JP2555132B2 - Compound superconducting field winding - Google Patents
Compound superconducting field windingInfo
- Publication number
- JP2555132B2 JP2555132B2 JP63046978A JP4697888A JP2555132B2 JP 2555132 B2 JP2555132 B2 JP 2555132B2 JP 63046978 A JP63046978 A JP 63046978A JP 4697888 A JP4697888 A JP 4697888A JP 2555132 B2 JP2555132 B2 JP 2555132B2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- compound
- superconducting
- compound superconducting
- torque tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductive Dynamoelectric Machines (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物超電導線を用いた超電導界磁巻線に
関する。TECHNICAL FIELD The present invention relates to a superconducting field winding using a compound superconducting wire.
超電導発電機は、発電効率の向上、機械的寸法の小型
化が期待されて開発が進められている。回転子も固定子
も超電導化した、いわゆる全超電導機が望ましいが、現
状は回転子の界磁巻線のみの超電導化が検討されてい
る。界磁巻線は極限温円筒トルクチューブ上に超電導コ
イルを配置し、高速回転に耐えるように固定して形成さ
れる。従来の界磁巻線はNbTi合金超電導線を用いて、第
3図に示すように、トルクチューブ(4)にスロット
(5)を形成し、該スロット(5)に超電導巻線(6)
を配し、くさび(7)により固定する例がある。他の例
は、第4図(a)、(b)に示すように、トルクチュー
ブ(8)上にキーストン状の線材からなる超電導巻線
(9)を配し、その外側をバインダー(3)で締める構
造である。一方、より一層の高磁界を発生して効率を向
上させるため、より臨界磁場の高い化合物超電導線を界
磁巻線に用いることが検討されている。しかしながら、
化合物超電導線は許容歪率が通常0.3%以下のきわめて
脆いものであるため、界磁巻線の構造は、第2図
(a),(b)に示すように、許容歪以内の極率に優れ
た対のレーストラック状超電導巻線(2)を積層してト
ルクチューブ(1)で支持し、外側をバインダー(3)
で締めつけたものである。Superconducting generators are being developed with the expectation of improved power generation efficiency and smaller mechanical dimensions. A so-called total superconducting machine in which both the rotor and the stator are superconducting is desirable, but currently, superconducting only the field winding of the rotor is being considered. The field winding is formed by arranging a superconducting coil on a limit temperature cylinder tube and fixing it so as to withstand high-speed rotation. As a conventional field winding, a NbTi alloy superconducting wire is used to form a slot (5) in a torque tube (4) and a superconducting winding (6) is formed in the slot (5) as shown in FIG.
There is an example of arranging and fixing with a wedge (7). In another example, as shown in FIGS. 4 (a) and 4 (b), a superconducting winding (9) made of a keystone-shaped wire is arranged on a torque tube (8), and the outside thereof is a binder (3). It is a structure that is tightened with. On the other hand, using a compound superconducting wire having a higher critical magnetic field for the field winding is being studied in order to generate a higher magnetic field and improve efficiency. However,
Since the compound superconducting wire is extremely brittle with an allowable strain rate of usually 0.3% or less, the structure of the field winding has a pole ratio within the allowable strain as shown in FIGS. 2 (a) and 2 (b). An excellent pair of racetrack-shaped superconducting windings (2) are stacked and supported by a torque tube (1), and the outside is a binder (3).
It was tightened with.
発電機の設計には磁界の均一性が良好であることが不
可欠であり、合金超電導線に適用された第3図および第
4図の構造は、第2図の構造よりも磁場の均一性におい
て優れている。しかしながら、化合物超電導体は許容歪
が小さいため、第3図または第4図の構造を採るために
は、化合物形成前の変形可能な材料の複合線を第3図ま
たは第4図に示す構造に予め巻き込み、その後に、必要
に高温で必要な時間加熱することにより、複合線中に化
合超電導体を形成させる必要があった。しかしながら、
このような方法で界磁巻線を製作すると、巻枠を兼ねる
トルクチューブ材の強度は加熱により低下し、高速回転
に耐えられなくなるという問題があった。従って、化合
物超電導線は、磁界均一性を犠牲にした状態で使用され
ており、化合物超電導体の高臨界温度や高磁界高電流密
度の優位性を発電機ではほとんど発揮できない状態であ
った。本発明は以上のような点にかんがみてなされたも
ので、その目的とするところは、発生磁界が高均一であ
る化合物超電導界磁巻線を提供することにある。Good homogeneity of the magnetic field is indispensable for the design of the generator, and the structures of FIGS. 3 and 4 applied to the alloy superconducting wire are more uniform in magnetic field than the structure of FIG. Are better. However, since the compound superconductor has a small allowable strain, in order to adopt the structure shown in FIG. 3 or 4, the composite wire of the deformable material before the compound formation is changed to the structure shown in FIG. 3 or 4. It was necessary to form a compound superconductor in the composite wire by winding it in advance and then heating it at a necessary high temperature for a necessary time. However,
When the field winding is manufactured by such a method, there is a problem in that the strength of the torque tube material that also serves as the winding frame is lowered by heating and it cannot withstand high speed rotation. Therefore, the compound superconducting wire is used in a state where the magnetic field homogeneity is sacrificed, and the superiority of the high critical temperature and the high magnetic field and high current density of the compound superconductor can hardly be exhibited by the generator. The present invention has been made in view of the above points, and an object thereof is to provide a compound superconducting field winding having a highly uniform generated magnetic field.
上記目的を達成するために本発明によれば、化合物超
電導線より形成された化合物超電導巻線が、トルクチュ
ーブ上に配置されている化合物超電導界磁巻線におい
て、トルクチューブは、その表面に、脱着するリブによ
り形成されたトルクチューブの軸方向に平行な溝を有
し、化合物超電導巻線が該溝に配置されていることを特
徴とする化合物超電導界磁巻線が提供される。According to the present invention to achieve the above object, the compound superconducting winding formed from the compound superconducting wire, in the compound superconducting field winding arranged on the torque tube, the torque tube, the surface thereof, There is provided a compound superconducting field winding, which has a groove formed by a detachable rib and parallel to the axial direction of the torque tube, and the compound superconducting winding is arranged in the groove.
以上のような構造の化合物超電導界磁巻線は、まず溝
の形状に合わせて予め化合物超電導巻線を成型し、次
に、トルクチューブ上に該化合物超電導巻線を配し、そ
の後にリブをトルクチューブに取付けて溝を形成し、前
記化合物超電導巻線を固定することにより製作する。従
って、化合物超電導巻線は成型され、加熱処理を施され
た後にトルクチューブに装着されるため、化合物超電導
線自体が歪による悪影響を受けない。また、発生磁場を
考慮して、トルクチュューブ上に形成される溝を設計す
ることにより、均一度高い磁場を得ることができる。In the compound superconducting field winding having the above structure, first, the compound superconducting winding is formed in advance according to the shape of the groove, then the compound superconducting winding is arranged on the torque tube, and then the rib is formed. It is manufactured by mounting it on a torque tube to form a groove and fixing the compound superconducting winding. Therefore, since the compound superconducting wire is molded and heat-treated and then mounted on the torque tube, the compound superconducting wire itself is not adversely affected by the strain. Also, by designing the groove formed on the torque tube in consideration of the generated magnetic field, a magnetic field with high uniformity can be obtained.
以下図面に示した実施例に基づいて本発明を説明す
る。The present invention will be described below based on embodiments shown in the drawings.
第1図は、本実施例に用いた巻枠部分の断面図であ
り、円周上に90゜間隔で長手方向に突起を有するトルク
チューブ(90)上に、対になったリブ(11,12)、(21,
22)、……(81,82)が形成されている。前記リブは精
密な機会加工により形成され、トルクチューブ(90)に
は、機械的なボルト締めや、溶接あるいはバインダーに
より取付けられる。このようにして形成されたリブ間お
よびリブとトルクチューブ(90)上の突起間の溝は寸法
制度よく形成されている。巻線は、配置される溝と同型
の型中で予め拡散熱処理され、必要によりエポキシ樹脂
含浸が施され、化合物超電導体を内蔵している。このよ
うにして製作された巻線はトルクチューブ(90)上に配
置されるが、まず、X方向の突起上に巻線を配置したの
ちリブ(41)、(42)を固定し、反対側にも巻線を配置
した後、リブ(51)、(52)を固定する。以下、順次、
Y方向に巻線配置とリブの固定を繰り返し、最後に、リ
ブ(21)、(22)およびリブ(71)、(72)を固定後、
巻線を配置し、断面クサビ状のリブ(11)、(12)およ
び(81)、(82)を固定して界磁巻線はできあがる。最
終的に必要によりさらにエポキシ樹脂含浸を施すことも
できる。FIG. 1 is a cross-sectional view of the winding frame portion used in the present embodiment, in which a pair of ribs (11, 11) are formed on a torque tube (90) having protrusions in the longitudinal direction at intervals of 90 ° on the circumference. 12), (21,
22), ... (81, 82) are formed. The ribs are formed by precision machine processing and are attached to the torque tube (90) by mechanical bolting, welding, or a binder. The grooves formed between the ribs and between the ribs and the protrusions on the torque tube (90) are formed with good dimensional accuracy. The winding is preliminarily subjected to diffusion heat treatment in a mold of the same type as the groove to be arranged, impregnated with epoxy resin if necessary, and contains a compound superconductor. The winding thus manufactured is arranged on the torque tube (90). First, the winding is arranged on the protrusion in the X direction, and then the ribs (41) and (42) are fixed, and the opposite side is fixed. After arranging the winding, also fix the ribs (51) and (52). Hereafter,
The winding arrangement and the fixing of the ribs are repeated in the Y direction, and finally, after fixing the ribs (21), (22) and the ribs (71), (72),
The field winding is completed by arranging the windings and fixing the ribs (11), (12) and (81), (82) having a wedge-shaped cross section. Finally, if necessary, further epoxy resin impregnation can be performed.
本実施例で用いた巻線は、熱処理されていない1mm×5
mmのNb3Sn化合物複合線(線材の外側は250μmのガラス
で絶縁されている)から成形された2ターンの巻線であ
り、この巻線を熱処理して、トルクチューブ上に配置
後、リブをボルトで固定して界磁巻線を構成し、最終的
に全体をエポキシ樹脂によって真空含浸した。この際の
トルクチューブの内径は25mm、中径34mm、外径45mmであ
り、巻線の最小曲げ直径は10mm、直線部の長さは800mm
であった。比較のために、同様の熱処理を施したNb3Sn
化合物複合線を、従来の方式により、第3図のように巻
線し、エポキシ樹脂で含浸した。これらの巻線につい
て、各種試験を行った結果を第1表に示す。The winding used in this example is 1 mm × 5 which is not heat treated.
mm Nb 3 Sn compound composite wire (the outside of the wire is insulated with 250 μm glass) is a 2-turn winding, which is heat-treated and placed on the torque tube and then ribbed. Was fixed with bolts to form a field winding, and finally the whole was vacuum impregnated with epoxy resin. At this time, the inner diameter of the torque tube is 25 mm, the inner diameter is 34 mm, and the outer diameter is 45 mm, the minimum bending diameter of the winding is 10 mm, and the length of the straight portion is 800 mm.
Met. For comparison, Nb 3 Sn subjected to similar heat treatment
The compound composite wire was wound in a conventional manner as shown in FIG. 3 and impregnated with an epoxy resin. Table 1 shows the results of various tests performed on these windings.
直線部のIcの測定は、800mm長の直線部の中央部50mm
に電圧端子を取付けて行い、曲部のIc測定は、最小曲率
半径部であるリブ(11,12)の曲部から直線部への移行
点に電圧端子を取付けて行ったものである。比較例にお
いて、曲部は超電導状態を示さず、Icを零としたが、こ
の部分では化合物超電導体が曲げにより不連続になって
いるためと考えられる。 The Ic of the straight part is measured at the center of the 800 mm long straight part 50 mm
The Ic measurement of the curved portion is performed by mounting the voltage terminal at the transition point from the curved portion to the straight portion of the rib (11, 12) having the minimum radius of curvature. In the comparative example, the curved portion does not show a superconducting state and Ic is set to zero. This is probably because the compound superconductor is discontinuous due to bending in this portion.
磁場の均一性を評価するために、次の比較実験がなさ
れた。比較例(c)として、熱処理されていない、1mm
×5mmのNb3Sn化合物複合線を約250μmのガラステープ
で絶縁後、第2図(b)に示すようなレーストラックコ
イルを2ターンづつで4セット用意し、熱処理後各コイ
ルをエポキシ含浸し、第2図(a)に示すような配置で
界磁巻線を仕上げた。比較例(c)は、曲部のIc特性は
劣化していないが、磁場の均一度(本実施例(A)を1
とした相対値)において劣る。The following comparative experiment was conducted to evaluate the homogeneity of the magnetic field. As comparative example (c), 1mm not heat treated
After insulating 5x5 mm Nb 3 Sn compound composite wire with glass tape of about 250 μm, prepare 4 sets of racetrack coils as shown in Fig. 2 (b) with 2 turns each, and after heat treatment, impregnate each coil with epoxy. The field winding was finished with the arrangement shown in FIG. In the comparative example (c), the Ic characteristic of the curved portion is not deteriorated, but the homogeneity of the magnetic field (this example (A) is 1
And the relative value) was inferior.
以上説明したように本発明によれば、トルクチューブ
は、その表面に、脱着するリブにより形成されたトルク
チューブの軸方向に平行な溝を有し、化合物超電導巻線
が該溝に配置されているため、高均一な高磁場が得ら
れ、トルクチューブの機械強度も維持されるという優れ
た効果がある。As described above, according to the present invention, the torque tube has a groove formed on the surface thereof in parallel with the axial direction of the torque tube formed by the detachable rib, and the compound superconducting winding is arranged in the groove. Therefore, a highly uniform high magnetic field can be obtained, and the mechanical strength of the torque tube can be maintained, which is an excellent effect.
第1図は本発明の一実施例の巻枠部の断面図、第2図
(a)は従来例の化合物超電導界磁巻線の断面図、第2
図(b)はそれに用いられる化合物超電導巻線の斜視
図、第3図は従来例の合金超電導界磁巻線の断面図、第
4図(a)は他の従来例の合金超電導界磁巻線の断面
図、第4図(b)はその斜視図である。 1,4,8,90……トルクチューブ、2,6,9……超電導巻線、
3……バインダー、5……スロット、7……くさび、10
……スペーサー、11,12,21,22,31,32,41,42,51,52,61,6
2,71,72,81,82……リブ。FIG. 1 is a sectional view of a winding frame portion of an embodiment of the present invention, and FIG. 2 (a) is a sectional view of a conventional compound superconducting field winding.
FIG. 4B is a perspective view of a compound superconducting winding used for it, FIG. 3 is a sectional view of a conventional alloy superconducting field winding, and FIG. 4A is another conventional alloy superconducting field winding. FIG. 4B is a perspective view of the cross section of the line. 1,4,8,90 …… Torque tube, 2,6,9 …… Superconducting winding,
3 ... Binder, 5 ... Slot, 7 ... Wedge, 10
...... Spacer, 11,12,21,22,31,32,41,42,51,52,61,6
2,71,72,81,82 …… Ribs.
Claims (1)
導巻線が、トルクチューブ上に配置されている化合物超
電導界磁巻線において、トルクチューブは、その表面
に、脱着するリブにより形成されたトルクチューブの軸
方向に平行な溝を有し、化合物超電導巻線が該溝に配置
されていることを特徴とする化合物超電導界磁巻線。1. A compound superconducting field winding in which a compound superconducting winding formed of a compound superconducting wire is arranged on a torque tube. The torque tube has a torque formed on its surface by a detachable rib. A compound superconducting field winding, which has a groove parallel to the axial direction of the tube, and the compound superconducting winding is arranged in the groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63046978A JP2555132B2 (en) | 1988-02-29 | 1988-02-29 | Compound superconducting field winding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63046978A JP2555132B2 (en) | 1988-02-29 | 1988-02-29 | Compound superconducting field winding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01220805A JPH01220805A (en) | 1989-09-04 |
JP2555132B2 true JP2555132B2 (en) | 1996-11-20 |
Family
ID=12762325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63046978A Expired - Lifetime JP2555132B2 (en) | 1988-02-29 | 1988-02-29 | Compound superconducting field winding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2555132B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101635483B1 (en) * | 2012-02-29 | 2016-07-01 | 카와사키 주코교 카부시키 카이샤 | Field rotor of superconducting rotating machine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6849363B2 (en) | 1997-06-27 | 2005-02-01 | Kabushiki Kaisha Toshiba | Method for repairing a photomask, method for inspecting a photomask, method for manufacturing a photomask, and method for manufacturing a semiconductor device |
JP6262417B2 (en) | 2012-07-31 | 2018-01-17 | 川崎重工業株式会社 | Magnetic field generator and superconducting rotating machine equipped with the same |
-
1988
- 1988-02-29 JP JP63046978A patent/JP2555132B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101635483B1 (en) * | 2012-02-29 | 2016-07-01 | 카와사키 주코교 카부시키 카이샤 | Field rotor of superconducting rotating machine |
US9397546B2 (en) | 2012-02-29 | 2016-07-19 | Kawasaki Jukogyo Kabushiki Kaisha | Field rotor with cooling passages for superconducting electric machine |
Also Published As
Publication number | Publication date |
---|---|
JPH01220805A (en) | 1989-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6509819B2 (en) | Rotor assembly including superconducting magnetic coil | |
KR101282147B1 (en) | Saddleshaped coil winding using superconductors, and method for the production thereof | |
JP2762257B2 (en) | Manufacturing method of grooveless motor | |
US4427910A (en) | Magnetic slot wedge with low average permeability and high mechanical strength | |
US9048015B2 (en) | High-temperature superconductor (HTS) coil | |
US20020170166A1 (en) | High temperature superconducting racetrack coil | |
JP2006515501A (en) | Rotor assembly | |
JP2555132B2 (en) | Compound superconducting field winding | |
US4543507A (en) | Self-supporting rotor coil for dc-machine | |
US4328437A (en) | Superconductive exciter winding for a turbogenerator rotor | |
US4339681A (en) | Superconducting field winding for the rotor of an electric machine | |
JPH10188692A (en) | Forced cooling superconductor, its manufacture, and manufacture of forced cooling type superconductive coil | |
JP2525016B2 (en) | Superconducting wire | |
JPH0333049Y2 (en) | ||
KR102694905B1 (en) | Bobbin of Superconducting Coil to Prevent Excitation of Straight Part | |
Ishibashi et al. | Nb 3 Sn dipole magnet by wind and react process | |
JPS6114749B2 (en) | ||
JPS6255393B2 (en) | ||
JPH10144521A (en) | 360× helically rotating double-pole magnetic field generating electromagnet | |
JPH0715844B2 (en) | Superconducting coil | |
JP3360949B2 (en) | Winding rotor coil | |
JPH0313728B2 (en) | ||
CA1142567A (en) | Motor stator structure | |
CA1190956A (en) | Magnetic slot wedge with low average permeability and high mechanical strength | |
SU1091274A1 (en) | Stator for electric machine |