JPH04179103A - Superconducting coil device - Google Patents

Superconducting coil device

Info

Publication number
JPH04179103A
JPH04179103A JP30353690A JP30353690A JPH04179103A JP H04179103 A JPH04179103 A JP H04179103A JP 30353690 A JP30353690 A JP 30353690A JP 30353690 A JP30353690 A JP 30353690A JP H04179103 A JPH04179103 A JP H04179103A
Authority
JP
Japan
Prior art keywords
fibers
core
superconducting
superconducting coil
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30353690A
Other languages
Japanese (ja)
Other versions
JP2839698B2 (en
Inventor
Masayuki Hoshino
昌幸 星野
Masanobu Nakano
中野 正允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30353690A priority Critical patent/JP2839698B2/en
Publication of JPH04179103A publication Critical patent/JPH04179103A/en
Application granted granted Critical
Publication of JP2839698B2 publication Critical patent/JP2839698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To make the core of the title device expandable in the direction along a superconducting material and shrinkable in the direction perpendicular to the superconducting material when the core is cooled by constituting the core of a plastic material reinforced with woven cloth of polyethylene fibers and inorganic fibers, such as glass fiber, ceramic fibers, etc. CONSTITUTION:A bobbin 2 is formed by screwing flanges 2b made of a GFRP laminated board in both ends of a cylindrical core 2a formed by a hand lay up method by using a piece of cloth woven with warps of polyethylene fibers and woofs of glass fibers, with the warps being oriented in the peripheral direction of a cylindrical core 2a, and an epoxy resin as a matrix after a bonding agent is applied to both ends. This superconducting coil device is formed by wining several layers of a conductor around the core 2a of this bobbin 2, with nine spacers 3 made of a woven fabric-like thin film of a fiber-reinforced plastic material having a constitution similar to that of the core being put between each layer.

Description

【発明の詳細な説明】 〔発明の1」的〕 (産業−1−の利用分野) 本発明は極低湿に冷却して用いられる超電導コイル装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Aspect 1 of the Invention] (Field of Application in Industry-1-) The present invention relates to a superconducting coil device that is cooled to extremely low humidity and used.

(従来の技術) 超電導コイル装置は超電導導体を巻枠に巻回し、層間に
スペーサを介在して形成されるが、主に交流あるいはパ
ルスを流す超電導コイル装置では、巻枠に過電流を発生
させないためにガラス繊維強化プラスチツタ(マトリツ
クスにエボ°キシ樹脂を使用)(以下G F RPと略
す)を用いている。
(Prior art) A superconducting coil device is formed by winding a superconducting conductor around a winding frame with a spacer interposed between the layers, but superconducting coil devices that mainly flow alternating current or pulses do not generate overcurrent in the winding frame. For this reason, glass fiber reinforced plastics (using epoxy resin for the matrix) (hereinafter abbreviated as GF RP) is used.

(発明が解決しようとする課題) 超電導コイルは超電導導体の微細な動きによって、常電
導転移(クエンチ)するため、超電導導体が巻回による
テンションによって巻枠に押えつけられ固定されなけれ
ばな−らない。しかし、GFRP製の巻枠はコイル層間
のスペーサも含めて第12図(a)、 (b)に示した
ソレノイド状コイルのムク1−ルの様に超電導コイルを
冷却することにより熱収縮し、さらに、超電導コイルは
励磁時には′電磁力により、超電導導体に沿う方向すな
わちベクトルAの方向に膨らみ、垂直な方向すなわちム
ク1−ルBの方向に縮むため、励磁状態では、超電導コ
イル(1)が巻枠(2)より浮き上がり、クエンチし易
いという問題があった。この時、巻枠(2)がスペーサ
も含めて冷却によって超電導導体に沿う方向に膨張し、
垂直方向に収縮することができれば、励磁後も超電導導
体が巻枠に強固に抑えつけることができ、クエンチし難
い超電導コイル装置を提供することができる。
(Problem to be Solved by the Invention) Since a superconducting coil undergoes normal conduction transition (quenching) due to minute movements of the superconducting conductor, the superconducting conductor must be pressed and fixed to the winding frame by the tension created by winding. do not have. However, the GFRP winding frame, including the spacer between the coil layers, shrinks due to heat when the superconducting coil is cooled, as shown in the solenoid coil shown in FIGS. 12(a) and 12(b). Furthermore, during excitation, the superconducting coil (1) expands in the direction along the superconducting conductor, that is, in the direction of vector A, and contracts in the perpendicular direction, that is, in the direction of Muk1-B, due to electromagnetic force. There was a problem that it rose from the winding frame (2) and was easily quenched. At this time, the winding frame (2) including the spacer expands in the direction along the superconducting conductor by cooling.
If the superconducting conductor can be contracted in the vertical direction, the superconducting conductor can be firmly pressed against the winding frame even after excitation, and a superconducting coil device that is difficult to quench can be provided.

本発明の目的は、冷却によって超電導導体に沿う方向に
膨張し、垂直な方向に収縮する巻枠およびスペーサを供
えたクエンチし難い超電導コイル装置を提供することに
ある。
An object of the present invention is to provide a superconducting coil device that is difficult to quench and includes a winding frame and a spacer that expands in a direction along a superconducting conductor and contracts in a perpendicular direction when cooled.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明において第1f段と
しては、筒状の巻芯に超電導導体をソレノイド状に巻回
し極低温で使用する超電導コイル装置において、巻芯は
ポリエチレン繊維とガラス繊維、セラミック繊維等の無
機質繊維を混織した繊維強化プラスチックとする。
(Means for Solving the Problems) In order to achieve the above object, the 1f stage of the present invention includes a superconducting coil device in which a superconducting conductor is wound in a solenoid shape around a cylindrical winding core and used at extremely low temperatures. The winding core is made of fiber-reinforced plastic made of a mixture of polyethylene fibers, glass fibers, ceramic fibers, and other inorganic fibers.

また第2の手段としては、層間にスペーサを介して超電
導感体をソレノイド状に巻回し極低湿で使用する超電導
コイル装置において、スペーサはポリエチレン繊維とガ
ラス繊維、セラミック繊維等の無機質繊維を混織した繊
維強化プラスチックとする。
As a second means, in a superconducting coil device in which a superconducting sensitive body is wound in a solenoid shape with a spacer interposed between the layers and used in extremely low humidity, the spacer is a mixture of inorganic fibers such as polyethylene fibers, glass fibers, and ceramic fibers. Made of woven fiber-reinforced plastic.

(作 用) このようにすると、第2図(a)に示したソレノイド状
超電導コイル装置のバク1〜ルCの様に、冷却によって
、巻枠およびスペーサが超電導感体に沿う方向に膨張し
、バク1〜ルDの様に垂直方向に大きく収縮する。この
ため超電導導体は巻回後よりさらに強い力で巻枠および
スペーサに押しつけられ、第2図(b)に示したベクト
ルAの様に励磁によって超電導コイルが超電導導体方向
に膨張し、垂直方向に収縮しても、巻回後と同程度の力
によって強固に超電導感体を巻芯およびスペーサに押え
つけておくことができる。このため、クエンチの発生を
皆無にすることができる。
(Function) By doing this, the winding frame and spacer expand in the direction along the superconducting sensitive body due to cooling, as shown in Bags 1 to C of the solenoid-like superconducting coil device shown in FIG. 2(a). , and contract greatly in the vertical direction as shown in Figures 1 to 1D. For this reason, the superconducting conductor is pressed against the winding frame and spacer with an even stronger force than after winding, and the superconducting coil expands in the direction of the superconducting conductor due to excitation, as shown by vector A shown in Figure 2 (b), and in the vertical direction. Even if it contracts, the superconducting sensitive body can be firmly pressed against the winding core and spacer with the same force as after winding. Therefore, the occurrence of quenching can be completely eliminated.

(実施例) 実施例1 以ド本発明の第1の実施例について第1図を参照して説
明する。
(Examples) Example 1 A first example of the present invention will now be described with reference to FIG.

たて糸をポリエチレン繊維、よこ糸をガラス繊維どした
クロスをたて糸が円筒状巻芯(2a)の周方向になる様
に用いてエポキシ樹脂を71−リッグスとしてハンドレ
イアップ法により成型した円筒を巻芯とし、GFRP積
層板のフランジ(2b)を、円筒状巻芯(2a)の両側
に、接着剤を塗布しねじ込んで巻枠(2)を形成する。
A cloth made of polyethylene fibers for the warp and glass fibers for the weft is used so that the warp is in the circumferential direction of the cylindrical winding core (2a), and a cylinder formed by hand lay-up method using epoxy resin as 71-Rigs is used as the winding core. The flanges (2b) of the GFRP laminate are applied to both sides of the cylindrical winding core (2a) and screwed together to form a winding frame (2).

この巻枠(2)の巻芯(2a)に超電導導体をコイル状
に複数層巻口して超電導コイル(1)を形成するのであ
るが、層間には巻芯と同様な構成で薄い織布状の繊維強
化プラスチックのスペーサ(3)を介在させる。巻枠(
2)と第1層の超電導コイル(+、)との間の絶縁板(
4)には図示しない極低温冷媒であるヘリウムの通路を
設ける。このヘリウム通路は従来から行なわれたもので
ある。
The superconducting coil (1) is formed by winding multiple layers of superconducting conductors into a coil around the winding core (2a) of this winding frame (2), and between the layers there is a thin woven fabric with the same structure as the winding core. A spacer (3) made of fiber-reinforced plastic is interposed. Winding frame (
2) and the first layer superconducting coil (+, ).
4) is provided with a passage for helium, which is a cryogenic refrigerant (not shown). This helium passage is conventional.

次に−1−記実施例1の作用を述べる。Next, the operation of Example 1 described in -1- will be described.

この様にして形成された超電導コイル装置は、冷却する
ことによって、巻枠およびスペーサが、ポリエチレン繊
維に沿ったコイル周方向に膨張し、ポリエチレン繊維に
垂直な、コイル軸方向に大きく収縮する。この作用につ
いて第3図にGFRPとポリエチレン繊維強化プラスチ
ック (マトリックスエポキシ)の冷却による熱収縮率
を示す。ポリエチレン繊維強化プラスチックは、繊維に
沿う方向に熱膨張し、繊維に垂直な方向に熱収縮し、し
かも熱収縮率はGFHPに比べ非常に太きい。このため
、巻芯およびスペーサを超電導導体に沿う方向にポリエ
チレン繊維を入れたプラスチックによって製作すること
によって、超電導導体に沿う方向に膨張し、垂直な方向
に収縮する巻枠(2)およびスペーサ(3)を得ること
ができる。(尚、導体に垂直な方向の繊維はガラス繊維
又はセラミック繊維等の無機質の繊維を用いてもよい。
When the superconducting coil device formed in this manner is cooled, the winding frame and spacer expand in the coil circumferential direction along the polyethylene fibers and largely contract in the coil axial direction perpendicular to the polyethylene fibers. Regarding this effect, Figure 3 shows the thermal shrinkage rates of GFRP and polyethylene fiber reinforced plastic (matrix epoxy) upon cooling. Polyethylene fiber reinforced plastic thermally expands in the direction along the fibers and thermally contracts in the direction perpendicular to the fibers, and its thermal shrinkage rate is much higher than that of GFHP. For this reason, by manufacturing the winding core and spacer from plastic containing polyethylene fibers in the direction along the superconducting conductor, the winding frame (2) and spacer (3) expand in the direction along the superconducting conductor and contract in the perpendicular direction. ) can be obtained. (Note that the fibers in the direction perpendicular to the conductor may be inorganic fibers such as glass fibers or ceramic fibers.

)このため超電導コイルが励磁時に、電磁力によって、
コイル周方向に膨張し、コイル軸方向に収縮しても、超
電導コイルが巻枠から浮き」−がることが無くなる。
) Therefore, when the superconducting coil is energized, due to electromagnetic force,
Even if the superconducting coil expands in the circumferential direction of the coil and contracts in the axial direction of the coil, the superconducting coil will not float off the winding frame.

このため、励磁状態においても超電導導体が強固に巻枠
に押えつけられているため、超′tM、専導体が微動さ
えできなくなり、そしてフランジ(26)をG F I
I Pにしたときは、巻枠(2)の強度が大になる効果
が得られる。従って、超電導コイルがクエンチすること
が皆無になるという信頼性の高い超電導コイル装置が得
られる。
For this reason, even in the excited state, the superconducting conductor is firmly pressed against the winding frame, making it impossible for the superconducting conductor to move even slightly, and the flange (26)
When set to IP, the effect of increasing the strength of the winding frame (2) can be obtained. Therefore, a highly reliable superconducting coil device in which the superconducting coil never quenches can be obtained.

また、横断面が円形でなく、長丸状の超電導コイル装置
にしてもよい。
Further, the superconducting coil device may have an oblong cross section instead of a circular cross section.

そしてまた、巻枠(2)のフランジ(2b)は巻芯(2
a)と同一材料で、一体に形成してもよい。
Also, the flange (2b) of the winding frame (2) is connected to the winding core (2).
It may be formed integrally with the same material as a).

実施例2 第4図および第5図は第2の実施例のスペーサ(3)を
示す。これは導体に沿った方向の繊維(つまりたて条)
にポリエチレン繊維(6)を主体にし、ガラス繊維(5
)を従にし、導体に垂直な方向にはその逆にして巻型(
7)に巻回し、エポキシ樹脂をマトリックスとして使用
した強化プラスチックの絶縁物(4)とスペーサ(3)
の場合であり、この場合も超電導コイルを更に強固に拘
束することが出来る。
Example 2 FIGS. 4 and 5 show a spacer (3) of a second example. This is the fiber in the direction along the conductor (that is, the vertical strip)
Mainly made of polyethylene fiber (6), glass fiber (5)
) in the direction perpendicular to the conductor, and vice versa in the direction perpendicular to the conductor.
7) and a reinforced plastic insulator (4) and spacer (3) using epoxy resin as a matrix.
In this case as well, the superconducting coil can be more firmly restrained.

他は実施例1と同様である。The rest is the same as in Example 1.

実施例3 第6図ないし第8図は、それぞれ異なる織り方をしたス
ペーサ(3)を示す。
Example 3 Figures 6 to 8 show spacers (3) each having a different weave.

第6図は、たて糸、よこ糸共にポリエチレン繊維(6)
、ガラス繊維(5)をある間隔で織り込んだもので、ガ
ラス繊維(5)をポリエチレン繊維(6)の20〜35
%の本数にしたスペーサ(3)を作ると、大形の超電導
コイル装置に対して低温におけるポリエチレン繊維(f
3)の伸びとガラス繊維(5)の縮みによる一定の外力
として超電導コイルを拘束することが出来る。第7図お
よび第8図はたて糸をポリエチレン繊維(6)を主とし
、よこ糸をガラス繊維(5)を従として、クロスを繊り
込んだもので、この織物を超電導コイルの層間に巻込ん
で繊維強化プラスチツク状にする。
Figure 6 shows polyethylene fibers for both warp and weft (6)
, glass fibers (5) are woven at certain intervals, and the glass fibers (5) are woven into polyethylene fibers (6) of 20 to 35
% spacers (3), polyethylene fibers (f
The superconducting coil can be restrained as a constant external force due to the elongation of 3) and the shrinkage of the glass fiber (5). In Figures 7 and 8, the warp is mainly made of polyethylene fiber (6), the weft is made of glass fiber (5), and cloth is interwoven with it.This fabric is wound between the layers of the superconducting coil. Make it into fiber-reinforced plastic.

この場合にも冷却することによって、第3図のようにポ
リエチレン繊維(6)は伸び、ガラス繊維(5)は縮む
性質を有しているので、 ソレノイド状超電導コイルに
は内圧としてと、軸方向からの外圧として働きコイルを
拘束することになり、クエンチしにくくなる。また大形
超電導コイル装置では、巻枠(2)の大きさも大きく、
長さも長くなる=7− 傾向があるため、冷却すると変形址が大きくなる。
In this case as well, when cooled, the polyethylene fibers (6) expand and the glass fibers (5) contract as shown in Figure 3, so the solenoid-like superconducting coil has internal pressure in the axial direction. This acts as external pressure from the coil and restrains the coil, making it difficult to quench. In addition, in large superconducting coil devices, the size of the winding frame (2) is also large,
Since the length tends to be longer = 7-, the deformation area becomes larger when it is cooled.

このために第7図、第8図のようにたて糸なポリエチレ
ン繊維(6)を主体とし、カラス繊維(5)を従とした
コンバイン1〜糸で、よこ糸も同しような組合せで伸び
縮みを調整して、コイルに加わる内外力を調整すること
も可能となる。このため、たて糸とよこ糸の配合比は一
般に初期張力の変化を残存させるためにも50%の張力
内に押えるべきである。
For this purpose, as shown in Figures 7 and 8, the warp yarns are made of polyethylene fibers (6) as the main yarn, and the glass fibers (5) are used as secondary yarns, and the weft yarns are also combined in a similar manner to adjust the expansion and contraction. It also becomes possible to adjust the internal and external forces applied to the coil. For this reason, the blending ratio of the warp and weft yarns should generally be kept within 50% tension in order to allow the initial tension to remain unchanged.

実施例4 第9図に第4の実施例を示す。Example 4 FIG. 9 shows a fourth embodiment.

これは織り物の材料を変えた繊維強化プラスチックの第
1、第2のスペーサ(3a)、 (3b)を二重、(あ
るいは三重など多重)に重ねた場合であり、強化用の繊
維を変えた織物での組合せとしても低温での変形址を変
えることが出来る。
This is a case where the first and second spacers (3a) and (3b) made of fiber-reinforced plastic made of different woven materials are stacked double (or triple, etc.), and the reinforcing fibers are different. Even when combined in a fabric, the deformation behavior at low temperatures can be changed.

実施例5 また、−枚の繊維強化プラスチックでスペーサ(3)を
形成する場合には第10図、第11図のように第6図、
第715!l、第8図のような繊物を巻重ねるか、突き
合せて作ることが出来る。
Embodiment 5 In addition, when forming the spacer (3) with - sheets of fiber-reinforced plastic, as shown in FIGS. 10 and 11, FIG.
No. 715! It can be made by rolling or butting fabrics as shown in Figure 8.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、超電導コイルの
冷却、励磁による変形を、請求項1においては巻芯、請
求項2においてはスペーサが冷却によって補うように変
形し、いずれも励磁状態において、超電導コイルを巻芯
やスペーサに強固に押えつけておくことができるので、
超電導導体の微動によるクエンチが皆無な超電導コイル
装置が得られる。
As explained above, according to the present invention, the core in claim 1 and the spacer in claim 2 are deformed to compensate for the deformation caused by cooling and excitation of the superconducting coil by cooling, and both are in the excitation state. , since the superconducting coil can be firmly pressed against the winding core or spacer,
A superconducting coil device is obtained in which there is no quenching due to slight movement of the superconducting conductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す縦断面図、第2図
(a)および(b)は第1図の作用を説明する説明図、
第3図はガラスおよびポリエチレンの繊維強化プラスチ
ックの繊維方向熱収縮率を示す曲線図、第4図および第
5図は第2の実施例を示す縦断面図および要部断面斜視
図、第6図ないし第8図は第3の実施例のそれぞれ異な
る織り方をしたスペーサの要部を示す平面図5第9図は
第4の実施例を示すスペーサの横断面図、第10図およ
び第11図は第5の実施例のそれぞれ異なるスペーサの
形状を示す横断面図、第12図(a)、 (b)は従来
例の超電導コイルと巻枠との間に隙間が出来る状態を示
す説明図である。 1・・−超電導コイル、   2a・・巻芯、2b・ 
フランジ、      2・・・巻枠、3・スペーサ、
     4・・・絶縁物、5・・・ガラス繊維、  
   6・・・ポリエチレン繊維。 代理人 弁理士 大 胡 典 夫 ! 、CD ヒ t →                        
   −第6図 第4図 第5図 3a        %2のス■−す 特開平4.−179103 (7) 第10図
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention, FIGS. 2(a) and (b) are explanatory diagrams explaining the action of FIG. 1,
Fig. 3 is a curve diagram showing the fiber direction heat shrinkage rate of glass and polyethylene fiber-reinforced plastics, Figs. 4 and 5 are a longitudinal sectional view and a cross-sectional perspective view of main parts showing the second embodiment, and Fig. 6 5 to 8 are plan views showing essential parts of spacers with different weaving methods according to the third embodiment. FIG. 9 is a cross-sectional view of the spacer according to the fourth embodiment, and FIGS. 10 and 11. 12(a) and 12(b) are cross-sectional views showing the different shapes of the spacers in the fifth embodiment, and FIGS. 12(a) and 12(b) are explanatory views showing a state in which a gap is formed between the superconducting coil and the winding frame in the conventional example. be. 1...-Superconducting coil, 2a... Winding core, 2b...
Flange, 2... Winding frame, 3. Spacer,
4... Insulator, 5... Glass fiber,
6...Polyethylene fiber. Agent Patent Attorney Norio Ogo! , CD Hit →
-Figure 6Figure 4Figure 5Figure 5 3a %2 speed - JP-A-4. -179103 (7) Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)筒状の巻芯に超電導導体をソレノイド状に巻回し
極低温で使用する超電導コイル装置において、巻芯はポ
リエチレン繊維とガラス繊維、セラミック繊維等の無機
質繊維を混織した繊維強化プラスチックとしたことを特
徴とする超電導コイル装置。
(1) In a superconducting coil device in which a superconducting conductor is wound in a solenoid shape around a cylindrical winding core and used at extremely low temperatures, the winding core is made of fiber-reinforced plastic made of a mixture of polyethylene fibers, glass fibers, ceramic fibers, and other inorganic fibers. A superconducting coil device characterized by:
(2)層間にスペーサを介して超電導導体をソレノイド
状に巻回し極低温で使用する超電導コイル装置において
、スペーサはポリエチレン繊維とガラス繊維、セラミッ
ク繊維等の無機質繊維を混織した繊維強化プラスチック
としたことを特徴とする超電導コイル装置。
(2) In a superconducting coil device in which a superconducting conductor is wound into a solenoid shape with a spacer interposed between the layers and used at extremely low temperatures, the spacer is a fiber-reinforced plastic made of a mixture of polyethylene fiber, glass fiber, ceramic fiber, and other inorganic fibers. A superconducting coil device characterized by:
JP30353690A 1990-11-08 1990-11-08 Superconducting coil device Expired - Lifetime JP2839698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30353690A JP2839698B2 (en) 1990-11-08 1990-11-08 Superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30353690A JP2839698B2 (en) 1990-11-08 1990-11-08 Superconducting coil device

Publications (2)

Publication Number Publication Date
JPH04179103A true JPH04179103A (en) 1992-06-25
JP2839698B2 JP2839698B2 (en) 1998-12-16

Family

ID=17922175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30353690A Expired - Lifetime JP2839698B2 (en) 1990-11-08 1990-11-08 Superconducting coil device

Country Status (1)

Country Link
JP (1) JP2839698B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126846A (en) * 1992-10-20 1994-05-10 Toyobo Co Ltd Fiber reinforced plastic material for extremely low temperature use
FR2733347A1 (en) * 1995-04-24 1996-10-25 Toyo Boseki Reinforced plastics former for superconductive coil
JP2008140900A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126846A (en) * 1992-10-20 1994-05-10 Toyobo Co Ltd Fiber reinforced plastic material for extremely low temperature use
FR2733347A1 (en) * 1995-04-24 1996-10-25 Toyo Boseki Reinforced plastics former for superconductive coil
JP2008140900A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil

Also Published As

Publication number Publication date
JP2839698B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
EP1212760B2 (en) Rotor assembly with superconducting magnetic coil
JPH05329946A (en) Fiber reinforced plastic material
GB2308490A (en) Superconductor and energy storage device
JPH04179103A (en) Superconducting coil device
JPH06151168A (en) Superconducting magnet and manufacture thereof
US5683059A (en) Bobbin for superconducting coils
JP5548108B2 (en) Oxide superconducting solenoid coil and method for manufacturing the same
US5293524A (en) Uniformly wound superconducting coil and method of making same
JPH11293532A (en) Covering yarn for electromagnetic shielding, and electromagnetic shielding material using the same
US6153831A (en) Composite insulator with 3-dimensional weave of S2 glass fibers and epoxy
Nishijima et al. Glass fiber reinforced plastics for cryogenic use: improvement of thermal contraction and elastic modulus in thickness direction
JP3202389B2 (en) Superconducting coil device
JPH09102414A (en) Superconducting coil
EP0110400A2 (en) Superconducting wire and method of producing the same
JP2000150225A (en) Superconducting magnet apparatus
JP2509633B2 (en) Solenoid type AC superconducting coil
JPH0851016A (en) Superconducting coil
Nomura et al. Design and fabrication of a 7-T force-balanced helical coil
JPH088107A (en) Superconducting magnet and its manufacturing method
JPS59151406A (en) Superconductive solenoid coil
JPS61278535A (en) Prepreg sheet
KR880000415Y1 (en) Fishing rod
JP3030416B2 (en) Superconducting coil
JPS607708A (en) Installation of insulating spacer for superconductive magnet
Wang et al. Aluminum stabilized conductor in a large cryostable SMES magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13