JP2013004242A - Method of manufacturing compound superconductive twisted wire - Google Patents

Method of manufacturing compound superconductive twisted wire Download PDF

Info

Publication number
JP2013004242A
JP2013004242A JP2011132658A JP2011132658A JP2013004242A JP 2013004242 A JP2013004242 A JP 2013004242A JP 2011132658 A JP2011132658 A JP 2011132658A JP 2011132658 A JP2011132658 A JP 2011132658A JP 2013004242 A JP2013004242 A JP 2013004242A
Authority
JP
Japan
Prior art keywords
wire
compound
stranded wire
bending
compound superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011132658A
Other languages
Japanese (ja)
Other versions
JP5718171B2 (en
Inventor
Hirokazu Tsubouchi
宏和 坪内
Masahiro Sugimoto
昌弘 杉本
Takeshi Endo
壮 遠藤
Kazuo Watanabe
和雄 渡辺
Satoshi Awaji
智 淡路
Hidetoshi Oguro
英俊 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Furukawa Electric Co Ltd
Original Assignee
Tohoku University NUC
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Furukawa Electric Co Ltd filed Critical Tohoku University NUC
Priority to JP2011132658A priority Critical patent/JP5718171B2/en
Publication of JP2013004242A publication Critical patent/JP2013004242A/en
Application granted granted Critical
Publication of JP5718171B2 publication Critical patent/JP5718171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a compound superconductive twisted wire, reducing strain remaining inside the twisted wire, and preventing superconducting properties from being lowered during wire twisting processing.SOLUTION: A method of manufacturing a compound superconductive twisted wire comprises the steps of: forming a wire where a compound superconductive material to be a superconductor by being subjected to predetermined heat processing occupies at least part of a cross section thereof (wire forming step); forming a twisted wire by using the plurality of wires (wire twisting step); subjecting the twisted wire after the wire twisting step to the heat processing to transform the compound superconductive material to the superconductor to thereby transform the twisted wire to the compound superconductive twisted wire (heat processing step); and applying bending strain to the compound superconductive twisted wire obtained at the heat processing step (bending step).

Description

本発明は、化合物超電導撚線の製造方法に関し、特に、超電導体内部のひずみが緩和または除去されて高い臨界電流等の優れた超電導特性を有する化合物超電導撚線の製造方法に関する。   The present invention relates to a method for producing a compound superconducting stranded wire, and more particularly, to a method for producing a compound superconducting stranded wire having excellent superconducting properties such as high critical current by reducing or removing strain inside the superconductor.

従来、NbSn等の化合物超電導線を用いた超電導マグネットの製造には、一般にマグネット形成後に化合物生成熱処理を施すワインド・アンド・リアクト法を適用する。これは、熱処理されたNbSn等の化合物超電導線が歪みに対して非常に弱く、熱処理後に大きな歪みが作用する巻線工程などを実施できないことが原因である。 Conventionally, in the production of a superconducting magnet using a compound superconducting wire such as Nb 3 Sn, a wind-and-react method in which a compound-forming heat treatment is generally performed after magnet formation is applied. This is because the heat-treated compound superconducting wire such as Nb 3 Sn is very weak against strain, and the winding process in which a large strain acts after the heat treatment cannot be performed.

ワインド・アンド・リアクト法を用いて高磁界加速器用ダイポールマグネット、高磁界大口径マグネット等の大型マグネットを製造する場合、NbSn生成のための化合物生成熱処理を、600℃以上の所定の温度で真空または不活性ガス雰囲気の炉内で行う必要があるが、大型の熱処理を用意しなければならず、マグネット寸法に制限を受けるという問題があった。 When manufacturing large magnets such as dipole magnets for high magnetic field accelerators and high magnetic field large-diameter magnets using the wind-and-react method, a compound generation heat treatment for generating Nb 3 Sn is performed at a predetermined temperature of 600 ° C. or higher. Although it is necessary to carry out in a furnace in a vacuum or an inert gas atmosphere, a large heat treatment has to be prepared, and there is a problem that the magnet size is limited.

高磁界でコンパクトな超電導マグネットを製造するためには、超電導導体の電流密度を上げて、大電流を流す事が有効であるが、その手段の一つとして超電導素線の撚線化が上げられる。しかし、NbSn等の化合物超電導線を用いる場合は、大きな歪みを与えることはできず、上記で示した問題は解決されない。 In order to manufacture a compact superconducting magnet with a high magnetic field, it is effective to increase the current density of the superconducting conductor and flow a large current, but one of the means is to twist the superconducting wire. . However, when a compound superconducting wire such as Nb 3 Sn is used, a large strain cannot be given, and the above-mentioned problems cannot be solved.

NbSn等の化合物超電導線が歪みに弱い原因は、熱処理後の超電導体が脆いこと、複合材料であるため、冷却した場合にそれぞれの材料の熱収縮の違いによって発生する超電導体の圧縮残留歪みによるものだが、最近、CuNb、CuAlなどの強化材を内包した強化型NbSn線材が開発され、その強度向上により熱処理後に巻線工程を行うリアクト・アンド・ワインド法によりマグネットを製造できるようになった。しかし、リアクト・アンド・ワインド法においても、巻線工程における超電導線に作用する歪みは許容値を超えてはならず、また、冷却による超電導体の圧縮残留歪みによる電流特性が劣化する問題は残っている。 Nb 3 Sn compound causes superconducting wire is susceptible to distortion, such as, it superconductor after heat treatment brittle, since a composite material, the compression residual superconductor caused by differences in the thermal contraction of each material when cooled Recently, a reinforced Nb 3 Sn wire containing a reinforcing material such as CuNb or CuAl 2 O 3 has been developed, and due to its strength improvement, a magnet is applied by a react and wind method in which a winding process is performed after heat treatment. It can be manufactured. However, even in the react-and-wind method, the strain acting on the superconducting wire in the winding process must not exceed the allowable value, and the current characteristics due to the compressive residual strain of the superconductor due to cooling still remain. ing.

そこで、残留歪みの問題解決のために、特許文献1には、化合物超電導線内部に残留する歪みを緩和するため、化合物生成熱処理後に曲げ歪みを加える両振り曲げ加工を行い、その後撚線加工を行うことでマグネット用の化合物超電導線を生成する方法が開示されている。   Therefore, in order to solve the problem of residual strain, in Patent Document 1, in order to alleviate the strain remaining in the compound superconducting wire, a double-bending bending process is applied to add a bending strain after the compound generation heat treatment, and then a twisted wire process is performed. A method for producing a compound superconducting wire for a magnet is disclosed.

特開2007−59136号公報JP 2007-59136 A

しかしながら、超電導素線を撚線化して導体にする場合、熱処理によって形成された化合物超電導線を曲げ加工後に撚線加工を行う場合には、歪みが大きくかかる撚線の場合には取り扱いが困難という問題が生じてしまう。   However, when the superconducting element wire is made into a conductor by twisting, if the compound superconducting wire formed by heat treatment is twisted after bending, it is difficult to handle in the case of a twisted wire with a large strain. Problems arise.

そこで、本発明は、化合物超電導線内部に残留する歪みを緩和し、かつ、撚線加工の際に超電導特性の性能を低下させない製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a production method that alleviates strain remaining in a compound superconducting wire and does not deteriorate the performance of superconducting properties during stranded wire processing.

本発明の第1の態様に係る化合物超電導撚線の製造方法は、所定の熱処理を施すことによって超電導体になる化合物超電導原料が少なくとも断面内の一部を占める線材を形成する線材形成工程と、 複数の前記線材を用いて撚線を形成する撚線加工工程と、前記撚線工程後の撚線に前記熱処理を施して前記化合物超電導原料を超電導体にし、前記撚線を化合物超電導撚線にする熱処理工程と、 前記熱処理工程において得られた化合物超電導撚線に、曲げ歪みを加える曲げ加工工程とを備えたことを特徴とする。   The method for producing a compound superconducting stranded wire according to the first aspect of the present invention includes a wire forming step in which a compound superconducting raw material that becomes a superconductor by performing a predetermined heat treatment forms a wire that occupies at least part of the cross section, and A stranded wire forming step of forming a stranded wire using a plurality of the wires, and the heat treatment is performed on the stranded wire after the stranded wire step to make the compound superconducting raw material a superconductor, and the stranded wire into a compound superconducting stranded wire And a bending step of applying bending strain to the compound superconducting stranded wire obtained in the heat treatment step.

本発明の第2の態様に係る化合物超電導撚線の製造方法は、前記曲げ加工工程において、前記化合物超電導撚線に曲げ歪みを0.5%以上1.0%以下の範囲内で加えることを特徴とする。   In the method for producing a compound superconducting stranded wire according to the second aspect of the present invention, in the bending step, bending strain is added to the compound superconducting stranded wire within a range of 0.5% to 1.0%. Features.

本発明の第3の態様に係る化合物超電導撚線の製造方法は、前記曲げ加工工程が正反両方向から曲げ歪みを加える両振り曲げ加工工程を有することを特徴とする。   The method for manufacturing a compound superconducting stranded wire according to the third aspect of the present invention is characterized in that the bending step includes a double-bending bending step in which bending strain is applied from both the positive and negative directions.

本発明の第4の態様に係る化合物超電導撚線の製造方法は、前記両振り曲げ加工工程において、正反両方向から1回ずつ曲げ歪みを加える単一両振り加工を、前記化合物超電導線材に5回以上20回以下の回数施こすことを特徴とする。   In the compound superconducting stranded wire manufacturing method according to the fourth aspect of the present invention, the compound superconducting wire is subjected to a single swinging process in which bending strain is applied once in both the forward and reverse directions in the double swing bending process. It is characterized in that it is applied more than 20 times and less than 20 times.

本発明の第5の態様に係る化合物超電導撚線の製造方法は、前記化合物超電導体がNbSnまたはNbAlからなることを特徴とする。 The compound superconducting stranded wire manufacturing method according to the fifth aspect of the present invention is characterized in that the compound superconductor is made of Nb 3 Sn or Nb 3 Al.

本発明の第6の態様に係る化合物超電導撚線の製造方法は、CuNb、CuAl、CuNbTi、およびTaのうちの何れか1種類の導電性材料からなる強化材が形成されることを特徴とする。 The manufacturing method of the compound superconducting stranded wire according to the sixth aspect of the present invention is such that a reinforcing material made of any one conductive material of CuNb, CuAl 2 O 3 , CuNbTi, and Ta is formed. Features.

本発明によると、撚線加工後に熱処理がなされた化合物超電導撚線に曲げ歪みを加える曲げ加工を施すことによって、撚線を構成する素線毎の歪みを制御することなく化合物超電導撚線の内部の歪みを緩和することができ、更に、臨界電流等の超電導特性の向上が図れる化合物超電導撚線の製造方法を実現することができた。   According to the present invention, the inside of a compound superconducting stranded wire can be controlled without controlling the strain of each strand constituting the stranded wire by applying a bending process that applies bending strain to the compound superconducting stranded wire that has been heat-treated after the stranded wire processing. In addition, it was possible to realize a method for producing a compound superconducting stranded wire that can alleviate the strain of the material and can improve superconducting properties such as critical current.

図1は、本発明の化合物超電導撚線の製造方法を説明するための工程図である。FIG. 1 is a process diagram for explaining a method for producing a compound superconducting stranded wire of the present invention. 図2は、本発明の化合物超電導撚線に用いる素線の断面形状の一例を表す図である。FIG. 2 is a diagram showing an example of a cross-sectional shape of a strand used for the compound superconducting stranded wire of the present invention. 図3は、本発明の化合物超電導撚線に用いる素線の他の断面形状の例を表す図である。FIG. 3 is a diagram showing an example of another cross-sectional shape of the strand used for the compound superconducting stranded wire of the present invention. 図4は、本発明の化合物超電導撚線の断面形状の一例を表す図である。FIG. 4 is a diagram showing an example of a cross-sectional shape of the compound superconducting stranded wire of the present invention. 図5は、曲げ加工工程において両振り曲げ加工を施す装置の構成の一例を表す図である。FIG. 5 is a diagram illustrating an example of a configuration of an apparatus that performs a double bending process in the bending process. 図6は、曲げ加工工程において片振り曲げ加工を施す装置の構成の一例を表す図である。FIG. 6 is a diagram illustrating an example of a configuration of an apparatus that performs a swing bending process in the bending process.

以下に、本発明の化合物超電導撚線の製造方法について、図面を参照しながら詳細に説明する。   Below, the manufacturing method of the compound superconducting stranded wire of this invention is demonstrated in detail, referring drawings.

本発明の化合物超電導撚線の製造方法の1つの態様は、図1に示すように、所定の熱処理を施すことによって超電導体になる化合物超電導原料が少なくとも断面内の一部を占める線材を形成する線材形成工程S101と、線材形成工程S101において形成された線材を複数用いて撚線を形成する撚線加工工程S102と、撚線加工工程S102において形成された撚線に熱処理を施して化合物超電導原料を超電導体にし、撚線を化合物超電導撚線にする熱処理工程S103と、熱処理工程S103において得られた化合物超電導撚線に、曲げ歪みを加える曲げ加工を施す曲げ加工工程S104とを備えたことを特徴とする化合物超電導撚線の製造方法である。   In one embodiment of the method for producing a compound superconducting stranded wire of the present invention, as shown in FIG. 1, a compound superconducting raw material that becomes a superconductor is formed by performing a predetermined heat treatment to form a wire that occupies at least part of the cross section. Compound superconducting raw material by performing heat treatment on wire forming step S101, stranded wire forming step S102 that forms a stranded wire using a plurality of wires formed in wire rod forming step S101, and stranded wire formed in stranded wire forming step S102 A heat treatment step S103 for converting the superconductor into a compound superconducting stranded wire, and a bending step S104 for subjecting the compound superconducting stranded wire obtained in the heat treatment step S103 to bending bending strain. It is the manufacturing method of the compound superconducting stranded wire characterized.

<線材形成工程>
線材形成工程S101において形成される線材10の断面構造の一例を図2に示す。図2において、中央の領域1を超電導体の原料が占め、最も外側の領域3を安定化材が占め、中央の領域1と外側の領域3との間の領域2を強化材が占めている。
<Wire forming process>
An example of a cross-sectional structure of the wire 10 formed in the wire forming step S101 is shown in FIG. In FIG. 2, the raw material of the superconductor occupies the central region 1, the stabilizing region occupies the outermost region 3, and the reinforcing material occupies the region 2 between the central region 1 and the outer region 3. .

強化材および安定化材には金属または合金材料等の導電性を有する材料が用いられる。強化材には、例えば、CuNb、CuAl 、CuNbTi、Ta等を用いてもよい。また、安定化材には、Cuを用いてもよい。ただし、強化材および安定化材にその他の材料を用いてもよい。領域1を占めることになる化合物超電導体には、例えば、NbSn 、NbAl等が用いられる。また、化合物超電導体が1μm以上の直径のフィラメントを複数組み合わせて得られる構成のものであってもよい。 As the reinforcing material and the stabilizing material, a conductive material such as a metal or an alloy material is used. For example, CuNb, CuAl 2 O 3 , CuNbTi, Ta, or the like may be used as the reinforcing material. Further, Cu may be used as the stabilizing material. However, other materials may be used for the reinforcing material and the stabilizing material. For example, Nb 3 Sn, Nb 3 Al, or the like is used for the compound superconductor that will occupy the region 1. Further, the compound superconductor may have a structure obtained by combining a plurality of filaments having a diameter of 1 μm or more.

なお、撚線加工に用いる線材10の断面構造は、図2に示すものに限定されず、その他の断面構造を有するのでもよい。具体的には、図3に示す断面構造等を有するのでもよい。図3において、最も外側の層はCuからなる安定化材である。図3には、それぞれ、中央の化合物超電導体となる超電導原料部分と最外層の安定化材との間にCuNb等からなる強化材が占めるCuNb補強ブロンズ法NbSn化合物超電導体となる線材の断面図が(a)に、中央のCuNbTi等からなる強化材と最外層の安定化材との間に化合物超電導体となる超電導原料が占めるCuNbTi補強ブロンズ法NbSn化合物超電導体となる線材の断面図が(b)に、NbSnフィラメントの1本1本がTa芯を有するTa補強ブロンズ法NbSn化合物超電導体となる線材の断面図が(c)に、Cuからなる中央の芯線と最外層の安定化材との間に化合物超電導体の超電導原料が占める無補強ブロンズ法NbSn化合物超電導体となる線材の断面図が(d)に示されている。 In addition, the cross-sectional structure of the wire 10 used for a twisted wire process is not limited to what is shown in FIG. 2, You may have another cross-sectional structure. Specifically, it may have the cross-sectional structure shown in FIG. In FIG. 3, the outermost layer is a stabilizing material made of Cu. FIG. 3 shows a wire material that becomes a CuNb reinforced bronze method Nb 3 Sn compound superconductor in which a reinforcing material made of CuNb or the like occupies between the superconducting raw material portion that becomes the central compound superconductor and the outermost stabilizing material. A cross-sectional view of (a) shows a wire material that becomes a CuNbTi reinforced bronze method Nb 3 Sn compound superconductor occupied by a superconducting raw material that becomes a compound superconductor between a reinforcing material made of CuNbTi or the like in the center and an outermost stabilizing material. A cross-sectional view is (b), a cross-sectional view of a wire rod that becomes a Ta-reinforced bronze Nb 3 Sn compound superconductor in which each Nb 3 Sn filament has a Ta core is shown in (c), and a central core wire made of Cu (D) shows a cross-sectional view of a wire material that becomes an unreinforced bronze Nb 3 Sn compound superconductor in which the superconducting raw material of the compound superconductor occupies between the outermost layer stabilizing material and the outermost layer stabilizer.

表1は、各ブロンズ法NbSn化合物超電導体となる線材の構成の例について説明するための表である。表1において、強化材の欄に(Ta)と記載されたものは、フィラメントがTaからなる芯線を有することを示し、強化材の欄に<Cu>と記載されたものは、強化材を設けていないが、線材断面の中央部をCuを占めることを表す。各ブロンズ法NbSn化合物超電導体となる線材のブロンズ成分は、表1に示すように、Ta補強ブロンズ法NbSn化合物超電導体となる線材を除き、重量組成でSnが14%、Tiが0.2%、Cuが残りである。Ta補強ブロンズ法NbSn化合物超電導体となる線材については、重量組成でSnが15%、Tiが0.3% 、Cuが残りである。 Table 1 is a table for explaining an example of the configuration of the wire to be the bronze process Nb 3 Sn compound superconductor. In Table 1, (Ta) written in the column of reinforcing material indicates that the filament has a core wire made of Ta, and <Cu> in the column of reinforcing material is provided with reinforcing material. Although it does not, it represents that the center part of a wire cross section occupies Cu. As shown in Table 1, the bronze component of the wire material that becomes each Bronze method Nb 3 Sn compound superconductor, except for the wire material that becomes the Ta-reinforced bronze method Nb 3 Sn compound superconductor, has a weight composition of Sn of 14% and Ti. 0.2% Cu remains. With respect to the wire used as the Ta-reinforced bronze Nb 3 Sn compound superconductor, Sn is 15%, Ti is 0.3%, and Cu is the remaining by weight composition.

Figure 2013004242
Figure 2013004242

なお、撚線加工工程及び熱処理工程を経た各ブロンズ法NbSn化合物超電導線材20の線径はφ1mmであり、フィラメント径はTa芯を有するもの(φ7.9μm)を除きφ3.5μmである。各ブロンズ法NbSn化合物超電導線材の断面積を占める安定化材、強化材および超電導体の面積の比は、表1中に「Cu/RM/SC」として記載されている。NbSn化合物超電導体は、線材の断面積の44〜51.3%の面積を占める。 In addition, the wire diameter of each bronze method Nb 3 Sn compound superconducting wire 20 that has undergone the stranded wire processing step and the heat treatment step is φ1 mm, and the filament diameter is φ3.5 μm except for those having a Ta core (φ7.9 μm). The ratio of the area of the stabilizer, reinforcing material and superconductor occupying the cross-sectional area of each bronze Nb 3 Sn compound superconducting wire is described in Table 1 as “Cu / RM / SC”. The Nb 3 Sn compound superconductor occupies an area of 44 to 51.3% of the cross-sectional area of the wire.

<撚線加工工程>
撚線加工工程S102においては、線材形成工程S101において形成された線材10を撚り合わせる加工を行う。更に、線材を所定の形状等に成型する成型加工を行ってもよい。
本発明によって得られる化合物超電導撚線の形態としては、図4(a)に示すような丸型の化合物超電導撚線100や図4(b)に示すような平角型の化合物超電導撚線200(一般的に、ラザフォードケーブルと呼ばれる)などがある。加工を行う際に用いる線材(素線)10の数や、撚りピッチは生成しようとする化合物超電導撚線100,200の構成や寸法、共巻きする素材(図4(a)における共巻き材30)等に応じて異なる。
<Strand wire processing process>
In the twisted wire processing step S102, processing for twisting the wire 10 formed in the wire material forming step S101 is performed. Furthermore, you may perform the shaping | molding process which shape | molds a wire to a predetermined shape.
As a form of the compound superconducting stranded wire obtained by the present invention, a round compound superconducting stranded wire 100 as shown in FIG. 4A or a flat type compound superconducting stranded wire 200 as shown in FIG. Commonly called Rutherford cable). The number of wire rods (elements) 10 used for processing, the twist pitch, the composition and dimensions of the compound superconducting stranded wires 100 and 200 to be generated, and the material to be wound together (co-winding material 30 in FIG. 4A) ) And so on.

<熱処理工程>
熱処理工程S103においては、所定の条件で化合物生成熱処理を施して線材形成工程S101において形成された線材10を化合物超電導線材20にする。この化合物生成熱処理は、例えばNbSnの場合、650℃〜700℃等の600℃以上の所定の温度、真空中または不活性ガス雰囲気中、100時間、行われるのでもよい。ただし、化合物生成熱処理の条件は、一般に、生成しようとする化合物超電導体、化合物超電導原料、線材の構成、寸法等に応じて異なる。
<Heat treatment process>
In the heat treatment step S103, a compound generation heat treatment is performed under a predetermined condition so that the wire 10 formed in the wire forming step S101 is made into the compound superconducting wire 20. For example, in the case of Nb 3 Sn, this compound generation heat treatment may be performed at a predetermined temperature of 600 ° C. or higher, such as 650 ° C. to 700 ° C., in a vacuum or in an inert gas atmosphere for 100 hours. However, the conditions for the compound generation heat treatment generally vary depending on the compound superconductor to be generated, the compound superconducting raw material, the configuration, dimensions, etc. of the wire.

<曲げ加工工程>
曲げ加工工程S104においては、化合物生成熱処理を施して得られた化合物超電導撚線100,200に、曲げ加工を施す。曲げ加工工程において、化合物超電導撚線100,200を構成する化合物超電導撚線100,200に曲げ歪みを0.5%以上1.0%以下の範囲内で加えることが好ましい。0.5%未満の場合には、化合物超電導撚線100,200の十分な特性向上が得られず、1.0%を超えると素線20が劣化してしまうという問題がある。
<Bending process>
In the bending step S104, bending is performed on the compound superconducting stranded wires 100 and 200 obtained by performing the compound generation heat treatment. In the bending step, it is preferable to add bending strain to the compound superconducting stranded wires 100 and 200 constituting the compound superconducting stranded wires 100 and 200 within a range of 0.5% to 1.0%. When the content is less than 0.5%, sufficient improvement in the properties of the compound superconducting stranded wires 100 and 200 cannot be obtained. When the content exceeds 1.0%, the strand 20 is deteriorated.

なお、曲げ加工工程には、正反両方向から曲げ歪みを加える両振り曲げ加工が含まれていてもよい。両振り曲げ加工として、例えば、化合物超電導撚線100,200に正反両方向から曲げ歪みを1回ずつ加える単一両振り加工を1回以上施すのでもよい。両振り曲げ加工の場合には、化合物超電導撚線100,200を構成する素線20に対して均一な曲げ歪みを加えることができるという点で好ましい。両振り曲げ加工として単一両振り加工を1回以上施す場合に、例えば、図5に示すようにプーリ13を用いて曲げ歪みを加えるのでもよい。このとき、化合物超電導撚線100,200のピッチや素線の径が所望の値に決定しているため、用いるプーリ13の径を選択することで、線材に与える曲げひずみを制御することができる。   Note that the bending process may include a double-bending process in which bending strain is applied from both the positive and negative directions. As the double bending process, for example, a single double swing process in which bending strain is applied to the compound superconducting stranded wires 100 and 200 from both the positive and negative directions once may be performed one or more times. In the case of the double bending process, it is preferable in that a uniform bending strain can be applied to the strands 20 constituting the compound superconducting stranded wires 100 and 200. In the case where a single double swing process is performed one or more times as the double swing bending process, for example, a bending strain may be applied using a pulley 13 as shown in FIG. At this time, since the pitch of the compound superconducting stranded wires 100 and 200 and the diameter of the strand are determined as desired values, the bending strain applied to the wire can be controlled by selecting the diameter of the pulley 13 to be used. .

図5において、化合物超電導撚線100は、化合物生成熱処理用ボビン11に巻かれて熱処理が施されたものである。化合物超電導撚線100は、所定の張力で巻き取り用ボビン14に引き寄せられ、化合物生成熱処理用ボビン11から回転部材12、プーリ13を介して巻き取り用ボビン14に巻き取られる。ただし、両振り曲げ加工として、加工対象の撚線を回転しながら、または、捻りながら両振り曲げを様々な方向から加える加工、引っ張りと圧縮とを繰り返し加える加工、その他の正反両方向から力を加える加工を施すのでもよい。   In FIG. 5, a compound superconducting stranded wire 100 is wound around a bobbin 11 for compound generation heat treatment and subjected to heat treatment. The compound superconducting stranded wire 100 is drawn to the winding bobbin 14 with a predetermined tension, and is wound from the compound generation heat treatment bobbin 11 to the winding bobbin 14 via the rotating member 12 and the pulley 13. However, as the double bending process, the twisted wire to be processed is rotated or twisted while twisting and bending is applied from various directions, the process of repeatedly applying tension and compression, and other positive and negative directions. You may perform the process to add.

両振り曲げ加工以外には、片振り曲げ加工を用いてもよい。片振り曲げ加工は、化合物超電導撚線に一方向から曲げ歪みを加えた後、化合物超電導撚線100,200を一旦直線状にする加工方法である。片振り曲げ加工として単一片振り加工を1回以上施す場合に、例えば、図6に示すようにプーリ13を用いて曲げ歪みを加えればよい。このとき、化合物超電導撚線100,200のピッチや素線20の径が所望の値に決定しているため、用いるプーリ13の径を選択することで、素線20に与える曲げひずみを制御することができる。   In addition to the double swing bending process, a single swing bending process may be used. Single swing bending is a processing method in which a compound superconducting stranded wire 100, 200 is once linearized after bending strain is applied to the compound superconducting stranded wire from one direction. In the case of performing a single piece swing process once or more as a single swing bending process, for example, a bending strain may be applied using a pulley 13 as shown in FIG. At this time, since the pitch of the compound superconducting stranded wires 100 and 200 and the diameter of the strand 20 are determined to desired values, the bending strain applied to the strand 20 is controlled by selecting the diameter of the pulley 13 to be used. be able to.

図6において、化合物超電導撚線100,200は、化合物生成熱処理用ボビン11に巻かれて熱処理が施されたものである。化合物超電導撚線100,200は、所定の張力で巻き取り用ボビン14に引き寄せられ、化合物生成熱処理用ボビン11からプーリ13を介して巻き取り用ボビン14に巻き取られる。ただし、片振り曲げ加工として、加工対象の化合物超電導撚線100,200を回転しながら、または、捻りながら片振り曲げを様々な方向から加える加工、引っ張りと圧縮とを繰り返し加える加工を施すのでもよい。
図6においては、化合物生成熱処理用ボビン11に巻かれた化合物超電導撚線100,200は、化合物生成熱処理用ボビン11のボビン径によって決定される曲げ歪みがすでに与えられているため、化合物生成熱処理用ボビン11から化合物超電導撚線100,200を引き出して、一旦、直線状とし、その後、プーリ13を通すことによって逆方向の曲げ歪みを印加することができる。
In FIG. 6, compound superconducting stranded wires 100 and 200 are wound around a compound-forming heat treatment bobbin 11 and subjected to heat treatment. The compound superconducting stranded wires 100 and 200 are drawn to the take-up bobbin 14 with a predetermined tension, and are taken up from the compound generating heat treatment bobbin 11 via the pulley 13 to the take-up bobbin 14. However, as a single swing bending process, a process of applying a single swing bending from various directions while rotating or twisting the compound superconducting stranded wires 100 and 200 to be processed, or a process of repeatedly applying tension and compression may be performed. Good.
In FIG. 6, the compound superconducting stranded wires 100 and 200 wound around the compound generation heat treatment bobbin 11 are already given a bending strain determined by the bobbin diameter of the compound generation heat treatment bobbin 11. By pulling the compound superconducting stranded wires 100 and 200 from the bobbin 11 and making them once straight, and then passing through the pulley 13, reverse bending strain can be applied.

なお、図5,6のような方法で化合物超電導撚線100,200に曲げ加工を行う際に化合物超電導撚線100,200に絶縁処理を行う場合には、化合物超電導撚線100,200がプーリ13を通過した後、巻き取り用ボビン14に巻き取られる間に行えばよい。   5 and 6, when the compound superconducting stranded wires 100 and 200 are subjected to insulation treatment when the compound superconducting stranded wires 100 and 200 are bent, the compound superconducting stranded wires 100 and 200 are pulleys. After passing 13, it may be performed while being wound on the winding bobbin 14.

本発明の化合物超電導撚線の製造方法を、図面を参照しながら、実施例によって更に詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。
図4(a)に示すような断面構造を有した化合物超電導撚線100を作成した。本実施例では、素線20となる線材10には、外周に安定化銅を配置し、超電導体にNbSnを用い、安定化銅と超電導体の間に拡散バリア材としてTaを用いたNbSn化合物超電導体となる線材10(素線径φは1mm)を使用した。
The method for producing a compound superconducting stranded wire of the present invention will be described in more detail with reference to the drawings, but the present invention is not limited to these examples.
A compound superconducting stranded wire 100 having a cross-sectional structure as shown in FIG. In this embodiment, the wire 10 to be the element wire 20 is provided with stabilized copper on the outer periphery, Nb 3 Sn is used for the superconductor, and Ta is used as a diffusion barrier material between the stabilized copper and the superconductor. A wire 10 (element diameter φ is 1 mm) to be an Nb 3 Sn compound superconductor was used.

すなわち、線材の横断面における中心部に、NbSnからなる化合物超電導体の原料を配置し、超電導体の原料の外周にTaを配置し、更に、その外周に安定化銅を配置した複合体からなる線材10を構成した。この線材を3本と、ステンレス線を4本用いて図4(a)のような撚線とした。このときの撚りピッチは、45mmとした。
この撚線に対して熱処理を施して、複合体に化合物生成反応を起こさせてNbSn化合物超電導体を形成し、化合物超電導撚線100とした。
That is, a composite in which a raw material of a compound superconductor composed of Nb 3 Sn is disposed at the center of the cross section of the wire, Ta is disposed on the outer periphery of the superconductor raw material, and stabilized copper is disposed on the outer periphery. The wire 10 which consists of was comprised. Using three wires and four stainless wires, a stranded wire as shown in FIG. The twist pitch at this time was 45 mm.
The twisted wire was heat-treated to cause a compound formation reaction in the composite to form an Nb 3 Sn compound superconductor, and a compound superconducting twisted wire 100 was obtained.

得られた化合物超電導撚線100に対して、正反両方向から0.8%程度の曲げ歪みを加えるため、プーリ13の径を125mmとし、両振り曲げ加工を5回施して、NbSn化合物超電導撚線を製造した。 In order to apply a bending strain of about 0.8% from both the forward and reverse directions to the obtained compound superconducting stranded wire 100, the diameter of the pulley 13 is set to 125 mm, the double swing bending process is performed 5 times, and the Nb 3 Sn compound A superconducting stranded wire was produced.

(比較例)
実施例と同様に超電導体となる線材を作成し、線材に対して熱処理を施して、複合体に化合物生成反応を起こさせてNbSn化合物超電導体を形成し、化合物超電導線とした。得られた化合物超電導線に対して、正反両方向から0.8%の曲げ歪みを加えるため、プーリ13の径を125mmとし、両振り曲げ加工を5回施して、NbSn化合物超電導線を製造した。
得られたNbSn化合物超電導線を3本と、ステンレス線を4本用いて図4(a)のように撚った。このときの撚りピッチは、45mmとした。このときの、Nb3Sn化合物超電導線
(Comparative example)
A wire rod to be a superconductor was prepared in the same manner as in the examples, and the wire rod was heat-treated to cause a compound formation reaction in the composite to form an Nb 3 Sn compound superconductor to obtain a compound superconducting wire. In order to apply a bending strain of 0.8% from both the positive and negative directions to the obtained compound superconducting wire, the diameter of the pulley 13 was set to 125 mm, and the double swing bending process was performed five times to obtain the Nb 3 Sn compound superconducting wire. Manufactured.
The obtained Nb 3 Sn compound superconducting wire and four stainless steel wires were twisted as shown in FIG. The twist pitch at this time was 45 mm. Nb3Sn compound superconducting wire at this time

(評価)
以上のようにして得られた、NbSn化合物超電導撚線に対して、外部磁界を12T〜16Tの範囲で印加して臨界電流(Ic)の測定を行った。その結果、本実施例のIcは、12T〜16Tで比較例に比べて約1.4〜1.6倍となった。
(Evaluation)
The critical current (Ic) was measured by applying an external magnetic field in the range of 12T to 16T to the Nb 3 Sn compound superconducting stranded wire obtained as described above. As a result, the Ic of the present example was 12T to 16T, which was about 1.4 to 1.6 times that of the comparative example.

これは、比較例の素線が与えられた曲げ歪みは、撚線由来の曲げ歪みと曲げ加工による曲げ歪みの両方を有しているためである。   This is because the bending strain given the strand of the comparative example has both a bending strain derived from a stranded wire and a bending strain due to bending.

比較例の化合物超電導撚線を構成する素線は、その螺旋構造によって周期的に曲げが加わっていることによって、曲げ加工による曲げ歪みの他に、撚線由来の曲げ歪みを有している。   The strand which comprises the compound superconducting stranded wire of the comparative example has the bending strain derived from a twisted wire other than the bending strain by bending by the bending being periodically added by the helical structure.

ここで、曲げ加工の際の曲げによる曲率は、撚線の中心位置から撚線の最外周に配置される素線の中心までの距離である半径と螺旋構造のピッチパラメータと曲げ加工のための曲げ半径によって決まる。また、撚線由来の曲率は、撚線の中心位置から撚線の最外周に配置される素線の中心までの距離である半径と螺旋構造のピッチパラメータで決まる。また、化合物超電導撚線に対して行われる曲げ加工工程での曲率は、螺旋構造による曲率と曲げ加工の際の曲げによる曲率の和となる。   Here, the curvature due to bending during the bending process is the distance from the center position of the stranded wire to the center of the strand arranged at the outermost periphery of the stranded wire, the pitch parameter of the spiral structure, and the bending It depends on the bending radius. Further, the curvature derived from the stranded wire is determined by the radius that is the distance from the center position of the stranded wire to the center of the strand arranged at the outermost periphery of the stranded wire and the pitch parameter of the spiral structure. Moreover, the curvature in the bending process performed with respect to a compound superconducting stranded wire becomes the sum of the curvature by a spiral structure and the curvature by the bending in the case of a bending process.

結果、比較例においては撚線由来の曲げ歪みを更に有していることになるため、比較例における化合物超電導撚線を形成する素線の曲げ歪みは1.0%を超えることとなり、超電導特性が低下してしまったと考えられる。   As a result, in the comparative example, since it further has a bending strain derived from the stranded wire, the bending strain of the strand forming the compound superconducting stranded wire in the comparative example exceeds 1.0%, and the superconducting characteristics Seems to have declined.

以上のことから、本実施例においては、撚線由来の曲げ歪みを有していないため、曲げ加工工程において与える曲げ歪みを制御するだけで化合物超電導撚線を構成する各素線の曲げ歪みを制御することができる。よって、歪みが大きくかかる撚線(例えばピッチが小さいような撚線や平角型の撚線)の場合には、本発明の製造方法を用いることで容易に撚線を取り扱うことが可能となる。   From the above, in this example, since there is no bending strain derived from the stranded wire, the bending strain of each strand constituting the compound superconducting stranded wire can be controlled only by controlling the bending strain applied in the bending process. Can be controlled. Therefore, in the case of a twisted wire with a large strain (for example, a twisted wire having a small pitch or a flat twisted wire), the twisted wire can be easily handled by using the manufacturing method of the present invention.

1、2、3 領域
10 線材
11 熱処理用ボビン
12 回転部材
13 プーリ
14 巻き取り用ボビン
20 化合物超電導線材
30 共巻き材
100、200 化合物超電導撚線
1, 2, 3 Region 10 Wire 11 Heat treatment bobbin 12 Rotating member 13 Pulley 14 Winding bobbin 20 Compound superconducting wire 30 Co-winding material 100, 200 Compound superconducting stranded wire

Claims (6)

所定の熱処理を施すことによって超電導体になる化合物超電導原料が少なくとも断面内の一部を占める線材を形成する線材形成工程と、
複数の前記線材を用いて撚線を形成する撚線加工工程と、
前記撚線工程後の撚線に前記熱処理を施して前記化合物超電導原料を超電導体にし、前記撚線を化合物超電導撚線にする熱処理工程と、
前記熱処理工程において得られた化合物超電導撚線に、曲げ歪みを加える曲げ加工工程とを備えたことを特徴とする化合物超電導撚線の製造方法。
A wire material forming step in which a compound superconducting raw material that becomes a superconductor by performing a predetermined heat treatment forms a wire material that occupies at least part of the cross section; and
A stranded wire forming step of forming a stranded wire using a plurality of the wires;
A heat treatment step of applying the heat treatment to the stranded wire after the stranded wire step to make the compound superconducting raw material a superconductor, and making the stranded wire a compound superconducting stranded wire;
A method for producing a compound superconducting stranded wire, comprising a bending step of applying bending strain to the compound superconducting stranded wire obtained in the heat treatment step.
前記曲げ加工工程において、前記化合物超電導撚線に曲げ歪みを0.5%以上1.0%以下の範囲内で加えることを特徴とする請求項1に記載の化合物超電導撚線の製造方法。   2. The method for producing a compound superconducting stranded wire according to claim 1, wherein in the bending step, bending strain is applied to the compound superconducting stranded wire within a range of 0.5% to 1.0%. 前記曲げ加工工程が正反両方向から曲げ歪みを加える両振り曲げ加工工程を有することを特徴とする請求項1または2に記載の化合物超電導撚線の製造方法。   The method for producing a compound superconducting stranded wire according to claim 1 or 2, wherein the bending step includes a double-bending bending step in which bending strain is applied from both the positive and negative directions. 前記両振り曲げ加工工程において、正反両方向から1回ずつ曲げ歪みを加える単一両振り加工を、前記化合物超電導線材に5回以上20回以下の回数施こすことを特徴とする請求項1または2に記載の化合物超電導撚線の製造方法。   2. The double swing bending step, wherein a single double swing process in which bending strain is applied once in both the forward and reverse directions is applied to the compound superconducting wire 5 times or more and 20 times or less. 2. A method for producing a compound superconducting stranded wire according to 2. 前記化合物超電導体がNbSnまたはNbAlからなることを特徴とする請求項1乃至4の何れか1項に記載の化合物超電導撚線の製造方法。 The method for producing a compound superconducting stranded wire according to any one of claims 1 to 4, wherein the compound superconductor is composed of Nb 3 Sn or Nb 3 Al. CuNb、CuAl、CuNbTi、およびTaのうちの何れか1種類の導電性材料からなる強化材が形成されることを特徴とする請求項1乃至5の何れか1項に記載の化合物超電導撚線の製造方法。 The compound superconductivity according to any one of claims 1 to 5, wherein a reinforcing material made of any one of conductive materials of CuNb, CuAl 2 O 3 , CuNbTi, and Ta is formed. A method of manufacturing a stranded wire.
JP2011132658A 2011-06-14 2011-06-14 Method for producing compound superconducting stranded wire Active JP5718171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132658A JP5718171B2 (en) 2011-06-14 2011-06-14 Method for producing compound superconducting stranded wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132658A JP5718171B2 (en) 2011-06-14 2011-06-14 Method for producing compound superconducting stranded wire

Publications (2)

Publication Number Publication Date
JP2013004242A true JP2013004242A (en) 2013-01-07
JP5718171B2 JP5718171B2 (en) 2015-05-13

Family

ID=47672636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132658A Active JP5718171B2 (en) 2011-06-14 2011-06-14 Method for producing compound superconducting stranded wire

Country Status (1)

Country Link
JP (1) JP5718171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358688B2 (en) * 2018-09-28 2023-10-11 古河電気工業株式会社 Compound superconducting stranded wire and its rewinding method
WO2020066907A1 (en) 2018-09-28 2020-04-02 古河電気工業株式会社 Insulation coating compound superconducting wire and rewinding method thereof
JPWO2023013726A1 (en) 2021-08-06 2023-02-09

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353961A (en) * 1998-06-09 1999-12-24 Mitsubishi Electric Corp Precursor wire material of nb3sn compound superconductor and its manufacture, manufacture of nb3sn compound superconductor, and manufacture of nb3sn compound superconducting coil
JP2007081128A (en) * 2005-09-14 2007-03-29 Furukawa Electric Co Ltd:The Superconductive coil and method of manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353961A (en) * 1998-06-09 1999-12-24 Mitsubishi Electric Corp Precursor wire material of nb3sn compound superconductor and its manufacture, manufacture of nb3sn compound superconductor, and manufacture of nb3sn compound superconducting coil
JP2007081128A (en) * 2005-09-14 2007-03-29 Furukawa Electric Co Ltd:The Superconductive coil and method of manufacturing same

Also Published As

Publication number Publication date
JP5718171B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2013154187A1 (en) Compound superconductive wire and method for manufacturing same
JP2013062239A (en) Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME
JP6182577B2 (en) Method for producing compound superconducting wire and method for producing compound superconducting cable
JP7335886B2 (en) Insulation coating compound superconducting wire and its rewinding method
JP5718171B2 (en) Method for producing compound superconducting stranded wire
JP2014137917A (en) Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
JP2018147842A (en) PRECURSOR OF Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP4532369B2 (en) Compound superconducting wire and compound superconducting cable manufacturing method
JPWO2020066908A1 (en) Compound superconducting stranded wire and its rewinding method
JP2007081128A (en) Superconductive coil and method of manufacturing same
Berriaud et al. Conductor R&D for the Iseult/INUMAC whole body 11.7 T MRI magnet
JPS60199522A (en) Manufacture of superconductive alloy wire
JP3718480B2 (en) Method for reducing AC losses in superconducting coils
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
WO2023189275A1 (en) Compound superconducting precursor wire, compound superconducting precursor strand, and compound superconducting strand
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JP4214200B2 (en) Powder method Nb3Sn superconducting wire
JP4687438B2 (en) Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
WO2023013726A1 (en) Precursor wire for compound superconducting wire, compound superconducting wire, and rewinding method for compound superconducting wire
JPH05804B2 (en)
JP5170897B2 (en) Flat superconducting molded stranded wire and method for manufacturing the same
JP2005141968A (en) Compound superconducting wire material and its manufacturing method
JP2010182470A (en) Nb3Al SUPERCONDUCTING MULTI-CORE WIRE
JP2525016B2 (en) Superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R151 Written notification of patent or utility model registration

Ref document number: 5718171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250