JP2004063128A - Compound-based superconductive wire showing strain dependency and superconductive magnet using it - Google Patents

Compound-based superconductive wire showing strain dependency and superconductive magnet using it Download PDF

Info

Publication number
JP2004063128A
JP2004063128A JP2002216705A JP2002216705A JP2004063128A JP 2004063128 A JP2004063128 A JP 2004063128A JP 2002216705 A JP2002216705 A JP 2002216705A JP 2002216705 A JP2002216705 A JP 2002216705A JP 2004063128 A JP2004063128 A JP 2004063128A
Authority
JP
Japan
Prior art keywords
strain
compound
superconducting wire
critical current
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216705A
Other languages
Japanese (ja)
Inventor
Kazuo Watanabe
渡邉 和雄
Satoshi Awaji
淡路 智
Kazutomi Miyoshi
三好 一富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002216705A priority Critical patent/JP2004063128A/en
Publication of JP2004063128A publication Critical patent/JP2004063128A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound-based superconductive wire whereof mechanical characteristics and stress characteristics of a critical current valve are enhanced and the critical current valve is also enhanced, and to provide a superconductive magnet using this compound-based superconductive wire. <P>SOLUTION: After a bending strain is added to the compound-based superconductive wire showing strain dependency, to which heat treatment has been applied, the bending strain is unloaded to enhance mechanical characteristics and stress characteristics of the critical current value of the compound-based superconductive wire while enhancing the critical current value. After the bending strain is added to the compound-based superconductive wire showing strain dependency, to which heat treatment is applied, the bending strain is unloaded and the compound-based superconductive wire is coiled to enhance its mechanical characteristics and its critical current value. This superconductive magnet uses it. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は歪み依存性を示す化合物系超電導線材(高温超電導線を含む)並びに該歪み依存性を示す化合物系超電導線を使用した超電導マグネットに関するものである。
【0002】
【従来の技術】
超電導マグネットに用いられている実用超電導線材は主にニオブチタン合金線材とNbSn化合物線材である。ニオブチタンは合金であるために優れた機械特性を有し、多くの超電導マグネットに用いられているが、その上部臨界磁場が低いため発生できる磁場は4.2Kで8〜9Tである。
一方NbSnで代表される化合物系超電導線は高い臨界磁場を有するため20T級の超電導マグネットへ適用できるが、歪みに対して非常に敏感で、臨界電流密度が歪みに対して大きく依存する点が問題となっている。この問題点を克服するために、強加工した銅をNbSnの生成熱処理後にNbSn超電導線材の外側に装着する方法や、高強度のCuNbやアルミナ分散銅などを予め配置した線材構成とする方法が採られている。このような構成とすることにより同じ応力に対する歪みの大きさを小さくすることができ、結果として応力による臨界電流密度の低下を抑制している。
【0003】
さらに、従来のNbSn線材では、応力に対して非常に敏感であるため、熱処理をしてからコイルに巻くリアクト&ワインド法を用いることが困難であったが、高強度NbSnを用いることにより曲げ歪みの小さい大口径のマグネットの場合にはリアクト&ワインド法を採用することができるようになりつつある。
この結果、コイル巻き時に、曲げと引っ張り歪みをコントロールすることが可能となってきた。
【0004】
【発明が解決しようとする課題】
しかしながら、NbSn超電導線を用いて実際にマグネットを製造するにはkm級の長い線材全体にわたって歪みを制御し、線材に一定した歪みを付与する方法は未だ確立されていず、僅かに引っ張り歪みを用いた方法が発表されているだけで実用化の目途は立っていない。このような現象はNbSn超電導線以外の化合物系複合化超電導線や酸化物超電導線の場合も同様であった。
本発明は、km級の長い歪み依存性を示す化合物系超電導線をコイル状に巻線する際に、該超電導線材全体にわたって予め曲げ歪みを付与して後、これを除荷し、機械特性、超電導特性に優れた超電導線及び該超電導線を用いた超電導マグネットを提供することにある。
【0005】
【課題を解決するための手段】
請求項1の発明は、リアクト処理した歪み依存性を示す化合物系超電導線に曲げ歪みを付加して後、該曲げ歪みを除荷することにより機械的特性および臨界電流値の応力特性とともに、臨界電流値を向上させたことを特徴とする化合物系超電導線である
【0006】
請求項2の発明は、リアクト処理した歪み依存性を示す化合物系超電導線に曲げ歪みを付加して後、該曲げ歪みを除荷し、リールにコイル巻きして機械的特性および臨界電流値を向上させたことを特徴とする化合物系超電導線を用いた超電導マグネットである。
【0007】
【作用】
一般的に、機械特性と呼ばれている応力−歪み特性は、歪み或いは応力の低い領域の弾性変形と、高い領域の塑性変形に分けられ、その境界線が降伏点である。弾性変形では歪みは与えられた応力に対して線形に変化するが、降伏点を越えて塑性変形を起こすと、応力に対して歪みの応答は極端に大きくなる。降伏点を越えて塑性変形を起こさせて後に与えた応力を除荷すると、線材は加工硬化を起こし、見かけ上の機械的特性の向上が見られると共に、残留応力が発生する。
【0008】
NbSn超電導線のような歪み依存性を示す化合物系複合化超電導線材の場合でも、一般的にこの降伏点は明確でないが、例えばCuNb補強NbSn線材では約0.02%の歪みを越えると塑性変形のために、応力を与えた時に発生する歪みの応答が徐々に大きくなることが知られている。塑性変形の領域まで応力を引加してから除荷すると、歪みはゼロまで戻らずに残留応力が残るとともに、加工硬化によって見かけ上応力に対する歪み応答が小さくなることが知られている。
【0009】
本発明ではコイル巻きする超電導線に曲げ歪みをかけ、この歪みを除荷する。
超電導線に曲げ歪みをかけた場合、線材は局所領域では引っ張りあるいは圧縮歪みと等価であり、降伏点以上の引っ張り歪みが加わると、局所的な加工硬化が起こる。このことにより、一度経験した歪みに達するまでは応力に対する相対的な歪みの大きさが図3に示すように小さくなることになる。本発明では、線材に曲げ歪みを付与するが、該曲げ歪みは線材の位置によって異なる歪みを与えたことに相当するので、低応力における歪み応答が線形でなく、上に凸の曲線となっている点で、一般的な加工硬化とは異なっている。
【0010】
この時、応力ゼロの時の歪みはゼロではなく、図4に示すように有限値をとるが、化合物系超電導線がNbSn等の場合には低温では複合材との熱収縮率の違いから発生する圧縮歪み(プリストレイン)が事前曲げ歪みによって導入された残留歪みのために減少するので、応力ゼロにおける臨界電流密度も増加する。
さらに、加工硬化による機械特性の向上により、図5に示すように臨界電流密度の応力依存性は格段に向上することになる。
【0011】
なお、類似の観点から引っ張り歪みを事前に印加してから除荷することにより残留応力を導入し、超電導特性を向上させるアイデアが発表されているが、上述したようにkm級の長い線材全体にわたって引っ張り歪みを制御しながら印加することは困難であり、安定した歪みの付与ができず、実現性がなく、実施されるに至っていない。
【0012】
本発明は、長い超電導線材に対し、歪みを付与する方法として、曲げにより歪みを付与すると与える歪みを容易に制御でき、安定した歪みを付与できることに着目し、歪みに敏感な化合物系複合化超電導線材に曲げ歪みを印加し制御することで、さらに、機械特性を向上することで、歪み依存性を示す化合物系複合化超電導線の臨界電流密度を向上させ、該化合物系複合化超電導線により臨界電流が向上し、コンパクトで底コストの超電導マグネットの実用化をなし遂げたものである。
【0013】
【発明の実施の形態】
以下、本発明の化合物系複合化超電導線及び該超電導線を用いた超電導マグネットにつき、図示した一実施形態に基づいて詳細に説明する。
図1は本発明の化合物系複合化超電導線、特にNbSn超電導線の製造工程を示す説明図で、同図(イ)に示すように所定の太さに製造された超電導線用線材4をダイス11に通すことにより規定値の細線に線引きして超電導線用線材3とし、リール12に巻き取る。リール12に巻かれた超電導線用線材3は同図(ロ)に示すように炉13に入れられてリアクト処理(熱処理)される。
【0014】
超電導線用線材3は、炉13に入れられてリアクト処理(熱処理)されることにより複合化超電導線2となり、該複合化超電導線2は同図(ハ)に示すように次工程でその外周に絶縁体7が被覆され、絶縁体7が被覆された超電導線2はキャタピラ14で引き取られてリール15に巻き取る。リール15に巻き取られることで超電導線2には曲げ歪みが付与され、次工程(図示せず)でリール15から引き出されることにより付与された曲げ歪みが除荷されて機械的特性および臨界電流値の応力特性とともに、臨界電流値を向上させた化合物系複合超電導線1となる。
【0015】
図2は本発明の化合物系複合化超電導線、特にNbSnを用いたマグネットの製造工程を示す説明図である。図1で示す前処理、即ち、リール12にコイル巻きされたNbSnからなる超電導線用線材3は、炉13に入れられてリアクト処理(熱処理)される。超電導線用線材3は、炉13に入れられてリアクト処理(熱処理)されることにより超電導線2となり、該超電導線2は図2に示す次工程でその外周に絶縁体7が被覆される。
【0016】
次に絶縁体7が被覆された超電導線2をボビン16に巻き超電導マグネット5とする。
このボビン16に超電導線2を巻く工程において超電導線2に励磁で臨界電流が最大となる曲げ歪みを付与する。図2ではボビン16の前方にプーリー17を配置し、該プーリー17により超電導線2を曲げることで超電導線に曲げ歪みを付与している。プーリー17により超電導線2に付与された曲げ歪みはプーリー17を通過した時点で開放(除荷)され、機械的特性および臨界電流値の応力特性とともに、臨界電流値を向上した歪み依存性を示す超電導線1となり、ボビン16に巻かれ超電導マグネットとなる。
【0017】
一般に超電導マグネットでは、使用する磁場領域・マグネットの口径等に依存して超電導線材にかかる電磁力の大きさは様々である。本発明は、マグネットの設計に応じて使用する電磁力領域で臨界電流密度が最大となるような曲げ歪みを巻線時のプーリー等によりその径を替えることで簡単に制御し付与でき、超電導マグネット、とりわけ大きな電磁力のかかる大型のもののコンパクト化が可能となり、より大きな電磁力がかかるマグネットが設計できる。
【0018】
さらに、化合物超電導線において、図2に示した生成熱処理・絶縁処理を行ったあと、プーリー17を用いて曲げ歪みを加えてから、別のボビンに巻きなおす曲げ歪み印加処理を行うことで、機械特性と超伝導特性の向上した超電導線を作製することができる。この線は、ゼロ応力でも処理前の線材と比べ最大で2割程度の臨界電流値の向上が見込まれる。このため、例えば、応力ゼロに近い状態で使用する送電線用線材などの場合は、臨界電流が最大となる残留歪みとなる曲げ歪みを与えることによって臨界電流値を最適値に制御することも可能である。
【0019】
なお、上記実施形態では特にNbSn超電導線を例にして説明したが、高温超電導線等、化合物系複合化超電導線に曲げ歪みを付加し、除荷することで上記実施形態と同様な効果が得られることは勿論である。
また、上記実施形態では、超電導線に曲げ歪みを付与するのにプーリーを採用したが、曲げ歪みを付与する他の方法として固定ローラと可動ローラを組合わせた整直器等を使用することができる。
【0020】
【発明の効果】
本発明は、歪み依存性を示す化合物系超電導線に曲げ歪みを付与し、除荷することで加工硬化により機械特性と超電導特性の応力依存性が向上し、
1.熱収縮率の違いによって複合超電導線の超電導部分が受ける圧縮歪みを自在に制御でき、応力ゼロにおける臨界電流密度を向上することができる。
2.応力に対する歪みの応答を低減できる。
3.上記効果により臨界電流の応力依存性を向上できる。
4.臨界電流に対する応力−歪み特性の最適化により、臨界電流密度を向上でき、マグネットのコンパクト化、低コスト化ができる。
等の優れた効果を有するものである。
【図面の簡単な説明】
【図1】本発明の超電導線を製造する工程を示す説明図である。
【図2】本発明の超電導マグネットを製造する工程を示す説明図である。
【図3】超電導線に事前曲げ歪みを付与した時の応力−歪み特性を示すグラフである。
【図4】超電導線に事前曲げ歪みを付与した時の線材の伸びを示すグラフである。
【図5】超電導線に事前に0.05%の曲げ歪みを付与した時の臨界電流の応力依存性を示すグラフである。
【符号の説明】
1 歪み依存性を示す化合物系超電導線
2 化合物系超電導線
3 超電導線用線材(細線)
4 超電導線用線材(太線)
5 化合物系超電導線マグネット
12 リール
13 炉
15 リール
16 ボビン
17 プーリー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compound superconducting wire (including a high-temperature superconducting wire) exhibiting strain dependency and a superconducting magnet using the compound superconducting wire exhibiting strain dependency.
[0002]
[Prior art]
Practical superconducting wires used for superconducting magnets are mainly niobium titanium alloy wires and Nb 3 Sn compound wires. Niobium titanium has excellent mechanical properties because it is an alloy, and is used for many superconducting magnets. However, since its upper critical magnetic field is low, a magnetic field that can be generated is 8 to 9 T at 4.2 K.
On the other hand, a compound superconducting wire represented by Nb 3 Sn has a high critical magnetic field and can be applied to a 20 T class superconducting magnet. However, it is very sensitive to strain, and the critical current density greatly depends on strain. Is a problem. In order to overcome this problem, a method of attaching strongly processed copper to the outside of the Nb 3 Sn superconducting wire after heat treatment for generating Nb 3 Sn, a wire structure in which high-strength CuNb, alumina-dispersed copper, and the like are arranged in advance. The method is adopted. With such a configuration, the magnitude of strain for the same stress can be reduced, and as a result, a decrease in critical current density due to the stress is suppressed.
[0003]
Furthermore, the conventional Nb 3 Sn wire rod is very sensitive to stress, so it is difficult to use the react & wind method of winding the coil after heat treatment. However, high strength Nb 3 Sn is used. Therefore, in the case of a large-diameter magnet having a small bending distortion, a react-and-wind method can be adopted.
As a result, it has become possible to control bending and tensile strain during coil winding.
[0004]
[Problems to be solved by the invention]
However, in order to actually produce a magnet using an Nb 3 Sn superconducting wire, a method of controlling the strain over a long wire of km class and applying a constant strain to the wire has not yet been established. There is no prospect of practical application just because a method using is disclosed. Such a phenomenon was the same in the case of a compound-based composite superconducting wire and an oxide superconducting wire other than the Nb 3 Sn superconducting wire.
The present invention, when winding a compound superconducting wire showing a long-strain dependence of the km class in a coil shape, after applying a bending strain in advance over the entire superconducting wire, unloading this, mechanical properties, An object of the present invention is to provide a superconducting wire having excellent superconducting properties and a superconducting magnet using the superconducting wire.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 is to provide a compound-based superconducting wire exhibiting a strain dependency subjected to a reactive treatment, after applying a bending strain, and then unloading the bending strain, thereby providing a mechanical property and a stress property of a critical current value, and a critical current value. A compound-based superconducting wire having an improved current value.
The invention according to claim 2 is to apply a bending strain to the reactive superconducting compound-based superconducting wire, and then unload the bending strain and wind a coil around a reel to obtain a mechanical property and a critical current value. It is a superconducting magnet using a compound superconducting wire characterized by being improved.
[0007]
[Action]
In general, stress-strain characteristics called mechanical characteristics are divided into elastic deformation in a region where strain or stress is low, and plastic deformation in a region where it is high, and the boundary line is a yield point. In elastic deformation, strain changes linearly with applied stress, but when plastic deformation occurs beyond the yield point, the response of strain to stress becomes extremely large. When the stress applied after the plastic deformation is caused beyond the yield point is unloaded, the wire undergoes work hardening, and apparent mechanical properties are improved, and residual stress is generated.
[0008]
Even in the case of a compound-based composite superconducting wire exhibiting strain dependency like an Nb 3 Sn superconducting wire, the yield point is generally not clear, but for example, a CuNb reinforced Nb 3 Sn wire has a strain of about 0.02%. It is known that the response of the strain generated when a stress is applied gradually increases due to the plastic deformation when the stress exceeds the limit. It is known that, when stress is applied to the area of plastic deformation and then unloaded, the strain does not return to zero and the residual stress remains, and the strain response to stress apparently decreases due to work hardening.
[0009]
In the present invention, bending distortion is applied to the superconducting wire wound by the coil, and the distortion is unloaded.
When a bending strain is applied to a superconducting wire, the wire is equivalent to a tensile or compressive strain in a local region, and when a tensile strain higher than the yield point is applied, local work hardening occurs. Thus, the magnitude of the strain relative to the stress becomes smaller as shown in FIG. 3 until the strain once experienced is reached. In the present invention, a bending strain is imparted to the wire, but the bending strain is equivalent to giving different strains depending on the position of the wire, so that the strain response at low stress is not linear, but becomes a curve that is upwardly convex. In that it differs from general work hardening.
[0010]
At this time, the strain when the stress is zero is not zero but takes a finite value as shown in FIG. 4, but when the compound superconducting wire is Nb 3 Sn or the like, the difference in the heat shrinkage from the composite material at low temperature is low. The critical current density at zero stress also increases because the compressive strain (prestrain) resulting from the pre-bending is reduced due to the residual strain introduced by the pre-bending strain.
Further, due to the improvement of the mechanical properties due to the work hardening, the stress dependency of the critical current density is remarkably improved as shown in FIG.
[0011]
From a similar point of view, an idea to improve the superconductivity by introducing a residual stress by applying a tensile strain in advance and then unloading has been announced, but as described above, over the entire long wire of km class. It is difficult to apply the tensile strain while controlling it, it is impossible to apply a stable strain, there is no feasibility, and it has not been implemented.
[0012]
The present invention focuses on the fact that, as a method for imparting strain to a long superconducting wire, it is possible to easily control the strain given by applying strain by bending and to apply a stable strain. By applying and controlling the bending strain to the wire, and further improving the mechanical properties, the critical current density of the compound-based composite superconducting wire exhibiting the strain dependence is improved, and the compound-based composite superconducting wire becomes more critical. The current has been improved, and a compact and low-cost superconducting magnet has been put to practical use.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a compound-based composite superconducting wire and a superconducting magnet using the superconducting wire of the present invention will be described in detail based on one illustrated embodiment.
FIG. 1 is an explanatory view showing a manufacturing process of a compound-based composite superconducting wire of the present invention, particularly a Nb 3 Sn superconducting wire. As shown in FIG. Is passed through a die 11 to be drawn into a fine wire having a specified value to form a superconducting wire 3 and wound up on a reel 12. The superconducting wire 3 wound on the reel 12 is placed in a furnace 13 as shown in FIG.
[0014]
The superconducting wire 3 is placed in a furnace 13 and subjected to a reacting treatment (heat treatment) to form a composite superconducting wire 2. The composite superconducting wire 2 has an outer periphery in the next step as shown in FIG. The superconducting wire 2 coated with the insulator 7 is taken up by the caterpillar 14 and wound around the reel 15. The superconducting wire 2 is given a bending strain by being wound on the reel 15, and the bending strain given by being pulled out from the reel 15 in the next step (not shown) is unloaded, and the mechanical properties and the critical current The compound-based composite superconducting wire 1 has an improved critical current value as well as the stress characteristic of the compound.
[0015]
FIG. 2 is an explanatory view showing a manufacturing process of a magnet using the compound-based composite superconducting wire of the present invention, particularly, Nb 3 Sn. The pretreatment shown in FIG. 1, that is, the superconducting wire 3 made of Nb 3 Sn wound around a reel 12 is put into a furnace 13 and subjected to a reactor treatment (heat treatment). The superconducting wire 3 is placed in a furnace 13 and subjected to a reacting treatment (heat treatment) to form a superconducting wire 2. The outer periphery of the superconducting wire 2 is coated with an insulator 7 in the next step shown in FIG.
[0016]
Next, the superconducting wire 2 covered with the insulator 7 is wound around the bobbin 16 to form the superconducting magnet 5.
In the step of winding the superconducting wire 2 around the bobbin 16, the superconducting wire 2 is subjected to a bending strain that maximizes a critical current by excitation. In FIG. 2, a pulley 17 is disposed in front of the bobbin 16, and the superconducting wire 2 is bent by the pulley 17 to apply a bending strain to the superconducting wire. The bending strain imparted to the superconducting wire 2 by the pulley 17 is released (unloaded) when passing through the pulley 17, and exhibits a mechanical property and a stress property of a critical current value, as well as a strain dependency with an improved critical current value. The superconducting wire 1 is wound around the bobbin 16 and becomes a superconducting magnet.
[0017]
Generally, in a superconducting magnet, the magnitude of the electromagnetic force applied to the superconducting wire varies depending on the magnetic field region used, the aperture of the magnet, and the like. The present invention provides a superconducting magnet that can easily control and impart bending strain such that the critical current density is maximized in the electromagnetic force region used according to the design of the magnet by changing its diameter with a pulley or the like at the time of winding. In particular, it is possible to reduce the size of a large object to which a large electromagnetic force is applied, and to design a magnet to which a larger electromagnetic force is applied.
[0018]
Further, the compound superconducting wire is subjected to the heat treatment and insulation treatment shown in FIG. 2 and then subjected to bending strain application using a pulley 17 and then rewinding to another bobbin. A superconducting wire having improved characteristics and superconductivity can be manufactured. This wire is expected to improve the critical current value by about 20% at maximum compared to the wire before treatment even at zero stress. For this reason, for example, in the case of power transmission wires used near zero stress, it is possible to control the critical current value to the optimum value by giving bending strain that is the residual strain that maximizes the critical current It is.
[0019]
In the above embodiment, the Nb 3 Sn superconducting wire is particularly described as an example, but the same effect as in the above embodiment can be obtained by adding bending strain to a compound-based composite superconducting wire such as a high-temperature superconducting wire and unloading it. Is obtained.
Further, in the above embodiment, a pulley is employed to impart bending strain to the superconducting wire, but as another method of imparting bending strain, a straightening device combining a fixed roller and a movable roller may be used. it can.
[0020]
【The invention's effect】
The present invention imparts bending strain to a compound-based superconducting wire exhibiting strain dependency, and improves stress dependency of mechanical properties and superconducting properties by work hardening by unloading.
1. The compressive strain applied to the superconducting portion of the composite superconducting wire can be freely controlled by the difference in the heat shrinkage, and the critical current density at zero stress can be improved.
2. The response of strain to stress can be reduced.
3. Due to the above effects, the stress dependence of the critical current can be improved.
4. By optimizing the stress-strain characteristic with respect to the critical current, the critical current density can be improved, and the magnet can be made compact and low in cost.
And so on.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a step of manufacturing a superconducting wire of the present invention.
FIG. 2 is an explanatory view showing a step of manufacturing a superconducting magnet of the present invention.
FIG. 3 is a graph showing stress-strain characteristics when a pre-bending strain is applied to a superconducting wire.
FIG. 4 is a graph showing elongation of a wire when pre-bending strain is applied to a superconducting wire.
FIG. 5 is a graph showing stress dependence of a critical current when a bending strain of 0.05% is applied to a superconducting wire in advance.
[Explanation of symbols]
1 Compound-based superconducting wire showing strain dependence 2 Compound-based superconducting wire 3 Wire for superconducting wire (thin wire)
4 Superconducting wire (thick wire)
5 Compound superconducting wire magnet 12 Reel 13 Furnace 15 Reel 16 Bobbin 17 Pulley

Claims (2)

リアクト処理した歪み依存性を示す化合物系超電導線に曲げ歪みを付加して後、該曲げ歪みを除荷することにより機械的特性および臨界電流値の応力特性とともに、臨界電流値を向上させたことを特徴とする化合物系超電導線。After adding bending strain to the compound-based superconducting wire exhibiting the strain dependency subjected to the reactor treatment, the critical current value was improved together with the mechanical characteristics and the stress characteristics of the critical current value by removing the bending strain. A compound superconducting wire characterized by the following. リアクト処理した歪み依存性を示す化合物系超電導線に曲げ歪みを付加して後、該曲げ歪みを除荷し、コイル巻きして機械的特性および臨界電流値を向上させたことを特徴とする化合物系超電導線を用いた超電導マグネット。A compound characterized by improving the mechanical properties and critical current value by adding bending strain to a compound-based superconducting wire exhibiting strain dependence subjected to a reactor treatment, and then unloading the bending strain and winding the coil to improve mechanical properties and critical current value. Superconducting magnet using superconducting wire.
JP2002216705A 2002-07-25 2002-07-25 Compound-based superconductive wire showing strain dependency and superconductive magnet using it Pending JP2004063128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216705A JP2004063128A (en) 2002-07-25 2002-07-25 Compound-based superconductive wire showing strain dependency and superconductive magnet using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216705A JP2004063128A (en) 2002-07-25 2002-07-25 Compound-based superconductive wire showing strain dependency and superconductive magnet using it

Publications (1)

Publication Number Publication Date
JP2004063128A true JP2004063128A (en) 2004-02-26

Family

ID=31938389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216705A Pending JP2004063128A (en) 2002-07-25 2002-07-25 Compound-based superconductive wire showing strain dependency and superconductive magnet using it

Country Status (1)

Country Link
JP (1) JP2004063128A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333040A (en) * 2004-05-21 2005-12-02 Furukawa Electric Co Ltd:The Superconducting coil
JP2006253592A (en) * 2005-03-14 2006-09-21 Sumitomo Heavy Ind Ltd Superconducting coil and its manufacturing method
JP2007059136A (en) * 2005-08-23 2007-03-08 Furukawa Electric Co Ltd:The Compound superconducting wire material, compound superconducting cable, and manufacturing method of them
JP2007132690A (en) * 2005-11-08 2007-05-31 Japan Atomic Energy Agency Device for applying strain to metal wire
JP2013539157A (en) * 2010-07-21 2013-10-17 シーメンス アクチエンゲゼルシヤフト Method and apparatus for forming a superconducting layer on a substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333040A (en) * 2004-05-21 2005-12-02 Furukawa Electric Co Ltd:The Superconducting coil
JP4652721B2 (en) * 2004-05-21 2011-03-16 古河電気工業株式会社 Superconducting coil
JP2006253592A (en) * 2005-03-14 2006-09-21 Sumitomo Heavy Ind Ltd Superconducting coil and its manufacturing method
JP2007059136A (en) * 2005-08-23 2007-03-08 Furukawa Electric Co Ltd:The Compound superconducting wire material, compound superconducting cable, and manufacturing method of them
JP4532369B2 (en) * 2005-08-23 2010-08-25 古河電気工業株式会社 Compound superconducting wire and compound superconducting cable manufacturing method
JP2007132690A (en) * 2005-11-08 2007-05-31 Japan Atomic Energy Agency Device for applying strain to metal wire
JP4674334B2 (en) * 2005-11-08 2011-04-20 独立行政法人 日本原子力研究開発機構 Device for applying strain to metal wires
JP2013539157A (en) * 2010-07-21 2013-10-17 シーメンス アクチエンゲゼルシヤフト Method and apparatus for forming a superconducting layer on a substrate

Similar Documents

Publication Publication Date Title
Zhukov et al. Induced magnetic anisotropy in Co–Mn–Si–B amorphous microwires
JPH03138817A (en) Oxide superconductive wire, its manufacture, and goods using it
JP6398138B2 (en) Manufacturing method of iron-based superconducting wire
JP7335886B2 (en) Insulation coating compound superconducting wire and its rewinding method
JP2017054579A (en) Manufacturing method of compound-based superconducting wire rod and manufacturing method of compound-based superconducting cable
JP2004063128A (en) Compound-based superconductive wire showing strain dependency and superconductive magnet using it
Sugimoto et al. Evaluation of Various Nb-Rod-Method Cu-Nb/Nb 3 Sn Wires Designed for Practical React-and-Wind Coils
JP4532369B2 (en) Compound superconducting wire and compound superconducting cable manufacturing method
Sugimoto et al. Performance of Polyvinyl Formal Insulated Cu–Nb/Nb 3 Sn Wires for React-and-Wind Process
US3953922A (en) Method of eliminating the training effect in superconducting coils by post-wind preload
Berriaud et al. Conductor R&D for the Iseult/INUMAC whole body 11.7 T MRI magnet
Sugimoto et al. Performance of thin Cu-Nb/Nb 3 Sn round wires and tapes pre-bent for R&W process
JP2860914B2 (en) Manufacturing method of magnetic wire
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
JP2003288816A (en) Method of lowering ac loss of superconductive coil
US6120617A (en) Method for manufacturing a magnetic pulse generator
Koenen et al. Stainless steel as substrate material for high-temperature superconducting tapes processed via the ISD MgO route
JPH0619930B2 (en) Niobium / Titanium extra fine multi-core superconducting wire
Badica et al. Maximization of the critical current of practical Nb3Sn wires through complex mechanical treatments at room temperature
Omura et al. Effect of applied pure bending strain on critical current for CuNb/Nb 3 Sn superconducting wires
JP2000164419A (en) Superconductivity magnet and manufacture thereof
JP2003045247A (en) Superconductive cable
JP5632767B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP4476755B2 (en) Method for producing Nb3Sn superconducting wire and composite wire therefor
JPS6221244B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826