed or wound. 可撓性がある被覆材で被覆したことを特徴とする請求項1乃至請求項6のいずれか1項に記載の高温超電導導体。   The high-temperature superconducting conductor according to any one of claims 1 to 6, wherein the high-temperature superconducting conductor is coated with a flexible covering material. 前記並列化した高温超電導線が、金属保護層により一体化されたことを特徴とする請求項1乃至請求項6のいずれか1項に記載の高温超電導導体。   The high-temperature superconducting conductor according to any one of claims 1 to 6, wherein the paralleled high-temperature superconducting wires are integrated by a metal protective layer. 請求項1乃至請求項9のいずれか1項に記載の高温超電導導体を巻き回し、コイル成形した後に熱硬化性合成樹脂を含浸させて巻線部が形成されていることを特徴とする高温超電導コイル。   A high-temperature superconductivity characterized in that the high-temperature superconducting conductor according to any one of claims 1 to 9 is wound, coil-molded, and then impregnated with a thermosetting synthetic resin to form a winding portion. coil. 接続用高温超電導線で高温超電導線を接続する接続部の長手方向の位置が、コイル内部で前記高温超電導導体が経験する磁束をキャンセルするように決められていることを特徴とする請求項10記載の高温超電導コイル。   The position of the longitudinal direction of the connection part which connects a high temperature superconducting wire with the high temperature superconducting wire for connection is determined so that the magnetic flux which the said high temperature superconducting conductor may experience inside a coil may be canceled. High temperature superconducting coil. 前記高温超電導導体の少なくとも表面の一部に離形処理が施されていることを特徴とする請求項10記載の高温超電導コイル。   The high temperature superconducting coil according to claim 10, wherein at least part of the surface of the high temperature superconducting conductor is subjected to a release treatment.
JP2010091214A 2010-04-12 2010-04-12 High-temperature superconductor and high-temperature superconducting coil using the same Withdrawn JP2011222346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091214A JP2011222346A (en) 2010-04-12 2010-04-12 High-temperature superconductor and high-temperature superconducting coil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091214A JP2011222346A (en) 2010-04-12 2010-04-12 High-temperature superconductor and high-temperature superconducting coil using the same

Publications (1)

Publication Number Publication Date
JP2011222346A true JP2011222346A (en) 2011-11-04

Family

ID=45039066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091214A Withdrawn JP2011222346A (en) 2010-04-12 2010-04-12 High-temperature superconductor and high-temperature superconducting coil using the same

Country Status (1)

Country Link
JP (1) JP2011222346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247291A (en) * 2012-05-28 2013-12-09 Chubu Electric Power Co Inc Superconducting coil device
JP2016163026A (en) * 2015-03-05 2016-09-05 株式会社東芝 High-temperature superconducting coil
CN108886087A (en) * 2016-03-24 2018-11-23 西门子股份公司 Superconducting device for running in external magnetic field
WO2020201540A3 (en) * 2019-04-03 2020-11-12 Tokamak Energy Ltd High temperature superconductor cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247291A (en) * 2012-05-28 2013-12-09 Chubu Electric Power Co Inc Superconducting coil device
JP2016163026A (en) * 2015-03-05 2016-09-05 株式会社東芝 High-temperature superconducting coil
CN108886087A (en) * 2016-03-24 2018-11-23 西门子股份公司 Superconducting device for running in external magnetic field
WO2020201540A3 (en) * 2019-04-03 2020-11-12 Tokamak Energy Ltd High temperature superconductor cable
CN113646853A (en) * 2019-04-03 2021-11-12 托卡马克能量有限公司 High temperature superconductor cable

Similar Documents

Publication Publication Date Title
CN108140714B (en) Assembly for carrying an electric current in a coil of a magnet, field coil and segment comprising such an assembly, and method for the production thereof
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
JP5512175B2 (en) Reinforced high-temperature superconducting wire and high-temperature superconducting coil wound around it
WO2018181561A1 (en) Connecting structure
JP2008244249A (en) High-temperature superconducting coil
JP2011222346A (en) High-temperature superconductor and high-temperature superconducting coil using the same
JP5619731B2 (en) Superconducting wire current terminal structure and superconducting cable having this current terminal structure
US9691532B2 (en) Connection structure of high-temperature superconducting wire piece, high-temperature superconducting wire using connection structure, and high-temperature superconducting coil using connection structure
JP2010109287A (en) Superconducting coil apparatus
JP6548916B2 (en) High temperature superconducting coil
JP2007305386A (en) Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP5936130B2 (en) Superconducting cable and bus bar
WO2018062274A1 (en) Magnetic core piece and magnetic core
JP2013030661A (en) Superconducting coil
JP2008305861A (en) Superconducting coil and superconductive magnet device
JP2013219196A (en) Superconducting coil device and manufacturing method of the same
JP4634908B2 (en) High temperature superconducting coil
JP5710312B2 (en) Superconducting coil device
KR20230011350A (en) Mirrored Winding Pack for Stacked Plate Superconducting Magnets
JP2014022543A (en) Superconducting coil and superconducting coil device
US11227706B2 (en) Superconducting wire and coil unit
KR20210026613A (en) High temperature superconducting wire with multi-superconducting layer
JP2010238787A (en) Double pancake coil
KR20210037378A (en) High temperature superconducting wire manufacturing method and High temperature superconducting wire with multiple superconducting layers using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702