JP4532369B2 - Compound superconducting wire and compound superconducting cable manufacturing method - Google Patents
Compound superconducting wire and compound superconducting cable manufacturing method Download PDFInfo
- Publication number
- JP4532369B2 JP4532369B2 JP2005241315A JP2005241315A JP4532369B2 JP 4532369 B2 JP4532369 B2 JP 4532369B2 JP 2005241315 A JP2005241315 A JP 2005241315A JP 2005241315 A JP2005241315 A JP 2005241315A JP 4532369 B2 JP4532369 B2 JP 4532369B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- compound
- compound superconducting
- superconducting wire
- bending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
本発明は、化合物超電導線材、化合物超電導ケーブルおよびその製造方法に関し、特に、超電導体内部のひずみが緩和または除去されて高い臨界電流等の優れた超電導特性を有する化合物超電導線材、化合物超電導ケーブル、およびその製造方法に関する。 The present invention relates to a compound superconducting wire, a compound superconducting cable, and a method for producing the same, and in particular, a compound superconducting wire, a compound superconducting cable having excellent superconducting properties such as a high critical current by reducing or removing strain inside the superconductor, and It relates to the manufacturing method.
従来、Nb3Sn超電導ケーブル等の化合物超電導ケーブルを製造する方法として、化合物超電導原料を内部に含む線材に化合物生成のための熱処理を施して化合物超電導線材を形成し、得られた化合物超電導線材を撚り合わせる、いわゆる、リアクト・アンド・ワインド(React and Wind)法と、上述の熱処理前の線材を撚り合わせてから熱処理を施す、いわゆるワインド・アンド・リアクト(Wind and React)法とがある(例えば、特許文献1、特許文献2、特許文献3、非特許文献1参照。)。以下、化合物生成のための熱処理、すなわち、上述の化合物超電導原料を内部に含む線材を化合物超電導線材にする熱処理を、単に化合物生成熱処理という。
Conventionally, as a method for producing a compound superconducting cable such as an Nb 3 Sn superconducting cable, a compound superconducting wire is formed by subjecting a wire containing a compound superconducting raw material to a heat treatment for generating a compound, and forming the compound superconducting wire. There is a so-called “React and Wind” method in which the wires are twisted together, and a so-called Wind and React method in which the wires before the heat treatment are twisted and then subjected to heat treatment (for example, ,
ここで、高磁界加速器用ダイポールマグネット、高磁界大口径マグネット等の大型マグネットは、一般にリアクト・アンド・ワインド法を用いて製造されたNb3Sn超電導ケーブルを用いている。この理由は、Nb3Sn生成のための化合物生成熱処理を、600℃以上の所定の温度で真空または不活性ガス雰囲気の炉内で行う必要があるが、上述の大型マグネットには炉の寸法上の制約から、マグネット形成後に化合物生成熱処理を施すワインド・アンド・リアクト法を適用することができないからである。 Here, large magnets such as a dipole magnet for a high magnetic field accelerator and a high magnetic field large-diameter magnet generally use Nb 3 Sn superconducting cables manufactured using a react and wind method. The reason for this is that the compound generation heat treatment for Nb 3 Sn generation needs to be performed in a vacuum or inert gas atmosphere furnace at a predetermined temperature of 600 ° C. or higher. This is because the wind-and-react method in which the compound-forming heat treatment is performed after the magnet is formed cannot be applied.
このワインド・アンド・リアクト法は、化合物超電導線材形成後に化合物超電導線材に加工を施さないことによって、この加工に伴う歪みを回避し、臨界電流等の超電導特性の低下を防止するためにとられる製造方法である。ワインド・アンド・リアクト法を用いる場合、巻線加工等の加工に伴う歪みが化合物超電導線材に導入されることを回避するために、予め未反応状態の超電導化合物原料をコイル状に巻き、この状態で化合物生成熱処理を施してNbとSnとを反応させることにより、コイル形状のNb3Snを生成するものである。なお、リアクト・アンド・ワインド法を用いて製造した化合物超電導線材に内在する残留歪みを除去して臨界電流の向上を図ろうとする試みもある(例えば、非特許文献1参照。)。
しかし、上述したリアクト・アンド・ワインド法を用いて製造したNb3Sn超電導線材およびNb3Sn超電導ケーブルでは、中心部に配置されたNb3Sn超電導体とその外周に配置された強化材および/または安定化材との間の熱膨張係数の違いによりNb3Sn超電導体内に発生した圧縮歪み、化合物生成熱処理済みのNb3Sn超電導ケーブルの巻線時に生じる曲げ歪みと巻張力による歪み等の歪みによって、臨界電流Ic等が大幅に低下するという問題があった。図9は、従来技術を用いて製造したNb3Sn超電導線材について得られた臨界電流の曲げ歪み依存特性を表すグラフである。図9において、縦軸は規格化された臨界電流Ic/Icm(%)、横軸は曲げ歪み(%)をそれぞれ示す。また、印加された磁界の強度は、規格化された臨界電流の高い方からそれぞれ12T、14T、16Tである。図9に示すように、従来技術を用いて製造したNb3Sn超電導線材では、曲げ歪み0.2%〜0.4%程度を超えると臨界電流が急激に減少することが知られている。 However, the Nb 3 Sn superconducting wire and Nb 3 Sn superconducting cable produced using the REACT-and-wind method described above, reinforcement Nb 3 Sn superconductor is located at the center portion and disposed on the outer periphery and / Or, distortion such as compressive strain generated in the Nb 3 Sn superconductor due to the difference in thermal expansion coefficient with the stabilizing material, bending strain generated during winding of the Nb 3 Sn superconducting cable subjected to compound generation heat treatment, and strain due to winding tension As a result, there is a problem that the critical current Ic and the like are significantly reduced. FIG. 9 is a graph showing the bending strain dependence characteristics of the critical current obtained for the Nb 3 Sn superconducting wire manufactured using the conventional technique. In FIG. 9, the vertical axis represents normalized critical current Ic / Icm (%), and the horizontal axis represents bending strain (%). In addition, the strength of the applied magnetic field is 12T, 14T, and 16T, respectively, from the higher standardized critical current. As shown in FIG. 9, in the Nb 3 Sn superconducting wire manufactured by using the conventional technique, it is known that the critical current rapidly decreases when the bending strain exceeds about 0.2% to 0.4%.
このため、リアクト・アンド・ワインド法を用いて製造されたNb3Sn超電導線材およびNb3Sn超電導ケーブルを用いる高磁界加速器用マグネット、高磁界大口径マグネット等の大型マグネットでは、上述のように臨界電流が低下するため、運転電流を低くせざるを得なくなっていた。そして、高い磁界を発生させるためには、超電導マグネットのインダクタンスを大きくせざるを得ず、高速励磁やパルス励磁などができないという問題点があった。上述の問題点を解決するために、Nb3Sn等を用いて製造される化合物超電線材に曲げ歪みを加えることによって超電導線材の特性劣化改善が試みられている。 For this reason, large magnets such as high-field accelerator magnets and high-field large-diameter magnets using Nb 3 Sn superconducting wires and Nb 3 Sn superconducting cables manufactured using the react and wind method are critical as described above. Since the current decreased, the operating current had to be lowered. In order to generate a high magnetic field, the inductance of the superconducting magnet has to be increased, and there has been a problem that high-speed excitation or pulse excitation cannot be performed. In order to solve the above-described problems, attempts have been made to improve the deterioration of the characteristics of the superconducting wire by applying a bending strain to the compound superwire material produced using Nb 3 Sn or the like.
例えば、特許文献1には、歪みに弱い化合物超電導線を補強安定化材で覆った補強安定化超電導線材が開示されている。特許文献1には、使用する線材に補強安定化超電導線材を用いることによって、リアクト・アンド・ワインド法を用いて超電導マグネットを製造することができこと、および、化合物超電導線材の耐歪み特性が向上したことが記載されている。具体的には、温度約700℃で10日間程度にわたる化合物生成熱処理を施して得られた、超電導体がNb3Snの補強安定化超電導線材では、0.3mmから2mmの直径の細線の降伏応力が250から300Mpaまで上昇し、0.5%までの曲げ歪みでは臨界電流の劣化がない。
For example,
特許文献2においては、化合物超電導相が形成された化合物超電導裸線にエナメルが被覆された化合物超電導線において、化合物超電導裸線に対して、該化合物超電導裸線の断面最小幅の50倍以上の曲げ半径で曲げを複数回施し、且つ70MPa以下の張力をかけた条件下にエナメルを被覆することによって、超電導特性を顕著に劣化させることを回避できることが開示されている。
In
また、特許文献3においても、リアクト処理した歪み依存性を示す化合物超電導線に曲げ歪みを付加した後、該曲げ歪みを徐荷することより、機械的特性及び臨界電流値の応力特性とともに向上させたことが開示されている。
上述したさまざまな試みでは、化合物超電導の歪み応力による臨界電流特性劣化と耐歪み特性の改善がある程度見られたが、満足できる超電導特性を得ることができなかった。
Also, in Patent Document 3, by adding bending strain to a compound superconducting wire exhibiting strain dependence subjected to a react treatment, the bending strain is unloaded, thereby improving the mechanical characteristics and the stress characteristics of critical current values. Has been disclosed.
In the various attempts described above, the critical current characteristic deterioration due to the strain stress of the compound superconductivity and the improvement of the strain resistance characteristic were observed to some extent, but satisfactory superconducting characteristics could not be obtained.
このような状況下で、非特許文献1には、Nb3Sn超電導線材に正反対方向の曲げ歪みを繰り返し与えることにより、従来を大きく上回る超電導特性が得られることが開示されている。具体的には、0.3%〜0.5%の曲げ歪みを正反両方向から5回ずつ加えることにより、曲げ歪みを加えない場合の臨界電流を上回る高い臨界電流特性を得ることができるとされている。超電導特性向上の理由として、化合物生成熱処理時にNb3Sn超電導線材の内部に生じた残留応力が一部緩和されたことが指摘されている。
Under such circumstances, Non-Patent
しかしながら、超電導ケーブルにとって重要な特性である耐歪み特性については、検討されず不明である。例えば、臨界電流Icが高くなっても耐歪み特性が優れなければ、ケーブル化の際の撚線加工等で線材内に生ずる歪みによって臨海電流Icが急激に減少してしまい、実用化が困難となるが、この点については言及されていない。また、非特許文献1に開示された技術を用いたとしても、高い臨界電流Icを維持したまま実用化することは困難である。
However, the strain resistance characteristic, which is an important characteristic for a superconducting cable, has not been studied and is unknown. For example, if the strain resistance is not excellent even when the critical current Ic is high, the sea current Ic is drastically reduced due to the distortion generated in the wire by twisted wire processing or the like at the time of cable formation, and it is difficult to put it to practical use. However, this point is not mentioned. Even if the technique disclosed in
本発明は、化合物超電導線材内部に残留する歪みを緩和して、従来よりも耐歪み特性および臨界電流等の超電導特性の向上が図れる化合物超電導線材、化合物超電導ケーブル、およびその製造方法を提供することを目的とする。 The present invention provides a compound superconducting wire, a compound superconducting cable, and a method for producing the same, which can relieve strain remaining in the compound superconducting wire and improve superconducting characteristics such as strain resistance and critical current as compared with the prior art. With the goal.
本発明の第1の態様は、所定の熱処理を施すことによって超電導体になる化合物超電導原料が少なくとも断面内の一部を占める線材を形成する線材形成工程と、前記線材形成工程において形成された線材に前記熱処理を施して前記化合物超電導原料を超電導体にし、前記線材を化合物超電導線材にする熱処理工程と、前記熱処理工程において得られた化合物超電導線材に、正反両方向から曲げ歪みを加える両振り曲げ加工を施す両振り曲げ加工工程とを備えたことを特徴とする化合物超電導線材の製造方法である。 The first aspect of the present invention includes a wire material forming step in which a compound superconducting material that becomes a superconductor by performing a predetermined heat treatment forms a wire material that occupies at least a part of the cross section, and the wire material formed in the wire material forming step The heat treatment is performed on the compound superconducting material to be a superconductor, the wire is used as a compound superconducting wire, and the compound superconducting wire obtained in the heat treatment step is subjected to bending bending from both the positive and negative directions. It is a manufacturing method of a compound superconducting wire characterized by comprising a double-bending bending process for performing processing.
本発明の第2の態様は、第1の態様において、前記両振り曲げ加工工程において、前記化合物超電導線材に曲げ歪みを0.5%以上1.0%以下の範囲内で加えることを特徴とする化合物超電導線材の製造方法である。 According to a second aspect of the present invention, in the first aspect, in the double swing bending process, a bending strain is added to the compound superconducting wire in a range of 0.5% to 1.0%. This is a method for producing a compound superconducting wire.
本発明の第3の態様は、第1または第2の態様において、前記両振り曲げ加工工程において、正反両方向から1回ずつ曲げ歪みを加える単一両振り加工を、前記化合物超電導線材に5回以上20回以下の回数施こすことを特徴とする化合物超電導線材の製造方法である。 According to a third aspect of the present invention, in the first or second aspect, the compound superconducting wire is subjected to a single double swing process in which bending strain is applied once in both the forward and reverse directions in the double swing bending process. It is a manufacturing method of the compound superconducting wire characterized by performing the treatment more than 20 times and less than 20 times.
本発明の第4の態様は、第1乃至第3の態様の何れかに記載された化合物超電導線材の製造方法を用いて製造された前記化合物超電導線材に、撚線加工、または、撚線加工の後に成形加工を施してケーブルを形成するケーブル化工程を備えたことを特徴とする化合物超電導ケーブルの製造方法である。
本発明の第5の態様は、第4の態様において、前記化合物超電導体の外周に安定化材が形成されることを特徴とする化合物超電導ケーブルの製造方法である。
本発明の第6の態様は、第4又は第5の態様において、前記化合物超電導体がNb3SnまたはNb3Alからなることを特徴とする化合物超電導ケーブルの製造方法である。
本発明の第7の態様は、第4乃至第6の態様において、CuNb、CuAl2O3、CuNbTi、およびTaのうちの何れか1種類の導電性材料からなる強化材が形成されることを特徴とする化合物超電導ケーブルの製造方法である。
According to a fourth aspect of the present invention, the compound superconducting wire manufactured using the method for manufacturing a compound superconducting wire described in any of the first to third aspects is stranded or twisted. A method of manufacturing a compound superconducting cable, comprising a cable forming step of forming a cable by performing a molding process after.
A fifth aspect of the present invention is the method for producing a compound superconducting cable according to the fourth aspect, wherein a stabilizing material is formed on the outer periphery of the compound superconductor.
A sixth aspect of the present invention is a method for manufacturing a compound superconducting cable according to the fourth or fifth aspect, wherein the compound superconductor is made of Nb 3 Sn or Nb 3 Al.
According to a seventh aspect of the present invention, in the fourth to sixth aspects, a reinforcing material made of any one conductive material of CuNb, CuAl 2 O 3 , CuNbTi, and Ta is formed. It is a manufacturing method of the compound superconducting cable characterized.
本発明によると、化合物超電導線材に正反両方向から曲げ歪みを加える両振り曲げ加工を施すことによって、化合物超電導線材の内部のひずみが緩和できているため、従来よりも耐歪み特性および臨界電流等の超電導特性の向上が図れる化合物超電導線材、化合物超電導ケーブル、およびその製造方法を実現できる。 According to the present invention, the internal strain of the compound superconducting wire can be relaxed by subjecting the compound superconducting wire to a double bending process that applies bending strain from both the positive and negative directions. It is possible to realize a compound superconducting wire, a compound superconducting cable, and a method for producing the same, which can improve the superconducting characteristics of the above.
また、0.5%以上1.0%以下の範囲内の曲げ歪みを正反両方向から加えるように、両振り曲げ加工の条件の適正化を図ったため、化合物超電導線材の性能をさらに引き出すことが可能な化合物超電導線材、化合物超電導ケーブル、およびその製造方法を実現できる。 In addition, because the bending swing processing conditions are optimized so that bending strain in the range of 0.5% to 1.0% is applied from both the positive and negative directions, the performance of the compound superconducting wire can be further increased. Possible compound superconducting wire, compound superconducting cable, and manufacturing method thereof can be realized.
また、5回以上20回以下の単一両振り加工を加えるように、両振り曲げ加工の条件の適正化を図ったため、化合物超電導線材の性能をさらに引き出すことが可能な化合物超電導線材、化合物超電導ケーブル、およびその製造方法を実現できる。 In addition, compound superconducting wire and compound superconductivity that can further bring out the performance of compound superconducting wire because the conditions of double-bending bending are optimized so as to add a single double swinging process of 5 to 20 times. A cable and a manufacturing method thereof can be realized.
また、耐歪み特性を向上することができたため、従来ケーブル化が困難とされていた化合物超電導線材を、リアクト・アンド・ワインド法を適用することが可能となり、ケーブル化が容易でかつ低コスト化が図れ、経済効果が高い。 In addition, because the strain resistance was improved, it became possible to apply the react-and-wind method to compound superconducting wires, which had previously been difficult to make into cables, making cables easy and cost-effective. The economic effect is high.
また、耐歪み特性を向上することができたため、素線間のピッチの短いコイルを作成でき、素線間緩みが生じ難く品質の優れた超電導コイルを実現できる。 In addition, since the strain resistance can be improved, a coil with a short pitch between the strands can be created, and a superconducting coil with excellent quality can be realized with little loosening between the strands.
以下に、本発明の化合物超電導線材、化合物超電導ケーブル、およびその製造方法について、図面を参照しながら詳細に説明する。
本発明の化合物超電導線材の製造方法の1つの態様は、図1(a)に示すように、所定の熱処理を施すことによって超電導体になる化合物超電導原料が少なくとも断面内の一部を占める線材を形成する線材形成工程S101と、線材形成工程S101において形成された線材に熱処理を施して化合物超電導原料を超電導体にし、線材を化合物超電導線材にする熱処理工程S102と、熱処理工程S102において得られた化合物超電導線材に、正反両方向から曲げ歪みを加える両振り曲げ加工を施す両振り曲げ加工工程S103とを備えたことを特徴とする化合物超電導線材の製造方法である。
Hereinafter, the compound superconducting wire, the compound superconducting cable, and the manufacturing method thereof according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1 (a), one embodiment of the method for producing a compound superconducting wire according to the present invention is a method in which a compound superconducting material that becomes a superconductor by performing a predetermined heat treatment occupies at least a part of the cross section. The wire forming step S101 to be formed, the heat treatment step S102 to heat-treat the wire formed in the wire forming step S101 to make the compound superconducting raw material a superconductor, and to make the wire a compound superconducting wire, and the compound obtained in the heat treatment step S102 A compound superconducting wire manufacturing method comprising: a superconducting wire including a double-bending bending step S103 for performing a double-bending bending process for applying a bending strain from both the positive and negative directions.
線材形成工程S101において形成される線材の断面構造の一例を図2に示す。図2において、中央の領域1を超電導体の原料が占め、最も外側の領域3を安定化材が占め、中央の領域1と外側の領域3との間の領域2を強化材が占めている。ただし、線材形成工程S101において形成される線材の断面構造は上述のものに限られず、その他の断面構造でもよい。
An example of a cross-sectional structure of the wire formed in the wire forming step S101 is shown in FIG. In FIG. 2, the raw material of the superconductor occupies the
強化材および安定化材には金属または合金材料等の導電性を有する材料が用いられる。強化材には、例えば、CuNb、CuAl2O3、CuNbTi、Ta等を用いるのでもよい。また、安定化材には、Cuを用いるのでもよい。ただし、強化材および安定化材にその他の材料を用いるのでもよい。領域1を占めることになる化合物超電導体には、例えば、Nb3Sn、Nb3Al等が用いられる。また、化合物超電導体が1μm以上の直径のフィラメントを複数組み合わせて得られる構成のものであってもよい。
As the reinforcing material and the stabilizing material, a conductive material such as a metal or an alloy material is used. For example, CuNb, CuAl 2 O 3 , CuNbTi, Ta, or the like may be used as the reinforcing material. Further, Cu may be used as the stabilizing material. However, other materials may be used for the reinforcing material and the stabilizing material. For example, Nb 3 Sn, Nb 3 Al, or the like is used for the compound superconductor that will occupy the
なお、本発明の化合物超電導線材の断面構造は、図2に示すものに限定されず、その他の断面構造を有するのでもよい。具体的には、図3に示す断面構造等を有するのでもよい。図3において、最も外側の層はCuからなる安定化材である。図3には、それぞれ、中央の化合物超電導体と最外層の安定化材との間にCuNb等からなる強化材が占めるCuNb補強ブロンズ法Nb3Sn化合物超電導線材の断面図が(a)に、中央のCuNbTi等からなる強化材と最外層の安定化材との間に化合物超電導体が占めるCuNbTi補強ブロンズ法Nb3Sn化合物超電導線材の断面図が(b)に、Nb3Snフィラメントの1本1本がTa芯を有するTa補強ブロンズ法Nb3Sn化合物超電導線材の断面図が(c)に、Cuからなる中央の芯線と最外層の安定化材との間に化合物超電導体が占める無補強ブロンズ法Nb3Sn化合物超電導線材の断面図が(d)に示されている。 In addition, the cross-sectional structure of the compound superconducting wire of the present invention is not limited to that shown in FIG. 2, and may have other cross-sectional structures. Specifically, it may have the cross-sectional structure shown in FIG. In FIG. 3, the outermost layer is a stabilizing material made of Cu. FIG. 3A is a cross-sectional view of a CuNb reinforced bronze method Nb 3 Sn compound superconducting wire occupied by a reinforcing material made of CuNb or the like between the central compound superconductor and the outermost stabilizing material. A cross-sectional view of a CuNbTi reinforced bronze Nb 3 Sn compound superconducting wire occupied by a compound superconductor between a reinforcing material made of CuNbTi or the like in the center and an outermost stabilizing material is shown in (b), and one of Nb 3 Sn filaments is shown. A cross section of a Ta reinforced bronze method Nb 3 Sn compound superconducting wire having one Ta core is shown in (c), and the compound superconductor occupies between the central core wire made of Cu and the outermost stabilizing material. A cross-sectional view of the bronze Nb 3 Sn compound superconducting wire is shown in (d).
表1は、各ブロンズ法Nb3Sn化合物超電導線材の構成について説明するための表である。表1において、強化材の欄に(Ta)と記載されたものは、フィラメントがTaからなる芯線を有することを示し、強化材の欄に<Cu>と記載されたものは、強化材を設けていないが、線材断面の中央部をCuを占めることを表す。各ブロンズ法Nb3Sn化合物超電導線材のブロンズ成分は、表1に示すように、Ta補強ブロンズ法Nb3Sn化合物超電導線材を除き、重量組成でSnが14%、Tiが0.2%、Cuが残りである。Ta補強ブロンズ法Nb3Sn化合物超電導線材については、重量組成でSnが15%、Tiが0.3%、Cuが残りである。
各ブロンズ法Nb3Sn化合物超電導線材の線径はφ1mmであり、フィラメント径はTa芯を有するもの(φ7.9μm)を除きφ3.5μmである。各ブロンズ法Nb3Sn化合物超電導線材の断面積を占める安定化材、強化材および超電導体の面積の比は、表1中に「Cu/RM/SC」として記載されている。Nb3Sn化合物超電導体は、線材の断面積の44〜51.3%の面積を占める。 Each of the bronze Nb 3 Sn compound superconducting wires has a wire diameter of φ1 mm, and the filament diameter is φ3.5 μm except for those having a Ta core (φ7.9 μm). The ratio of the area of the stabilizer, reinforcing material and superconductor occupying the cross-sectional area of each bronze Nb 3 Sn compound superconducting wire is described in Table 1 as “Cu / RM / SC”. The Nb 3 Sn compound superconductor occupies an area of 44 to 51.3% of the cross-sectional area of the wire.
熱処理工程S102においては、所定の条件で化合物生成熱処理を施して線材形成工程S101において形成された線材を化合物超電導線材にする。この化合物生成熱処理は、例えばNb3Snの場合、例えば650℃〜700℃等の600℃以上の所定の温度、真空中または不活性ガス雰囲気中、100時間、行われるのでもよい。ただし、化合物生成熱処理の条件は、一般に、生成しようとする化合物超電導体、化合物超電導原料、線材の構成、寸法等に応じて異なる。 In the heat treatment step S102, a compound generation heat treatment is performed under a predetermined condition, and the wire formed in the wire forming step S101 is made into a compound superconducting wire. For example, in the case of Nb 3 Sn, this compound generation heat treatment may be performed at a predetermined temperature of 600 ° C. or higher, such as 650 ° C. to 700 ° C., in a vacuum or in an inert gas atmosphere for 100 hours. However, the conditions for the compound generation heat treatment generally vary depending on the compound superconductor to be generated, the compound superconducting raw material, the configuration, dimensions, etc. of the wire.
両振り曲げ加工工程S103においては、化合物生成熱処理を施して得られた化合物超電導線材に、正反両方向から曲げ歪みを加える両振り曲げ加工を施す。両振り曲げ加工として、例えば、超電導線材に正反両方向から曲げ歪みを1回ずつ加える単一両振り加工を1回以上施すのでもよい。両振り曲げ加工として単一両振り加工を1回以上施す場合に、例えば、図4に示すようにプーリを用いて曲げ歪みを加えるのでもよい。 In the double bending process S103, the compound superconducting wire obtained by the compound generation heat treatment is subjected to a double bending process in which bending strain is applied from both the positive and negative directions. As the double swing bending process, for example, a single double swing process in which bending strain is applied once to the superconducting wire from both the positive and negative directions may be performed once or more. When a single double swing process is performed once or more as the double swing process, for example, a bending strain may be applied using a pulley as shown in FIG.
図4において、化合物超電導線材10は、化合物生成熱処理用ボビン11に巻かれて熱処理が施されたものである。化合物超電導線材10は、所定の張力で撚線ボビン14に引き寄せられ、化合物生成熱処理用ボビン11から回転部材12、プーリ13を介して撚線ボビン14に巻き取られる。ただし、両振り曲げ加工として、加工対象の線材を回転しながら、または、捻りながら両振り曲げを様々な方向から加える加工、引っ張りと圧縮とを繰り返し加える加工、その他の正反両方向から力を加える加工を施すのでもよい。
In FIG. 4, the
化合物超電導線材に加える両振り曲げ歪みの範囲を0〜1.5%としたときの臨界電流の変化を図5に示す。図5では、縦軸に規格化された臨界電流Ic/Icmをとり、横軸に両振り曲げ歪みεpb(%)をとり、温度4.2Kにおいて、14Tの磁界を印加したときの両振り曲げ歪み特性を示す。図5に表す臨界電流の両振り曲げ歪み特性から、CuNb補強ブロンズ法Nb3Sn化合物超電導線材(a)については、0〜1.2%超の範囲まで両振り曲げ歪みを加えたことによる臨界電流の向上が見られる。CuNbTi補強ブロンズ法Nb3Sn化合物超電導線材(b)については、0〜1.0%の範囲まで両振り曲げ歪みを加えたことによる臨界電流の向上または維持が見られる。無補強ブロンズ法Nb3Sn化合物超電導線材(d)およびTa補強ブロンズ法Nb3Sn化合物超電導線材(c)については、0〜0.8%超の範囲まで両振り曲げ歪みを加えたことによる臨界電流の向上が見られる。 FIG. 5 shows the change in critical current when the range of the double bending strain applied to the compound superconducting wire is 0 to 1.5%. In FIG. 5, the vertical axis represents the normalized critical current Ic / Icm, the horizontal axis represents the double bending strain εpb (%), and the double bending when a 14T magnetic field is applied at a temperature of 4.2K. Shows distortion characteristics. From the critical current double-bending strain characteristics shown in FIG. 5, for the CuNb reinforced bronze method Nb 3 Sn compound superconducting wire (a), the critical due to the addition of the double-bending strain to the range of 0 to over 1.2%. There is an improvement in current. With respect to the CuNbTi reinforced bronze method Nb 3 Sn compound superconducting wire (b), improvement or maintenance of the critical current is observed due to the addition of the double bending strain to the range of 0 to 1.0%. The non-reinforcing bronze method Nb 3 Sn compound superconducting wire (d) and the Ta reinforced bronze method Nb 3 Sn compound superconducting wire (c) are critical due to the addition of double bending strain to a range of 0 to over 0.8%. There is an improvement in current.
また、図5から、化合物超電導線材に加える両振り曲げ歪みとして、0.5〜0.8%とすることが好ましいことがわかる。さらには、0.8%程度がより好ましい。なお、臨界電流の向上の最大値は、図5に示すものの他に図6に示すように2倍程度のものもある。また、回数単一両振り加工を施す回数としては、1回以上20回以下が好ましい。 Moreover, it turns out that it is preferable to set it as 0.5 to 0.8% as the double bending strain added to a compound superconducting wire from FIG. Furthermore, about 0.8% is more preferable. In addition to the one shown in FIG. 5, the maximum value of improvement of the critical current may be about twice as shown in FIG. Further, the number of times of performing the single swing process is preferably 1 to 20 times.
表2は、両振り曲げ加工を施したNb3Sn化合物超電導線材と両振り曲げ加工を施していないNb3Sn化合物超電導線材についての、臨界電流の磁界依存特性を示す表であり、図6は、この臨界電流の磁界依存特性をグラフにしたものである。
このNb3Sn化合物超電導線材は、CuNbからなる強化材とCuからなる安定化材とを備えるものである。細い実線、破線および太い実線を用いて表す曲線は、それぞれ、両振り曲げ加工を施していない従来のNb3Sn化合物超電導線材、0.3%の曲げ歪みを加えたNb3Sn化合物超電導線材、および0.8%の曲げ歪みを加えたNb3Sn化合物超電導線材についての臨界電流の磁界依存特性を表す。 This Nb 3 Sn compound superconducting wire includes a reinforcing material made of CuNb and a stabilizing material made of Cu. Thin solid line, the curve represented using dashed and bold solid lines, respectively, Reversed bending is not subjected to processing conventional Nb 3 Sn compound superconducting wire, Nb 3 Sn compound superconducting wire plus bending strain of 0.3%, 3 represents the magnetic field dependence characteristics of the critical current for the Nb 3 Sn compound superconducting wire to which a bending strain of 0.8% is added.
表2および図6から明らかなように、両振り曲げ加工を施さない従来のNb3Sn超電導線材の臨界電流特性と比較して、両振り曲げ加工を施したNb3Sn超電導線材の臨界電流特性は、印加される磁界10Tから17Tの何れにおいても顕著に優れている。すなわち、上述したCuNbによって高強度化したNb3Sn化合物超電導線材に対して、複数回の両振り曲げ加工を施すことにより、両振り曲げ加工を施さない従来のNb3Sn化合物超電導線材に比べて、その臨界電流特性が著しく高くなることが示される。また、加えた曲げ歪みが0.8%のものの方が、曲げ歪みが0.3%のものよりもさらに臨界電流が高くなっている。 As is clear from Table 2 and FIG. 6, the critical current characteristics of the Nb 3 Sn superconducting wire subjected to the double-bending are compared with the critical current characteristics of the conventional Nb 3 Sn superconducting wire not subjected to the double-bending. Is remarkably superior in any of the applied magnetic fields 10T to 17T. In other words, the Nb 3 Sn compound superconducting wire that has been strengthened with CuNb described above is subjected to a double swing bending process, compared to a conventional Nb 3 Sn compound superconducting wire that is not subjected to a double swing bending process. It is shown that the critical current characteristic is remarkably enhanced. Further, the critical current is higher when the applied bending strain is 0.8% than when the bending strain is 0.3%.
具体的には、破線を用いて示す従来の両振り曲げ加工を施さないNb3Sn超電導線材の臨界電流特性に比べて、本発明に係る両振り曲げ加工を施したNb3Sn超電導線材の臨界電流特性は、加えた曲げ歪みが0.8%のものが約2倍、0.3%のものが約1.3倍になっている。更に、上述したNb3Sn超電導線材を超電導素線として撚り合わせて作製した化合物超電導ケーブルにおいては、撚り合わせたときに生じた歪みによって、臨界電流の低下がほとんど生じなかった。このようにして超電導特性に優れた熱処理済み化合物超電導ケーブルが得られた。上述のことは、両振り曲げ加工が、撚線加工、巻線加工等に伴う歪みの臨界電流に及ぼす影響を緩和する効果以上の効果、すなわち、臨界電流特性を上昇させる効果を有することを示す。 Specifically, the critical current characteristics of the Nb 3 Sn superconducting wire subjected to the double bending process according to the present invention are compared with the critical current characteristics of the Nb 3 Sn superconducting wire which is not subjected to the conventional double bending process indicated by the broken line. As for the current characteristics, when the applied bending strain is 0.8%, it is about twice, and when it is 0.3%, it is about 1.3 times. Furthermore, in the compound superconducting cable produced by twisting the above-described Nb 3 Sn superconducting wire as a superconducting element wire, the critical current was hardly lowered due to the strain generated when twisted. Thus, a heat-treated compound superconducting cable excellent in superconducting properties was obtained. The above indicates that the double bending process has an effect that is more than the effect of reducing the influence of strain associated with stranded wire processing, winding processing, etc. on the critical current, that is, the effect of increasing the critical current characteristics. .
超電導マグネットの起磁力は巻線数に運転電流を乗じたものとして表されるため、臨界電流特性の向上によって運転電流の上限を高くすることができ、超電導マグネットを小型化できる。上述のように臨界電流特性の向上が向上することによって、1/2程度まで巻線数の削減が期待される。 Since the magnetomotive force of the superconducting magnet is expressed as the number of windings multiplied by the operating current, the upper limit of the operating current can be increased by improving the critical current characteristics, and the superconducting magnet can be downsized. As described above, the improvement in the critical current characteristic is expected to reduce the number of windings to about ½.
図7は、上述したNb3Sn超電導線材についての耐歪み特性を表す図である。図7において、縦軸は規格化された臨界電流Ic/Icmであり、横軸は撚線、巻線加工等によって生じた曲げ歪みε(%)である。また、破線を用いて示す曲線は、従来のNb3Sn超電導線材についての耐歪み特性を表し、実線を用いて示す曲線は、本発明のNb3Sn超電導線材についての耐歪み特性を表す。図7に示すように、従来のNb3Sn超電導線材では、撚線加工、巻線加工等で加えられる歪みが0.4%程度から規格化された臨界電流Ic/Icmの低下が生ずる。これに対して、本発明の両振り曲げ加工を施したNb3Sn超電導線材では、加えられる歪みが1.5%程度まで規格化された臨界電流Ic/Icmの低下は生じず、耐歪み特性が従来の4倍程度向上している。 FIG. 7 is a diagram showing the strain resistance characteristics of the Nb 3 Sn superconducting wire described above. In FIG. 7, the vertical axis represents the normalized critical current Ic / Icm, and the horizontal axis represents the bending strain ε (%) generated by stranded wire, winding processing, or the like. Further, the curve denoted by the broken line, represents the strain tolerance of the conventional Nb 3 Sn superconducting wire, the curve denoted by the solid line, represents the strain tolerance of the Nb 3 Sn superconducting wire of the present invention. As shown in FIG. 7, in the conventional Nb 3 Sn superconducting wire, the critical current Ic / Icm, which is normalized from about 0.4% of the strain applied by stranded wire processing, winding processing, etc., occurs. On the other hand, in the Nb 3 Sn superconducting wire subjected to the double bending process of the present invention, the applied strain is not reduced to the critical current Ic / Icm normalized to about 1.5%, and the strain resistance characteristics However, this is an improvement of about 4 times.
本発明の化合物超電導ケーブルの製造方法の1つの態様は、図1(b)に示すように、所定の熱処理を施すことによって超電導体になる化合物超電導原料が少なくとも断面内の一部を占める線材を形成する線材形成工程S101と、線材形成工程S101において形成された線材に熱処理を施して化合物超電導原料を超電導体にし、線材を化合物超電導線材にする熱処理工程S102と、熱処理工程S102において得られた化合物超電導線材に、正反両方向から曲げ歪みを加える両振り曲げ加工を施す両振り曲げ加工工程S103と、両振り曲げ加工を施した化合物超電導線材に、撚線加工、または、撚線加工の後に圧延等の成形加工を施してケーブルを形成するケーブル化工程S104を備えたことを特徴とする化合物超電導ケーブルの製造方法である。 As shown in FIG. 1 (b), one embodiment of the method for producing a compound superconducting cable of the present invention is a method in which a compound superconducting material that becomes a superconductor by performing a predetermined heat treatment occupies at least a part of the cross section. The wire rod forming step S101 to be formed, the heat treatment step S102 to heat-treat the wire rod formed in the wire rod forming step S101 to make the compound superconducting raw material a superconductor, and the wire rod to the compound superconducting wire, and the compound obtained in the heat treatment step S102 A double swing bending process S103 for applying a bending strain to the superconducting wire from both the forward and reverse directions, and a compound superconducting wire subjected to the double bending process for the twisted wire processing or rolling after the twisted wire processing. A compound superconducting cable comprising a cable forming step S104 for forming a cable by performing a molding process such as It is a production method.
ここで、上述の撚線加工は、化合物超電導線材を撚り合わせる加工をいい、成形加工は、化合物超電導線材を所定の形状等に成型する加工をいう。上述のように、本発明の化合物超電導ケーブルは、本発明の化合物超電導線材に、撚線加工、または、撚線加工の後に圧延等の成形加工を施して製造されるものである。 Here, the above-described stranded wire processing refers to processing for twisting compound superconducting wires, and the forming processing refers to processing for forming compound superconducting wires into a predetermined shape or the like. As described above, the compound superconducting cable of the present invention is manufactured by subjecting the compound superconducting wire of the present invention to stranded wire processing or forming processing such as rolling after stranded wire processing.
上述のように、ケーブル化工程S104における加工を施す化合物超電導線材は、耐歪み特性が従来の4倍程度向上しているものであるため、撚線加工の際の曲げ歪みの許容範囲を0.4%程度から1.5%程度まで大幅に広げることができる。その結果、撚線加工を行う際の螺旋曲率半径を大幅に短縮することができ、化合物超電導ケーブルの製造を簡易に行うことが可能となった。 As described above, the compound superconducting wire subjected to the processing in the cable forming step S104 has a strain resistance improved by about four times that of the conventional one. It can be greatly expanded from about 4% to about 1.5%. As a result, the radius of curvature of the spiral at the time of stranded wire processing can be greatly shortened, and it becomes possible to easily manufacture the compound superconducting cable.
具体的には、素線径がφ1mmの化合物超電導線材を螺旋状に撚り合わせる場合、以下に示す式(1)に基づいて、許容曲げ歪みεが0.4%の化合物超電導線材については125mm以上の曲率半径ρが必要であるが、本発明の化合物超電導ケーブルでは、化合物超電導線材の許容曲げ歪みεが1.5%であるため、33mm以上の曲率半径ρであればよい。
ε=t/(2ρ) (1)
ここで、tは素線径である。
Specifically, when a compound superconducting wire having a strand diameter of φ1 mm is spirally twisted, the compound superconducting wire having an allowable bending strain ε of 0.4% is 125 mm or more based on the following formula (1). However, in the compound superconducting cable of the present invention, since the allowable bending strain ε of the compound superconducting wire is 1.5%, the curvature radius ρ may be 33 mm or more.
ε = t / (2ρ) (1)
Here, t is a wire diameter.
また、素線径がφ1mmの化合物超電導線材をφ1mmの芯線に6本、所定のピッチで巻きつける場合、以下に示す式(2)に基づいて、許容曲げ歪みεが0.4%の化合物超電導線材については64mm以上のピッチhが必要であるが、本発明の化合物超電導ケーブルでは、化合物超電導線材の許容曲げ歪みεが1.5%であるため、30mm以上のピッチhであればよい。
ρ=[a2+(h/2π)2]/a (2)
ここで、aは芯線の中心から化合物超電導線材の中心までの距離である。撚線コイルの観点からは、素線間のピッチの短い撚線コイルでは素線間緩みが生じ難く、製品の品質の向上が図れる。
Further, when six compound superconducting wires having a wire diameter of φ1 mm are wound around a core wire of φ1 mm at a predetermined pitch, compound superconductivity having an allowable bending strain ε of 0.4% based on the following equation (2) For the wire, a pitch h of 64 mm or more is necessary. However, in the compound superconducting cable of the present invention, since the allowable bending strain ε of the compound superconducting wire is 1.5%, the pitch h may be 30 mm or more.
ρ = [a 2 + (h / 2π) 2 ] / a (2)
Here, a is the distance from the center of the core wire to the center of the compound superconducting wire. From the viewpoint of the stranded wire coil, the stranded wire coil with a short pitch between the strands hardly causes loosening between the strands, and the product quality can be improved.
本発明の化合物超電導線材および化合物超電導ケーブルを、図面を参照しながら、実施例によって更に詳細に説明する。図8に断面構造を表した本発明のCuNb補強ブロンズ法Nb3Sn化合物超電導線材を素線として使用して化合物超電導ケーブルを作製した。すなわち、線材の横断面における中心部に、Nb3Snからなる化合物超電導体の原料を配置し、強化材の周りにCuNbからなる強化材となる複合体を配設して線材を構成し、この線材に化合物生成熱処理を施して複合体に化合物生成反応を起こさせてNb3Sn化合物超電導体を形成し、化合物生成熱処理後に超電導線材に正反両方向から0.3%または0.8%の曲げ歪みを加える両振り曲げ加工を5回施して、CuNb補強ブロンズ法Nb3Sn化合物超電導線材を製造した。 The compound superconducting wire and the compound superconducting cable of the present invention will be described in more detail with reference to the drawings with reference to the drawings. A compound superconducting cable was produced using the CuNb reinforced bronze method Nb 3 Sn compound superconducting wire of the present invention whose cross-sectional structure is shown in FIG. That is, a compound superconductor material composed of Nb 3 Sn is disposed at the center of the cross section of the wire material, and a composite material serving as a reinforcement material composed of CuNb is disposed around the reinforcement material to constitute a wire material. The wire material is subjected to a compound generation heat treatment to cause a compound formation reaction in the composite to form an Nb 3 Sn compound superconductor, and after the compound generation heat treatment, the superconducting wire is bent 0.3% or 0.8% from both the positive and negative directions. A double swing bending process for applying strain was performed five times to produce a CuNb reinforced bronze method Nb 3 Sn compound superconducting wire.
図8は、このように製造した本発明の化合物超電導ケーブルの1つの態様の部分斜視図である。図8に示すように、この化合物超電導ケーブル100は、直径φ1mmのCuNb強化型Nb3Sn化合物超電導線材を素線20として使用し、この素線20を36本撚り合わせて形成したものである。この素線20の諸元は、以下の通りであり、この素線20を長さ12Km用意した。すなわち、素線20の外径はφ1.0mm、素線20の断面積を占めるNb3Sn化合物超電導体とそれ以外のCuNbおよびCu等とが占める面積の比は1対2、ツイストピッチは8mm、4.2Kの温度で12Tの磁界を印加したとき臨界電流値は、両振り曲げ加工を施していないものが198Aであり、両振り曲げ加工を施したものが440Aである。このように、上述の条件で測定した臨界電流値は、両振り曲げ加工を施したもの値が施していないもの値の2倍以上となった。
FIG. 8 is a partial perspective view of one embodiment of the compound superconducting cable of the present invention thus manufactured. As shown in FIG. 8, this
以下、具体的な例によって説明する。まず、素線に対して化合物生成熱処理、および、両振り曲げ加工を施して直径φ1mmのCuNb強化型Nb3Sn化合物超電導線材を製造した。ここで、上記の化合物生成熱処理を次のようにして行った。図4に示す、直径500mmで巻幅200mmのステンレス製の化合物生成熱処理用ボビン11に巻き付けて、アルゴンガス雰囲気中で670℃の温度で96時間の熱処理を施して化合物超電体を形成した。
Hereinafter, a specific example will be described. First, a compound-forming heat treatment and a double-bending bending process were performed on the element wire to produce a CuNb-reinforced Nb 3 Sn compound superconducting wire having a diameter of 1 mm. Here, the above-described compound generation heat treatment was performed as follows. The compound superconductor was formed by being wound around a stainless steel compound generation
次に、このように化合物生成熱処理を施した化合物超電導線材に、次のように両振り曲げ加工を施した。すなわち、図4に示すように、上述したように化合物生成熱処理を施した素線20を、直径φ100mmのプーリ13を10個直列に並べたパスラインに通して、単一両振り加工を繰り返し行い、両振り曲げ加工を施した。すなわち、素線20に対して、0.8%の曲げ歪み加える単一両振り加工を10回繰り返した。このとき素線20に、約50Mpaの張力を印加した。
Next, the compound superconducting wire subjected to the compound generation heat treatment as described above was subjected to a double bending process as follows. That is, as shown in FIG. 4, the
次に、このように両振り曲げ加工を施した素線20を300mずつの長さで36条に切り分けて、胴径80mmの撚線ボビン14に巻き取った。両振り曲げ加工を施す前と、両振り曲げ加工を施した後に、液体ヘリウム中で磁界を印加して臨界電流を測定した。その結果は、図6に示すものと同様の臨界電流特性が得られた。この場合においても、繰り返し歪みを印加した素線20の臨界電流は、印加していない素線よりも約2倍大きかった。
Next, the
次に、この36本の撚線ボビン14を撚線機にセットして、ピッチ50mmで撚り合わせて図8に示すような化合物超電導ケーブル100を5m製作した。この化合物超電導ケーブル100を直径300mmのボビンに巻き付けてコイルとし、素線20の諸元に示した条件と同一の条件、すなわち、液体ヘリウム中で12Tの磁界中で臨界電流を測定したところ、臨界電流は12.2KAであった。
Next, the 36 stranded
従来は、臨界電流は、歪み依存性が大きく、熱処理したNb3Sn線を撚り線すると、臨界電流は半分以下に劣化すると考えられていたが、本発明によると、化合物生成熱処理したNb3Sn超電導線材に繰り返し歪みを印加することによって超電導線材の内部に存在する残留応力を無くすることができ、ケーブル化しても臨界電流が劣化するどころか、むしろ高くすることができ、優れた超電導特性が得られる。 Conventionally, the critical current is greater strain dependency, when Nb 3 Sn wire twisted wire was heat-treated, but the critical current was thought to degrade to less than half, according to the present invention, the compounds generated heat treated Nb 3 Sn By applying repeated strain to the superconducting wire, the residual stress existing inside the superconducting wire can be eliminated, and even if it is cabled, the critical current is deteriorated, rather it can be increased, and excellent superconducting characteristics can be obtained. It is done.
1、2、3 領域
10 化合物超電導線材
11 化合物生成熱処理用ボビン
12 回転部材
13 プーリ
14 撚線ボビン
20 ブロンズ法Nb3Sn化合物超電導線材
100 化合物超電導ケーブル
1, 2, 3
Claims (7)
前記線材形成工程において形成された線材に前記熱処理を施して前記化合物超電導原料を超電導体にし、前記線材を化合物超電導線材にする熱処理工程と、
前記熱処理工程において得られた化合物超電導線材に、正反両方向から曲げ歪みを加える両振り曲げ加工を施す両振り曲げ加工工程とを備えたことを特徴とする化合物超電導線材の製造方法。 A wire material forming step in which a compound superconducting raw material that becomes a superconductor by performing a predetermined heat treatment forms a wire material that occupies at least part of the cross section; and
A heat treatment step of applying the heat treatment to the wire formed in the wire forming step to make the compound superconducting raw material a superconductor, and making the wire a compound superconducting wire;
A compound superconducting wire manufacturing method comprising: a compound superconducting wire obtained in the heat treatment step, and a double-bending bending process in which a double-bending bending process is applied to apply bending strain from both directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005241315A JP4532369B2 (en) | 2005-08-23 | 2005-08-23 | Compound superconducting wire and compound superconducting cable manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005241315A JP4532369B2 (en) | 2005-08-23 | 2005-08-23 | Compound superconducting wire and compound superconducting cable manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007059136A JP2007059136A (en) | 2007-03-08 |
JP4532369B2 true JP4532369B2 (en) | 2010-08-25 |
Family
ID=37922453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005241315A Active JP4532369B2 (en) | 2005-08-23 | 2005-08-23 | Compound superconducting wire and compound superconducting cable manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4532369B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017054579A (en) * | 2015-09-07 | 2017-03-16 | 古河電気工業株式会社 | Manufacturing method of compound-based superconducting wire rod and manufacturing method of compound-based superconducting cable |
WO2020066907A1 (en) | 2018-09-28 | 2020-04-02 | 古河電気工業株式会社 | Insulation coating compound superconducting wire and rewinding method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116612930B (en) * | 2023-07-20 | 2023-09-15 | 西安聚能超导线材科技有限公司 | Nb (Nb) alloy 3 Sn superconducting wire preparation method and superconducting wire |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06150737A (en) * | 1992-11-13 | 1994-05-31 | Sumitomo Electric Ind Ltd | Nb multicore superconducting cable and manufacture thereof |
JP2004063128A (en) * | 2002-07-25 | 2004-02-26 | Furukawa Electric Co Ltd:The | Compound-based superconductive wire showing strain dependency and superconductive magnet using it |
-
2005
- 2005-08-23 JP JP2005241315A patent/JP4532369B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06150737A (en) * | 1992-11-13 | 1994-05-31 | Sumitomo Electric Ind Ltd | Nb multicore superconducting cable and manufacture thereof |
JP2004063128A (en) * | 2002-07-25 | 2004-02-26 | Furukawa Electric Co Ltd:The | Compound-based superconductive wire showing strain dependency and superconductive magnet using it |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017054579A (en) * | 2015-09-07 | 2017-03-16 | 古河電気工業株式会社 | Manufacturing method of compound-based superconducting wire rod and manufacturing method of compound-based superconducting cable |
WO2020066907A1 (en) | 2018-09-28 | 2020-04-02 | 古河電気工業株式会社 | Insulation coating compound superconducting wire and rewinding method thereof |
US12020830B2 (en) | 2018-09-28 | 2024-06-25 | Furukawa Electric Co., Ltd. | Insulation-coated compound superconducting wire and rewinding method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2007059136A (en) | 2007-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6155253B2 (en) | Compound superconducting wire and manufacturing method thereof | |
JP7335886B2 (en) | Insulation coating compound superconducting wire and its rewinding method | |
JP6182577B2 (en) | Method for producing compound superconducting wire and method for producing compound superconducting cable | |
JP4532369B2 (en) | Compound superconducting wire and compound superconducting cable manufacturing method | |
JP2014137917A (en) | Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF | |
JP6585519B2 (en) | Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire | |
JP5718171B2 (en) | Method for producing compound superconducting stranded wire | |
JP2007081128A (en) | Superconductive coil and method of manufacturing same | |
JP6535766B2 (en) | Title: Precursor of superconducting wire and method of manufacturing superconducting wire | |
JP5065582B2 (en) | Superconducting device and manufacturing method thereof | |
WO2023189275A1 (en) | Compound superconducting precursor wire, compound superconducting precursor strand, and compound superconducting strand | |
JP5557086B2 (en) | Nb3Al superconducting wire | |
JP5164815B2 (en) | Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire | |
JPH0570888B2 (en) | ||
JP4013335B2 (en) | Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method | |
WO2023089919A1 (en) | Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire | |
JP3240323B2 (en) | Manufacturing method of superconducting magnet serving both as reinforcing material and stabilizing material | |
JPH09282953A (en) | Niobium 3 aluminum superconductive wire rod and manufacture thereof | |
JP2004063128A (en) | Compound-based superconductive wire showing strain dependency and superconductive magnet using it | |
JP4214200B2 (en) | Powder method Nb3Sn superconducting wire | |
JP3757617B2 (en) | Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof | |
JPH05804B2 (en) | ||
WO2023013726A1 (en) | Precursor wire for compound superconducting wire, compound superconducting wire, and rewinding method for compound superconducting wire | |
JP4476755B2 (en) | Method for producing Nb3Sn superconducting wire and composite wire therefor | |
JP2010182470A (en) | Nb3Al SUPERCONDUCTING MULTI-CORE WIRE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20081031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100610 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4532369 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |