JP6398138B2 - Manufacturing method of iron-based superconducting wire - Google Patents

Manufacturing method of iron-based superconducting wire Download PDF

Info

Publication number
JP6398138B2
JP6398138B2 JP2014099068A JP2014099068A JP6398138B2 JP 6398138 B2 JP6398138 B2 JP 6398138B2 JP 2014099068 A JP2014099068 A JP 2014099068A JP 2014099068 A JP2014099068 A JP 2014099068A JP 6398138 B2 JP6398138 B2 JP 6398138B2
Authority
JP
Japan
Prior art keywords
wire
heat treatment
silver
iron
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014099068A
Other languages
Japanese (ja)
Other versions
JP2014240521A (en
Inventor
熊倉 浩明
浩明 熊倉
松本 明善
明善 松本
戸叶 一正
一正 戸叶
召▲順▼ 高
召▲順▼ 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Tokyo Institute of Technology NUC
Original Assignee
National Institute for Materials Science
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Tokyo Institute of Technology NUC filed Critical National Institute for Materials Science
Priority to JP2014099068A priority Critical patent/JP6398138B2/en
Publication of JP2014240521A publication Critical patent/JP2014240521A/en
Application granted granted Critical
Publication of JP6398138B2 publication Critical patent/JP6398138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Powder Metallurgy (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、鉄系超伝導線材の製造方法に関する。   The present invention relates to a method for producing an iron-based superconducting wire.

2008年に発見された鉄系超伝導体は、臨界温度(T)が高く、しかも臨界磁界(Hc2)も高いため、高磁場発生用の超伝導線材としての応用が期待されるものであり、PIT(Powder-in-tube)法などによる線材化が試みられている。 The iron-based superconductor discovered in 2008 has high critical temperature (T c ) and high critical magnetic field (H c2 ), so it is expected to be applied as a superconducting wire for high magnetic field generation. There are attempts to make wire rods using the PIT (Powder-in-tube) method.

PIT法では、通常、原料粉末を銀などの金属管に詰めた後、圧延などにより最終的な形状にまで一気に加工し、次いで、原料粉末を反応させるまたは焼結させるための熱処理を行う。鉄系の超伝導線材については、本発明の発明者らは、下記非特許文献1に、銀管を用いたPIT法による(Ba,K)FeAs+Ag線材の作製を報告している。 In the PIT method, the raw material powder is usually packed in a metal tube such as silver and then processed into a final shape by rolling or the like, and then heat treatment for reacting or sintering the raw material powder is performed. Regarding the iron-based superconducting wire, the inventors of the present invention report the production of (Ba, K) Fe 2 As 2 + Ag wire by the PIT method using a silver tube in the following Non-Patent Document 1. .

しかしながら、圧延ではクラックが入りやすく、発生するクラックは、線材の長手方向に電流が流れるのを阻害する。このため、現状、鉄系超伝導体については、超伝導状態で流し得る臨界電流密度(J)が十分に高くなく、Jの向上が、鉄系超伝導体の実用化に急務とされている。 However, rolling tends to cause cracks, and the generated cracks inhibit current from flowing in the longitudinal direction of the wire. Therefore, currently, the iron-based superconductors, the critical current density can flow in the superconducting state (J c) is not sufficiently high, the improvement of J c is, is urgent the practical application of iron-based superconductors ing.

松本明善他, “Microstructure and superconducting properties of Ag-sheathed (Ba,K)Fe2As2+Ag superconducting wires fabricated by an exsitu powder-in-tube process”, Supercond. Sci. & Technol., 25(2012)125010Matsumoto Akiyoshi et al., “Microstructure and superconducting properties of Ag-sheathed (Ba, K) Fe2As2 + Ag superconducting wires fabricated by an exsitu powder-in-tube process”, Supercond. Sci. & Technol., 25 (2012) 125010

本発明は、以上のとおりの事情に鑑みてなされたものであり、鉄系超伝導体の内、T〜38Kであり、組成が(Ba,K)FeAsおよび(Sr,K)FeAsで代表される、いわゆる122系超伝導体に関し、優れたJ特性を実現する鉄系超伝導線材の製造方法を提供することを課題としている。 The present invention has been made in view of the circumstances as described above, of the iron-based superconductors, a T c ~38K, composition (Ba, K) Fe 2 As 2 and (Sr, K) An object of the present invention is to provide a method for producing an iron-based superconducting wire that realizes excellent Jc characteristics with respect to a so-called 122-based superconductor represented by Fe 2 As 2 .

上記の課題を解決するために、本発明の発明者らは、122系超伝導線材の製造において、圧延と中間熱処理を一ないし複数回行うことによってクラックの発生が減少し、かつ結晶粒が微細化され、超伝導体の充填率が上昇することを見出した。また、製造の最終段階で、一軸圧縮とこの一軸圧縮に引き続く最終熱処理とを行うことによって、圧延の際に発生しやすい、線材の長さ方向に対して垂直方向のクラックを消失させることができ、Jが一層向上することも見出した。さらに、超伝導体の原料粉末を銀管に充填して線材に加工する一次加工を行い、次いで銀よりも硬度の高い金属管に挿入して線材に加工する二次加工を行うことによって、中間熱処理を行わない場合であっても、クラックの発生が抑制され、超伝導体の充填率がより上昇することを見出した。そして、これらの知見によって、鉄系のPIT線材としては、これまでで最高のJが達成されている。 In order to solve the above-mentioned problems, the inventors of the present invention reduced the occurrence of cracks and the fine grains by performing rolling and intermediate heat treatment one or more times in the production of 122 series superconducting wire. And found that the filling factor of the superconductor increases. In addition, by performing uniaxial compression and final heat treatment subsequent to this uniaxial compression at the final stage of production, cracks perpendicular to the length direction of the wire that are likely to occur during rolling can be eliminated. , J c is also found that further improved. Furthermore, intermediate processing is performed by filling the raw material powder of the superconductor into a silver tube and processing it into a wire, and then performing secondary processing that inserts it into a metal tube having a hardness higher than silver and processes it into a wire. It has been found that even when heat treatment is not performed, the generation of cracks is suppressed and the filling rate of the superconductor is further increased. Based on these findings, the highest Jc has been achieved so far as an iron-based PIT wire.

すなわち、本発明の鉄系超伝導線材の製造方法は、組成が(Ba,K1−x)FeAs(0<x<1)または(Sr,K1−x)FeAs(0<x<1)で示される鉄系超伝導体の粉末を銀管の中に充填して線材に加工する一次加工を行った後、厚さを30%〜80%に減ずる圧延と700℃〜900℃の温度範囲で1時間〜3時間の中間熱処理とを一ないし複数回行い、次いで、厚さを先の熱処理後の厚さの60%〜90%に減ずる一軸圧縮を行った後、700℃〜900℃の温度範囲で5時間〜15時間の最終熱処理を行うことを特徴とする。 That is, in the method for producing an iron-based superconducting wire of the present invention, the composition is (Ba x , K 1-x ) Fe 2 As 2 (0 <x <1) or (Sr x , K 1-x ) Fe 2 As. 2 Rolling in which the thickness is reduced to 30% to 80% after primary processing is performed in which the iron-based superconductor powder represented by 0 (0 <x <1) is filled into a silver tube and processed into a wire. An intermediate heat treatment was performed one to several times in a temperature range of 700 ° C. to 900 ° C., and then uniaxial compression was performed to reduce the thickness to 60% to 90% of the thickness after the previous heat treatment. Thereafter, a final heat treatment is performed in a temperature range of 700 ° C. to 900 ° C. for 5 hours to 15 hours.

また、この鉄系超伝導線材の製造方法においては、前記一次加工によって得た線材を銀よりも硬度の高い金属管の中に挿入して線材に加工する二次加工を行った後、厚さを30%〜80%に減ずる圧延と700℃〜900℃の温度範囲で1時間〜3時間の中間熱処理とを一ないし複数回行い、次いで、厚さを先の熱処理後の厚さの60〜90%に減ずる一軸圧縮を行った後、700℃〜900℃の温度範囲で5時間〜15時間の最終熱処理を行うことが好ましい。   Further, in this method for producing an iron-based superconducting wire, after the secondary processing in which the wire obtained by the primary processing is inserted into a metal tube having a hardness higher than silver and processed into a wire, Rolling to reduce it to 30% to 80% and intermediate heat treatment for 1 hour to 3 hours at a temperature range of 700 ° C. to 900 ° C. one or more times, and then the thickness is 60 to 60% of the thickness after the previous heat treatment. After performing uniaxial compression which reduces to 90%, it is preferable to perform a final heat treatment for 5 hours to 15 hours in a temperature range of 700 ° C to 900 ° C.

さらに、本発明の鉄系超伝導線材の製造方法は、組成が(Ba,K1−x)FeAs(0<x<1)または(Sr,K1−x)FeAs(0<x<1)で示される鉄系超伝導体の粉末を銀管の中に充填して線材に加工する一次加工を行い、次いで、銀よりも硬度の高い金属管の中に挿入して線材に加工する二次加工を行った後、厚さを30%〜80%に減ずる圧延を行い、次いで、厚さを先の圧延後の厚さの20〜90%に減ずる一軸圧縮を行った後、700℃〜900℃の温度範囲で5時間〜15時間の最終熱処理を行うことを特徴とする。 Furthermore, in the method for producing an iron-based superconducting wire of the present invention, the composition is (Ba x , K 1-x ) Fe 2 As 2 (0 <x <1) or (Sr x , K 1-x ) Fe 2 As. 2 Perform the primary processing of filling the iron-based superconductor powder represented by (0 <x <1) into a silver tube and processing it into a wire, and then insert it into a metal tube with hardness higher than silver Then, after the secondary processing to process the wire, the rolling is performed to reduce the thickness to 30% to 80%, and then the uniaxial compression to reduce the thickness to 20 to 90% of the thickness after the previous rolling. After being performed, a final heat treatment is performed in a temperature range of 700 ° C. to 900 ° C. for 5 hours to 15 hours.

そして、本発明の鉄系超伝導線材は、組成が(Ba,K)FeAsで示される超伝導体を銀で被覆した構造を有し、前記超伝導体のビッカース硬さが100〜150であり、4.2K、10Tの条件での臨界電流密度が1.0×10〜2.5×10A/cmであることを特徴とする。 The iron-based superconducting wire of the present invention has a structure in which a superconductor whose composition is represented by (Ba, K) Fe 2 As 2 is coated with silver, and the superconductor has a Vickers hardness of 100 to 100. 150, and the critical current density under the conditions of 4.2 K and 10 T is 1.0 × 10 4 to 2.5 × 10 4 A / cm 2 .

本発明の鉄系超伝導線材は、組成が(Sr,K)FeAsで示される超伝導体を銀で被覆した構造を有し、前記超伝導体のビッカース硬さが100〜150であり、20K、5Tの条件での臨界電流密度が2.5×10〜2.0×10A/cmであることを特徴とする。 The iron-based superconducting wire of the present invention has a structure in which a superconductor whose composition is represented by (Sr, K) Fe 2 As 2 is coated with silver, and the superconductor has a Vickers hardness of 100 to 150. The critical current density under the conditions of 20K and 5T is 2.5 × 10 3 to 2.0 × 10 4 A / cm 2 .

本発明の鉄系超伝導線材は、組成が(Ba,K)FeAsで示される超伝導体を銀で被覆し、さらに銀よりも硬度の高い金属で被覆した構造を有し、前記超伝導体のビッカース硬さが170〜200であり、4.2K、10Tの条件での臨界電流密度が1.5×10〜1.0×10A/cmであることを特徴とする。 The iron-based superconducting wire of the present invention has a structure in which a superconductor having a composition of (Ba, K) Fe 2 As 2 is coated with silver and further coated with a metal having a hardness higher than silver, The superconductor has a Vickers hardness of 170 to 200, and has a critical current density of 1.5 × 10 4 to 1.0 × 10 5 A / cm 2 under the conditions of 4.2K and 10T. To do.

本発明の鉄系超伝導線材は、組成が(Sr,K)FeAsで示される超伝導体を銀で被覆し、さらに銀よりも硬度の高い金属で被覆した構造を有し、前記超伝導体のビッカース硬さが170〜200であり、20K、5Tの条件での臨界電流密度が2.5×10〜2.0×10A/cmであることを特徴とする。 The iron-based superconducting wire of the present invention has a structure in which a superconductor having a composition of (Sr, K) Fe 2 As 2 is coated with silver and further coated with a metal having a hardness higher than silver, The superconductor has a Vickers hardness of 170 to 200, and a critical current density under the conditions of 20K and 5T is 2.5 × 10 3 to 2.0 × 10 4 A / cm 2 .

本発明の鉄系超伝導線材の製造方法によれば、Jの向上した122系超伝導線材が実現される。 According to the manufacturing method of the iron-based superconducting wire of the present invention, 122 based superconducting wires with an improved J c it is achieved.

実施例1で得られたBa−122超伝導体の粉末X線回折パターンと磁化−温度カーブを示したものである。The powder X-ray-diffraction pattern and magnetization-temperature curve of Ba-122 superconductor obtained in Example 1 are shown. (a)(b)は、それぞれ、実施例1で得られたテープ状のBa−122超伝導体線材の電圧−電流カーブを示したものと、異なる厚さの3つのテープ状線材のJをプロットしたものである。(A) and (b) show the voltage-current curve of the tape-shaped Ba-122 superconductor wire obtained in Example 1, respectively, and J c of three tape-shaped wires having different thicknesses. Are plotted. の磁界依存性を示したものである。It shows the magnetic field dependence of J c. (a)(b)(c)は、それぞれ、角状線材とテープ状線材の断面を観察した光学顕微鏡像と、超伝導部分のX線回折パターンである。(A), (b), and (c) are the optical microscope image which observed the cross section of a square-shaped wire and a tape-shaped wire, respectively, and the X-ray-diffraction pattern of a superconducting part. (a)(b)(c)は、それぞれ、テープ状線材の長さ方向の断面の研磨面を示したものであり、(a)(b)は、それぞれ、圧延したテープ状線材のものであり、(c)は一軸圧縮を行ったテープ状線材のものである。(A), (b), and (c) show the polished surfaces of the cross-section in the length direction of the tape-shaped wire, and (a) and (b) are those of the rolled tape-shaped wire, respectively. Yes, (c) is a tape-shaped wire material that has been uniaxially compressed.

本発明の鉄系超伝導線材の製造方法の一実施形態では、組成が(Ba,K1−x)FeAs(0<x<1)または(Sr,K1−x)FeAs(0<x<1)で示される鉄系超伝導体の粉末を銀管の中に充填して線材に加工する一次加工を行った後、厚さを30%〜80%に減ずる圧延と700℃〜900℃の温度範囲で1時間〜3時間の中間熱処理とを一ないし複数回行う。次いで、厚さを先の熱処理後の厚さの60%〜90%に減ずる一軸圧縮を行った後、700℃〜900℃の温度範囲で5時間〜15時間の最終熱処理を行う。 In one embodiment of the method for producing an iron-based superconducting wire of the present invention, the composition is (Ba x , K 1-x ) Fe 2 As 2 (0 <x <1) or (Sr x , K 1-x ) Fe. After the primary processing of filling the iron superconductor powder represented by 2 As 2 (0 <x <1) into a silver tube and processing it into a wire rod, the thickness is reduced to 30% to 80%. Rolling and intermediate heat treatment for 1 hour to 3 hours in a temperature range of 700 ° C. to 900 ° C. are performed one or more times. Next, uniaxial compression is performed to reduce the thickness to 60% to 90% of the thickness after the previous heat treatment, and then a final heat treatment is performed at a temperature range of 700 ° C. to 900 ° C. for 5 hours to 15 hours.

PIT線材を作製するためには、圧延工程は必須の工程である。しかしながら、圧延加工は、ロール面の摩擦を利用した一方向への圧縮変形を行うものであるため、線材は、厚さ方向に不均一な変形を受ける。その結果、シース材である銀と内部の超伝導部分では、変形の度合いが異なることがある。銀が柔らかいときは、銀と超伝導部分のずれはそれらの界面で緩和されるが、加工硬化によって銀が硬くなると、ずれを界面で緩和し切れず、脆い超伝導部分にクラックが発生する。このクラックは、線材の長手方向を横切る方向に生じるため、超伝導電流の流れを阻害し、臨界電流密度を著しく低下させることになる。   In order to produce a PIT wire, the rolling process is an essential process. However, since the rolling process performs compressive deformation in one direction using friction on the roll surface, the wire is subjected to nonuniform deformation in the thickness direction. As a result, the degree of deformation may differ between the sheath material silver and the internal superconducting portion. When silver is soft, the deviation between the silver and the superconducting portion is alleviated at the interface between them. However, when the silver is hardened by work hardening, the deviation cannot be alleviated at the interface, and a crack occurs in the brittle superconducting portion. Since this crack occurs in a direction crossing the longitudinal direction of the wire, the flow of superconducting current is hindered, and the critical current density is remarkably reduced.

そこで、本発明の鉄系超伝導線材の製造方法では、クラックの発生を抑制するために、一気に圧延せず、圧延において中間に熱処理を行い、銀の極端な硬化を抑制する。このように、圧延と中間熱処理を一ないし複数回行うことによって、結晶粒の粉砕および再結合が生じて均一な微細結晶が得られ、超伝導体の充填率が上昇した理想的な組織が得られる。   Therefore, in the method for producing an iron-based superconducting wire according to the present invention, in order to suppress the generation of cracks, the rolling is not performed at a stretch, but heat treatment is performed in the middle of rolling to suppress the extreme hardening of silver. In this way, by carrying out rolling and intermediate heat treatment one or more times, pulverization and recombination of crystal grains occur and uniform fine crystals are obtained, and an ideal structure with an increased superconductor filling rate is obtained. It is done.

また、本発明の鉄系超伝導線材の製造方法の別の実施形態では、前記一次加工によって得た線材を銀よりも硬度の高い金属管に挿入して線材に加工する二次加工を行う。このように、二種類の金属管を用いて線材に加工することによって、超伝導体の充填率がさらに上昇した理想的な組織が得られる。なお、この場合においては、中間熱処理を行わない場合であっても、圧延加工と一軸圧縮と最終熱処理とを行うことによって、クラックの発生が抑制され、かつ超伝導体の充填率がさらに上昇し、より高いJが達成される。銀被覆のみの線材では、熱処理によって銀が完全にアニールされてしまうことに起因して、線材が極めて柔らかくなる場合がある。そのため、例えばコイル巻き線に加工した際に、線材が小さな曲率で曲がって超伝導特性を劣化させる、などのトラブルが起きる場合がある。一方で、銀被覆の外側を銀よりも硬度の高い金属で被覆した線材の場合には、熱処理後でも線材の硬度が適度に保たれ、超伝導特性を維持した状態でコイル巻き線等へ加工することがより容易になる、などの利点がある。 Moreover, in another embodiment of the manufacturing method of the iron-type superconducting wire of this invention, the secondary process which inserts the wire obtained by the said primary process into a metal pipe with hardness higher than silver, and processes it into a wire is performed. Thus, by processing into a wire using two types of metal tubes, an ideal structure with a further increased superconductor filling rate can be obtained. In this case, even if the intermediate heat treatment is not performed, by performing the rolling process, the uniaxial compression, and the final heat treatment, the generation of cracks is suppressed and the filling rate of the superconductor further increases. , Higher Jc is achieved. In the case of a wire covered only with silver, the wire may be extremely soft due to the complete annealing of the silver by heat treatment. Therefore, for example, when processing into a coil winding, troubles such as bending of the wire with a small curvature and deteriorating superconducting characteristics may occur. On the other hand, in the case of a wire with the outer surface of the silver coating coated with a metal having a hardness higher than that of silver, the wire is maintained in a moderate hardness even after heat treatment and processed into a coil winding or the like while maintaining superconducting properties. There are advantages such as making it easier to do.

二種類の金属管を用いる場合においては、銀管と銀よりも硬度の高い金属管とを別々に用いてもよく、銀管と銀よりも硬度の高い金属管とを二重構造とした金属管を用いてもよい。二重構造の金属管としては、たとえば、内側に設けた銀管と外側に配設した銀よりも硬度の高い金属管との二重構造の金属管を用いることができる。銀よりも硬度の高い金属としては、銀よりもビッカース硬さが高いものであれば特に限定されない。たとえば、ステンレスなどが挙げられる。   In the case of using two types of metal tubes, a silver tube and a metal tube having a hardness higher than silver may be used separately, or a metal having a double structure of a silver tube and a metal tube having a hardness higher than silver. A tube may be used. As the double-structured metal tube, for example, a double-structured metal tube composed of a silver tube provided on the inside and a metal tube having higher hardness than silver provided on the outside can be used. The metal having a higher hardness than silver is not particularly limited as long as it has a Vickers hardness higher than that of silver. An example is stainless steel.

一方、圧延のみでは、超伝導部分におけるクラックの発生はより十分には抑えることはできない。そこで、本発明の鉄系超伝導線材の製造方法では、超伝導部分に残留するクラックを除去するために、最終的に行う熱処理の前に一軸圧縮を行う。一軸圧縮とは、線材を2枚の板で挟んでプレス機を用いて一方向に圧縮する加工法であり、線材に対して厚さ方向に均一な変形を与えることが可能である。この一軸圧縮によって、超伝導部分に残留するクラックを減少させることができ、臨界電流密度を著しく向上させることができる。   On the other hand, the occurrence of cracks in the superconducting portion cannot be sufficiently suppressed only by rolling. Therefore, in the method for producing an iron-based superconducting wire of the present invention, uniaxial compression is performed before the final heat treatment to remove cracks remaining in the superconducting portion. Uniaxial compression is a processing method in which a wire is sandwiched between two plates and compressed in one direction using a press, and can uniformly deform the wire in the thickness direction. By this uniaxial compression, cracks remaining in the superconducting portion can be reduced, and the critical current density can be remarkably improved.

なお、圧延条件としては、銀管および銀よりも硬度の高い金属管の外径および内径や鉄系超伝導体の充填量などを考慮し、厚さを30%〜80%に減ずる範囲内で適宜に選択することができる。また、圧延と交互に行う中間熱処理の条件としては、700℃〜900℃の温度範囲で1時間〜3時間を一応の目安とすることができる。また、一軸圧縮の条件も特に限定的なものではなく、たとえば、厚さをその前に行った熱処理後の厚さの60%〜90%に減ずる程度のものとすることができる。一方で、二種類の金属管を用いて、かつ中間熱処理を行わない場合においては、一軸圧縮の条件としては、たとえば、厚さをその前に行った圧延後の厚さの20%〜90%に減ずる程度のものとすることができる。さらに、最終熱処理についても特に限定されないが、700℃〜900℃の温度範囲で5時間〜15時間の範囲内で適宜に選択することができる。   As the rolling conditions, the outer diameter and inner diameter of the silver tube and the metal tube having a hardness higher than silver, the filling amount of the iron-based superconductor, and the like are considered, and the thickness is reduced within a range of 30% to 80%. It can be selected appropriately. Moreover, as conditions for the intermediate heat treatment performed alternately with rolling, 1 hour to 3 hours can be used as a rough standard in a temperature range of 700 ° C to 900 ° C. Also, the uniaxial compression conditions are not particularly limited, and for example, the thickness can be reduced to 60% to 90% of the thickness after the heat treatment performed before. On the other hand, when two types of metal tubes are used and no intermediate heat treatment is performed, the uniaxial compression condition is, for example, 20% to 90% of the thickness after the previous rolling performed. It can be reduced to a level that can be reduced. Furthermore, although it does not specifically limit about final heat processing, It can select suitably in the range of 5 hours-15 hours in the temperature range of 700 to 900 degreeC.

以下に実施例を示し、本発明の鉄系超伝導線材の製造方法についてさらに詳しく説明する。なお、本発明の鉄系超伝導線材の製造方法は、以下の実施例に限定されるものではない。   An example is shown below and the manufacturing method of the iron system superconducting wire of the present invention is explained in detail. In addition, the manufacturing method of the iron-type superconducting wire of this invention is not limited to a following example.

(Ba0.6,K0.4)FeAs超伝導体(以下、Ba−122超伝導体と記す)を、構成元素であるBa、K、FeおよびAsの単体を用い、組成比0.6:0.4:2:2.02でAr雰囲気下において混合し、ニオブ管の中で900℃で10時間反応させ、炉冷することによって作製した。 A composition ratio of (Ba 0.6 , K 0.4 ) Fe 2 As 2 superconductor (hereinafter referred to as Ba-122 superconductor) using Ba, K, Fe and As as constituent elements. It was prepared by mixing in an Ar atmosphere at 0.6: 0.4: 2: 2.02, reacting at 900 ° C. for 10 hours in a niobium tube, and cooling in a furnace.

図1は、得られたBa−122超伝導体の粉末X線回折パターンと磁化−温度カーブを示したものである。   FIG. 1 shows a powder X-ray diffraction pattern and a magnetization-temperature curve of the obtained Ba-122 superconductor.

粉末X線回折パターンに示したように、全ての回折ピークは、Ba−122超伝導体からのものであると同定され、不純物相に起因するピークは観測されなかった。(00)ピークは、他の回折ピークよりも強度が高く、このことは、結晶粒が、板状の形態を有する単結晶であり、それらのc軸がある程度配向していることを示している。磁化−温度カーブは、SQUID磁力計による測定から得られたものであり、約37Kでシャープな超伝導転移が確認される。これらの結果から、Ba−122超伝導体は品質の高い超伝導体であると評価される。   As shown in the powder X-ray diffraction pattern, all diffraction peaks were identified as being from the Ba-122 superconductor, and no peaks due to the impurity phase were observed. The (00) peak is higher in intensity than the other diffraction peaks, which indicates that the crystal grains are single crystals having a plate-like form, and their c-axis is oriented to some extent. . The magnetization-temperature curve is obtained from the measurement by the SQUID magnetometer, and a sharp superconducting transition is confirmed at about 37K. From these results, the Ba-122 superconductor is evaluated as a high-quality superconductor.

次に、Ba−122超伝導体を粉末状にした後、外径6mm、内径4mmの銀管に詰め、溝ロール法により断面が約2mm角である角状線材に加工した。この角状線材に対して850℃で2時間の中間熱処理を行った。この熱処理後、角状線材を圧延機を用いて厚さ0.6mm〜0.7mmのテープ状に圧延し、再び850℃で2時間の中間熱処理を行った。この熱処理後、テープ状線材を再び圧延機を用いて厚さ0.4mm〜0.5mmに圧延し、また、850℃で2時間の中間熱処理を行った。得られたテープ状線材を長さ35mmに切断した後、このテープ状線材に対してプレス機を用いて一軸圧縮を行い、厚さをその前の熱処理後の厚さの60%〜90%に減少させ、約0.35mmの厚さのテープ状線材を作製した。こうして得られたテープ状線材に対して850℃で10時間の熱処理を最終的に行った。最終熱処理後は炉冷した。   Next, the Ba-122 superconductor was powdered, packed into a silver tube having an outer diameter of 6 mm and an inner diameter of 4 mm, and processed into a square wire having a cross section of about 2 mm square by the groove roll method. This rectangular wire was subjected to an intermediate heat treatment at 850 ° C. for 2 hours. After this heat treatment, the rectangular wire rod was rolled into a tape shape having a thickness of 0.6 mm to 0.7 mm using a rolling mill, and an intermediate heat treatment was performed again at 850 ° C. for 2 hours. After this heat treatment, the tape-shaped wire was again rolled to a thickness of 0.4 mm to 0.5 mm using a rolling mill, and an intermediate heat treatment was performed at 850 ° C. for 2 hours. After the obtained tape-shaped wire is cut into a length of 35 mm, the tape-shaped wire is uniaxially compressed using a press machine so that the thickness is 60% to 90% of the thickness after the previous heat treatment. A tape-shaped wire having a thickness of about 0.35 mm was produced. The tape-shaped wire thus obtained was finally subjected to heat treatment at 850 ° C. for 10 hours. The furnace was cooled after the final heat treatment.

最終熱処理後のテープ状線材について、4.2K、10Tの条件で臨界電流Iを測定した。磁界は、テープ状線材の長さ方向に垂直かつテープ状線材の面に垂直にかけた。Iは、1μ/cmの電圧基準を用いて決定した。図2(a)は、電圧−電流カーブである。また、図2(a)の図中にテープ状線材の断面写真を示した。Iは122Aであることが確認された。このIをテープ状線材における超伝導部分の断面積で除して臨界電流密度Jを求めた。図2(b)は、異なる厚さの3つのテープ状線材のJをプロットしたものである。また、図2(b)には、比較のために、断面が約2mm角である角状線材と、一軸圧縮をせずに最終熱処理を行った、厚さ0.4mmのテープ状線材のJを併せて示した。 A tape-shaped wire after final heat treatment, were measured critical current I c at 4.2 K, 10T conditions. The magnetic field was applied perpendicular to the length direction of the tape-like wire and perpendicular to the surface of the tape-like wire. I c was determined using a voltage reference of 1 μ / cm. FIG. 2A shows a voltage-current curve. Moreover, the cross-sectional photograph of the tape-shaped wire was shown in the figure of Fig.2 (a). I c it was confirmed that the 122A. The I c was determined the critical current density J c is divided by the cross-sectional area of the superconducting portion of the tape-shaped wire. 2 (b) is a plot of J c of the three tape-shaped wires of different thicknesses. For comparison, FIG. 2 (b) shows a J-shaped wire having a cross section of about 2 mm square and a tape-shaped wire having a thickness of 0.4 mm that has been subjected to final heat treatment without uniaxial compression. c is also shown.

図2(b)から明らかなように、角状線材のJは、〜1000A/cm程度と低い。一方、圧延とそれに次ぐ中間熱処理を繰り返すことによりJは上昇している。Jの上昇は強磁界下で顕著である。また、一軸圧縮によるJの上昇は最も顕著である。一軸圧縮を最終熱処理前に行った3つのテープ状線材は、10Tにおいて10000A/cmを超えている。このことは、高J実現が良好な再現性を持っていることを示している。厚さ0.4mmのテープ状線材では、21000A/cmが得られた。 As apparent from FIG. 2 (b), J c of angular wire rod, ~1000A / cm 2 as low as about. Meanwhile, J c is increased by repeating the rolling and intermediate heat treatment behind it. Increase of J c is remarkable under strong magnetic fields. Further, increase of J c is most pronounced by uniaxial compression. The three tape-shaped wires subjected to uniaxial compression before the final heat treatment exceed 10000 A / cm 2 at 10T. This indicates that the high Jc realization has good reproducibility. With a tape-like wire having a thickness of 0.4 mm, 21000 A / cm 2 was obtained.

次に、4.2Kよりも高温でIの測定を行った。図3は、Jの磁界依存性を示したものである。図3から明らかなように、テープ状線材のJの磁界依存性は20Kまで小さく抑えられ、10TではJは1000A/cmを超える高い値を維持している。この結果は、液体ヘリウムと同様に液体水素などにより冷却された中間温度域においても、テープ状線材のマグネットへの適用が有望であることを示している。 Next, than 4.2K at high temperatures was measured I c. Figure 3 shows the magnetic field dependence of J c. As apparent from FIG. 3, the magnetic field dependence of J c of the tape-shaped wire is kept small to 20K, J c at 10T maintains a high value of more than 1000A / cm 2. This result shows that application of the tape-shaped wire rod to a magnet is promising even in an intermediate temperature range cooled by liquid hydrogen or the like as in liquid helium.

図4(a)(b)は、それぞれ、角状線材とテープ状線材の断面を観察した光学顕微鏡像である。上記のとおり、角状線材は、溝ロール法による加工後、熱処理を行って得られたものであり、また、テープ状線材は、圧延と中間熱処理を繰り返し行い、一軸圧縮を行った後に最終熱処理を行って得られたものである。どちらの光学顕微鏡像も熱処理後のものである。   4A and 4B are optical microscope images obtained by observing the cross sections of the rectangular wire and the tape-shaped wire, respectively. As described above, the rectangular wire is obtained by performing heat treatment after processing by the groove roll method, and the tape-shaped wire is repeatedly subjected to rolling and intermediate heat treatment and subjected to uniaxial compression and then subjected to final heat treatment. It was obtained by performing. Both optical microscope images are after heat treatment.

図4(a)から明らかなように、角状線材の微細組織は、結晶粒の大きさが、数μmから10μmを超える分布の大きな不均一なものとなっている。一方、図4(b)から明らかなように、テープ状線材の微細組織は、結晶粒の大きさが2〜4μmに揃った均一なものとなっている。より微細な組織が、粒界によるより大きなピンニング力をもたらし、磁界中においてより高いJを実現すると考えられる。また、銀管に詰めたBa−122超伝導体は板状結晶であったが、テープ状線材中の超伝導部分の結晶粒はほぼ等軸な形態を有している。図4(c)は、超伝導部分のX線回折パターンを示している。図1(a)との対比から、(00)ピークがあまり高くないことが確認される。また、図4(c)の図中に、超伝導部分の磁化−温度カーブを併せて示した。約35Kでシャープな超伝導転移が確認される。 As is clear from FIG. 4A, the microstructure of the rectangular wire has a large non-uniform distribution with a crystal grain size exceeding several μm to 10 μm. On the other hand, as is clear from FIG. 4B, the microstructure of the tape-shaped wire has a uniform crystal grain size of 2 to 4 μm. Finer tissue, results in a greater pinning force due to the grain boundary, is believed to achieve higher J c in a magnetic field. Moreover, although the Ba-122 superconductor packed in the silver tube was a plate-like crystal, the crystal grains of the superconducting portion in the tape-like wire have a substantially equiaxed form. FIG. 4C shows the X-ray diffraction pattern of the superconducting portion. From the comparison with FIG. 1A, it is confirmed that the (00) peak is not so high. Moreover, in the figure of FIG.4 (c), the magnetization-temperature curve of the superconducting part was shown collectively. A sharp superconducting transition is confirmed at about 35K.

次に、テープ状線材の長さ方向の断面を研磨し、研磨面を観察してクラックの発生状態を確認した。図5(a)(b)は、それぞれ、圧延したテープ状線材の研磨面であり、いずれの研磨面にもシース材である銀の界面から超伝導部分の内部に向かうクラックが確認される。図5(c)は、一軸圧縮を行ったテープ状線材の研磨面である。図5(c)で確認されるように、超伝導部分の内部に、銀の界面に対し垂直方向に向かうクラックは抑制され、その代わりに、テープ状線材の長さ方向に小さなクラックが発生している。このようなクラックの入り方の相違が、Jの大きさの差に反映していると考えられる。すなわち、超伝導部分の内部に向かうクラックが、テープ状線材の長さ方向に沿って流れる電流を阻害し、その結果、Jの低下を招くが、図5(c)に示したテープ状線材の長さ方向に発生するクラックは電流を阻害しない。 Next, the cross-section in the length direction of the tape-shaped wire was polished, and the state of cracks was confirmed by observing the polished surface. FIGS. 5 (a) and 5 (b) are polished surfaces of the rolled tape-shaped wire, and cracks from the silver interface as the sheath material toward the inside of the superconducting portion are confirmed on each polished surface. FIG.5 (c) is the grinding | polishing surface of the tape-shaped wire which performed uniaxial compression. As confirmed in FIG. 5 (c), cracks in the superconducting portion that are perpendicular to the silver interface are suppressed, and instead, small cracks are generated in the length direction of the tape-shaped wire. ing. Differences in how to enter such cracks are considered to reflect the difference in the size of J c. That is, cracks towards the inside of the superconducting portion, and inhibits the current flowing along the length of the tape-shaped wire, as a result, but leads to a decrease in J c, tape-shaped wire shown in FIG. 5 (c) Cracks that occur in the length direction of do not disturb the current.

さらに、線材における超伝導体の充填率を、ビッカース硬さHを測定することにより評価した。すなわち、線材における超伝導体のビッカース硬さの値が高いほど、当該線材における超伝導体の充填率が高いと考えられる。ビッカース硬さは、JIS B 7725に準拠して測定することができる。角状線材とテープ状線材における超伝導体のビッカース硬さは、それぞれ、角状線材については75〜90、テープ状線材については110〜125であった。この結果、テープ状線材における超伝導体の充填率が、角状線材と比較して有意に向上していることがわかる。 Furthermore, the filling rate of the superconductor in the wire was evaluated by measuring the Vickers hardness H v. That is, it is considered that the higher the Vickers hardness value of the superconductor in the wire, the higher the filling factor of the superconductor in the wire. The Vickers hardness can be measured according to JIS B 7725. The Vickers hardness of the superconductor in the rectangular wire and the tape-shaped wire was 75 to 90 for the rectangular wire and 110 to 125 for the tape-shaped wire, respectively. As a result, it can be seen that the filling rate of the superconductor in the tape-shaped wire is significantly improved as compared with the rectangular wire.

(Sr0.6,K0.4)FeAs超伝導体(以下、Sr−122超伝導体と記す)を実施例1と同様に作製し、粉末状にした後、外径6mm、内径4mmの銀管に詰め、溝ロール法により断面が約2mm角である角状線材に加工した。この角状線材に対して850℃で2時間の中間熱処理を行った。この熱処理後、角状線材を圧延機を用いて厚さ0.6mm〜0.7mmのテープ状線材に圧延し、再び850℃で2時間の中間熱処理を行った。この熱処理後、テープ状線材を再び圧延機を用いて厚さ0.4mm〜0.5mmに圧延し、また、850℃で2時間の中間熱処理を行った。得られたテープ状線材を長さ35mmに切断した後、このテープ状線材に対してプレス機を用いて一軸圧縮を行い、厚さをその前の熱処理後の厚さの60%〜90%に減少させ、約0.35mmの厚さのテープ状線材を作製した。こうして得られたテープ状線材に対して850℃で10時間の熱処理を最終的に行った。最終熱処理後は炉冷した。 A (Sr 0.6 , K 0.4 ) Fe 2 As 2 superconductor (hereinafter referred to as Sr-122 superconductor) was prepared in the same manner as in Example 1 and powdered. It was packed into a silver tube having an inner diameter of 4 mm and processed into a square wire having a cross section of about 2 mm square by the groove roll method. This rectangular wire was subjected to an intermediate heat treatment at 850 ° C. for 2 hours. After this heat treatment, the rectangular wire was rolled into a tape-like wire having a thickness of 0.6 mm to 0.7 mm using a rolling mill, and an intermediate heat treatment was again performed at 850 ° C. for 2 hours. After this heat treatment, the tape-shaped wire was again rolled to a thickness of 0.4 mm to 0.5 mm using a rolling mill, and an intermediate heat treatment was performed at 850 ° C. for 2 hours. After the obtained tape-shaped wire is cut into a length of 35 mm, the tape-shaped wire is uniaxially compressed using a press machine so that the thickness is 60% to 90% of the thickness after the previous heat treatment. A tape-shaped wire having a thickness of about 0.35 mm was produced. The tape-shaped wire thus obtained was finally subjected to heat treatment at 850 ° C. for 10 hours. The furnace was cooled after the final heat treatment.

最終熱処理後のテープ状線材について、実施例1と同様に4.2K、10Tの条件でIを測定した。Iは、130Aであった。また、Jは、20K、5Tの条件で2950A/cmであり、20K、10Tの条件で1940A/cmであった。テープ状のBa−122超伝導線材では、20K、5Tの条件で2290A/cm、20K、10Tの条件で1430A/cmであったので、Jのより高いSr−122超伝導線材の製造が可能であることが確認される。なお、テープ状線材における超伝導体のビッカース硬さは実施例1のテープ状線材と同レベルであった。 For the tape-shaped wire after the final heat treatment, I c was measured under the conditions of 4.2 K and 10 T in the same manner as in Example 1. I c was 130A. J c was 2950 A / cm 2 under the conditions of 20K and 5T, and 1940 A / cm 2 under the conditions of 20K and 10T. The tape-like Ba-122 superconducting wire, 20K, conditions 2290A / cm 2, 20K of 5T, so was 1430A / cm 2 under the conditions of 10T, the production of higher Sr-122 superconducting wires of J c Is confirmed to be possible. In addition, the Vickers hardness of the superconductor in the tape-shaped wire was the same level as that of the tape-shaped wire of Example 1.

実施例1で作製したBa−122超伝導体粉末を、外径6mm、内径4mmの銀管に詰め、溝ロール法により断面が約2mm角である角状線材に加工した。この角状線材をさらに線引きにて径1.3mmのワイヤ状線材とした。この1.3mm径のワイヤ状線材を、圧延機を用いて厚さ0.62mmのテープ状に圧延した。このテープ状線材を外径3.2mm、内径1.7mmのステンレス管(SUS316)に挿入して、さらに圧延機を用いて厚さ1.5mmのテープ状に圧延した。このテープ状線材に対して850℃で2時間の中間熱処理を行い、さらに圧延機を用いて0.98mmのテープ状に圧延した。得られたテープ状線材を長さ35mmに切断した後、このテープ状線材に対してプレス機を用いて一軸圧縮を行い、約0.78mmの厚さのテープ状線材を作製した。こうして得られたテープ状線材に対して850℃で10時間の熱処理を最終的に行った。最終熱処理後は炉冷した。   The Ba-122 superconductor powder produced in Example 1 was packed in a silver tube having an outer diameter of 6 mm and an inner diameter of 4 mm, and processed into a square wire having a cross section of about 2 mm square by the groove roll method. This square wire was further drawn into a wire wire having a diameter of 1.3 mm. This 1.3 mm diameter wire-like wire was rolled into a tape shape having a thickness of 0.62 mm using a rolling mill. This tape-shaped wire was inserted into a stainless steel tube (SUS316) having an outer diameter of 3.2 mm and an inner diameter of 1.7 mm, and further rolled into a tape having a thickness of 1.5 mm using a rolling mill. This tape-shaped wire was subjected to an intermediate heat treatment at 850 ° C. for 2 hours, and further rolled into a 0.98 mm tape using a rolling mill. The obtained tape-shaped wire was cut into a length of 35 mm, and then the tape-shaped wire was uniaxially compressed using a press to produce a tape-shaped wire having a thickness of about 0.78 mm. The tape-shaped wire thus obtained was finally subjected to heat treatment at 850 ° C. for 10 hours. The furnace was cooled after the final heat treatment.

熱処理後のテープ状線材について、実施例1と同様に4.2K、10Tの条件でIcを測定した。Icは、58Aであった。また、Jcは、48,000A/cm2の高い値であった。テープ状線材における超伝導体のビッカース硬さは193であった。この値は実施例1の銀被覆テープ状線材よりも高い値であり、二種類の金属管の採用によって超伝導体の充填率が向上したことに起因するものと考えられる。 A tape-shaped wire material after heat treatment, 4.2 K in the same manner as in Example 1, was measured I c under conditions of 10T. I c was 58A. J c was a high value of 48,000 A / cm 2 . The Vickers hardness of the superconductor in the tape-shaped wire was 193. This value is higher than that of the silver-coated tape-like wire of Example 1, and is considered to be due to the improvement in the filling rate of the superconductor by adopting two types of metal tubes.

実施例1で作製したBa−122超伝導体粉末を、外径6mm、内径4mmの銀管に詰め、溝ロール法により断面が約2mm角である角状線材に加工した。この角状線材をさらに線引きにて径1.3mmのワイヤ状線材とし、外径3.2mm、内径1.7mmのステンレス管(SUS316)に挿入し、溝ロール法により断面が約2mm角である角状線材に加工した。この角状線材を圧延機を用いて厚さ1.25mmのテープ状に圧延した。得られたテープ状線材を長さ35mmに切断した後、このテープ状線材に対してプレス機を用いて一軸圧縮を行い、約0.35mmの厚さのテープ状線材を作製した。こうして得られたテープ状線材に対して850℃で10時間の熱処理を行った。熱処理後は炉冷した。   The Ba-122 superconductor powder produced in Example 1 was packed in a silver tube having an outer diameter of 6 mm and an inner diameter of 4 mm, and processed into a square wire having a cross section of about 2 mm square by the groove roll method. This rectangular wire is further drawn into a wire-like wire with a diameter of 1.3 mm, inserted into a stainless steel tube (SUS316) with an outer diameter of 3.2 mm and an inner diameter of 1.7 mm, and the cross section is about 2 mm square by the groove roll method. It was processed into a square wire. The rectangular wire was rolled into a tape shape having a thickness of 1.25 mm using a rolling mill. The obtained tape-shaped wire was cut into a length of 35 mm, and then the tape-shaped wire was uniaxially compressed using a press to produce a tape-shaped wire having a thickness of about 0.35 mm. The tape-shaped wire thus obtained was subjected to heat treatment at 850 ° C. for 10 hours. The furnace was cooled after the heat treatment.

熱処理後のテープ状線材について、実施例1と同様に4.2K、10Tの条件でIcを測定した。Icは、19Aであった。また、Jcは、17,000A/cm2であった。 A tape-shaped wire material after heat treatment, 4.2 K in the same manner as in Example 1, was measured I c under conditions of 10T. I c was 19A. J c was 17,000 A / cm 2 .

実施例4で作製した1.3mm径のワイヤ状線材を、圧延機を用いて厚さ0.62mmのテープ状に圧延した。このテープ状線材を外径3.2mm、内径1.7mmのステンレス管(SUS316)に挿入して、さらに圧延機を用いて厚さ0.98mmのテープ状に圧延した。得られたテープ状線材を長さ35mmに切断した後、このテープ状線材に対してプレス機を用いて一軸圧縮を行い、約0.78mmの厚さのテープ状線材を作製した。こうして得られたテープ状線材に対して850℃で10時間の熱処理を行った。熱処理後は炉冷した。   The wire wire with a diameter of 1.3 mm produced in Example 4 was rolled into a tape shape having a thickness of 0.62 mm using a rolling mill. This tape-shaped wire was inserted into a stainless steel tube (SUS316) having an outer diameter of 3.2 mm and an inner diameter of 1.7 mm, and further rolled into a tape shape having a thickness of 0.98 mm using a rolling mill. The obtained tape-shaped wire was cut into a length of 35 mm, and then the tape-shaped wire was uniaxially compressed using a press to produce a tape-shaped wire having a thickness of about 0.78 mm. The tape-shaped wire thus obtained was subjected to heat treatment at 850 ° C. for 10 hours. The furnace was cooled after the heat treatment.

熱処理後のテープ状線材について、実施例1と同様に4.2K、10Tの条件でIcを測定した。Icは、56.5Aであった。また、Jcは、90,000A/cm2の高い値であった。なお、テープ状線材における超伝導体のビッカース硬さは実施例3と同レベルであった。 A tape-shaped wire material after heat treatment, 4.2 K in the same manner as in Example 1, was measured I c under conditions of 10T. I c was 56.5A. J c was a high value of 90,000 A / cm 2 . The Vickers hardness of the superconductor in the tape-shaped wire was the same level as in Example 3.

Claims (7)

組成が(Ba ,K 1−x )FeAs (0<x<1)で示される超伝導体を銀で被覆した構造を有し、前記超伝導体のビッカース硬さが100〜150であり、4.2K、10Tの条件での臨界電流密度が1.0×10〜2.5×10A/cmであることを特徴とする鉄系超伝導線材。 The composition has a structure in which a superconductor represented by (Ba x , K 1-x ) Fe 2 As 2 (0 <x <1) is coated with silver, and the superconductor has a Vickers hardness of 100 to 150 An iron-based superconducting wire characterized by having a critical current density of 1.0 × 10 4 to 2.5 × 10 4 A / cm 2 under conditions of 4.2K and 10T. 組成が(Sr ,K 1−x )FeAs (0<x<1)で示される超伝導体を銀で被覆した構造を有し、前記超伝導体のビッカース硬さが100〜150であり、20K、5Tの条件での臨界電流密度が2.5×10〜2.0×10A/cmであることを特徴とする鉄系超伝導線材。 The superconductor has a structure in which a superconductor represented by (Sr x , K 1-x ) Fe 2 As 2 (0 <x <1) is coated with silver, and the superconductor has a Vickers hardness of 100 to 150 An iron-based superconducting wire characterized by having a critical current density of 2.5 × 10 3 to 2.0 × 10 4 A / cm 2 under conditions of 20K and 5T. 組成が(Ba ,K 1−x )FeAs (0<x<1)で示される超伝導体を銀で被覆し、さらに銀よりも硬度の高い金属で被覆した構造を有し、前記超伝導体のビッカース硬さが170〜200であり、4.2K、10Tの条件での臨界電流密度が1.5×10〜1.0×10A/cmであることを特徴とする鉄系超伝導線材。 A superconductor having a composition represented by (Ba x , K 1-x ) Fe 2 As 2 (0 <x <1) is coated with silver, and further has a structure coated with a metal having higher hardness than silver; The superconductor has a Vickers hardness of 170 to 200, and a critical current density of 1.5 × 10 4 to 1.0 × 10 5 A / cm 2 under the conditions of 4.2K and 10T. Iron-based superconducting wire. 組成が(Sr ,K 1−x )FeAs (0<x<1)で示される超伝導体を銀で被覆し、さらに銀よりも硬度の高い金属で被覆した構造を有し、前記超伝導体のビッカース硬さが170〜200であり、20K、5Tの条件での臨界電流密度が2.5×10〜2.0×10A/cmであることを特徴とする鉄系超伝導線材。 A superconductor having a composition represented by (Sr x , K 1-x ) Fe 2 As 2 (0 <x <1) is coated with silver, and further has a structure coated with a metal having a higher hardness than silver; The superconductor has a Vickers hardness of 170 to 200, and a critical current density under conditions of 20K and 5T is 2.5 × 10 3 to 2.0 × 10 4 A / cm 2. Iron-based superconducting wire. 請求項1または2に記載の鉄系超伝導線材の製造方法であって、
組成が(Ba,K1−x)FeAs(0<x<1)または(Sr,K1−x)FeAs(0<x<1)で示される鉄系超伝導体の粉末を銀管の中に充填して線材に加工する一次加工を行った後、厚さを30%〜80%に減ずる圧延と700℃〜900℃の温度範囲で1時間〜3時間の中間熱処理とを一ないし複数回行い、次いで、厚さを先の熱処理後の厚さの60%〜90%に減ずる一軸圧縮を行った後、700℃〜900℃の温度範囲で5時間〜15時間の最終熱処理を行うことを特徴とする鉄系超伝導線材の製造方法。
A method for producing an iron-based superconducting wire according to claim 1 or 2,
Iron-based superconductivity whose composition is represented by (Ba x , K 1-x ) Fe 2 As 2 (0 <x <1) or (Sr x , K 1-x ) Fe 2 As 2 (0 <x <1) After performing the primary processing of filling the body powder into a silver tube and processing it into a wire rod, rolling to reduce the thickness to 30% to 80% and the temperature range of 700 ° C to 900 ° C for 1 hour to 3 hours The intermediate heat treatment is performed one or more times, and then the uniaxial compression is performed to reduce the thickness to 60% to 90% of the thickness after the previous heat treatment, and then the temperature is 700 ° C to 900 ° C for 5 hours to 15 A method for producing an iron-based superconducting wire characterized by performing a final heat treatment for a period of time.
前記一次加工によって得た線材を銀よりも硬度の高い金属管の中に挿入して線材に加工する二次加工を行った後、厚さを30%〜80%に減ずる圧延と700℃〜900℃の温度範囲で1時間〜3時間の中間熱処理とを一ないし複数回行い、次いで、厚さを先の熱処理後の厚さの60〜90%に減ずる一軸圧縮を行った後、700℃〜900℃の温度範囲で5時間〜15時間の最終熱処理を行うことを特徴とする請求項に記載の鉄系超伝導線材の製造方法。 After performing the secondary processing of inserting the wire obtained by the primary processing into a metal tube having a hardness higher than silver and processing it into a wire, rolling to reduce the thickness to 30% to 80% and 700 ° C. to 900 ° C. 1 to 3 hours of intermediate heat treatment in the temperature range of 1 ° C to 3 ° C, and then uniaxial compression to reduce the thickness to 60 to 90% of the thickness after the previous heat treatment, followed by 700 ° C to The method for producing an iron-based superconducting wire according to claim 5 , wherein a final heat treatment is performed at a temperature range of 900 ° C for 5 hours to 15 hours. 請求項3または4に記載の鉄系超伝導線材の製造方法であって、
組成が(Ba,K1−x)FeAs(0<x<1)または(Sr,K1−x)FeAs(0<x<1)で示される鉄系超伝導体の粉末を銀管の中に充填して線材に加工する一次加工を行い、次いで、銀よりも硬度の高い金属管の中に挿入して線材に加工する二次加工を行った後、厚さを30%〜80%に減ずる圧延を行い、次いで、厚さを先の圧延後の厚さの20〜90%に減ずる一軸圧縮を行った後、700℃〜900℃の温度範囲で5時間〜15時間の熱処理を行うことを特徴とする鉄系超伝導線材の製造方法。
A method for producing an iron-based superconducting wire according to claim 3 or 4,
Iron-based superconductivity whose composition is represented by (Ba x , K 1-x ) Fe 2 As 2 (0 <x <1) or (Sr x , K 1-x ) Fe 2 As 2 (0 <x <1) After performing the primary processing of filling the body powder into a silver tube and processing it into a wire, and then performing the secondary processing of inserting it into a metal tube with a hardness higher than silver and processing it into a wire, Rolling is performed to reduce the thickness to 30% to 80%, and then uniaxial compression is performed to reduce the thickness to 20 to 90% of the thickness after the previous rolling, and then at a temperature range of 700 ° C. to 900 ° C. for 5 hours. A method for producing an iron-based superconducting wire, characterized by performing a heat treatment for -15 hours.
JP2014099068A 2013-05-14 2014-05-12 Manufacturing method of iron-based superconducting wire Expired - Fee Related JP6398138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099068A JP6398138B2 (en) 2013-05-14 2014-05-12 Manufacturing method of iron-based superconducting wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013102486 2013-05-14
JP2013102486 2013-05-14
JP2014099068A JP6398138B2 (en) 2013-05-14 2014-05-12 Manufacturing method of iron-based superconducting wire

Publications (2)

Publication Number Publication Date
JP2014240521A JP2014240521A (en) 2014-12-25
JP6398138B2 true JP6398138B2 (en) 2018-10-03

Family

ID=52139907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099068A Expired - Fee Related JP6398138B2 (en) 2013-05-14 2014-05-12 Manufacturing method of iron-based superconducting wire

Country Status (1)

Country Link
JP (1) JP6398138B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533895B (en) * 2015-04-01 2020-07-28 佛罗里达州立大学研究基金有限公司 Iron-based superconducting permanent magnet and method for manufacturing same
JP6814007B2 (en) * 2016-09-29 2021-01-13 陽一 神原 Mixed anion compound Iron-based superconducting wire and its manufacturing method
CN109903927A (en) * 2019-01-30 2019-06-18 中国科学院电工研究所 A kind of preparation method of the iron-based superconducting line strips of compound jacket
CN109949999A (en) * 2019-02-01 2019-06-28 中国科学院电工研究所 A kind of iron-based superconducting tape of high-performance and its preparation process
JP7360123B2 (en) * 2019-09-03 2023-10-12 国立研究開発法人産業技術総合研究所 Polycrystalline bulk body and manufacturing method thereof
CN113380459B (en) * 2021-06-21 2022-08-09 中国科学院电工研究所 Preparation method of 11-series iron-based superconducting tape

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199721A (en) * 1989-01-28 1990-08-08 Sumitomo Electric Ind Ltd Manufacture of tape-like superconductive wire rod
JPH03137050A (en) * 1989-10-19 1991-06-11 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Manufacture of oxide superconductor
JPH03257714A (en) * 1990-03-07 1991-11-18 Sumitomo Heavy Ind Ltd Superconductive wire rod
JPH0612929A (en) * 1992-06-25 1994-01-21 Mitsubishi Electric Corp Manufacture of oxide superconductive wire rod
DE4445405A1 (en) * 1994-12-20 1996-06-27 Siemens Ag Process for producing an elongated superconductor with a bismuth phase with a high transition temperature
JPH10134651A (en) * 1996-11-01 1998-05-22 Hitachi Cable Ltd Oxide superconductive composite
CN102943184B (en) * 2012-11-13 2014-08-13 东南大学 Method for preparing Ba0.6K0.4Fe2As2 superconductive wire through mechanical alloying without sintering

Also Published As

Publication number Publication date
JP2014240521A (en) 2014-12-25

Similar Documents

Publication Publication Date Title
JP6398138B2 (en) Manufacturing method of iron-based superconducting wire
Hur et al. Fabrication of high-performance MgB2 wires by an internal Mg diffusion process
US9034124B2 (en) Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP4034802B2 (en) Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire
Kumakura et al. Superconducting Properties of Diffusion-Processed Multifilamentary ${\rm MgB} _ {2} $ Wires
JP4316070B2 (en) High strength oriented polycrystalline metal substrate and oxide superconducting wire
JP2013152784A (en) PRECURSOR OF MgB2 SUPERCONDUCTING WIRE ROD, AND METHOD OF MANUFACTURING THE SAME
KR100691061B1 (en) Substrate for superconducting wire and fabrication method thereof and superconducting wire
JP4456016B2 (en) Metal sheath magnesium diboride superconducting wire and method for manufacturing the same
JP4033375B2 (en) MgB2-based superconductor and manufacturing method thereof
Tsapleva et al. The materials science of modern technical superconducting materials
Zhao et al. Highly reinforced, low magnetic and biaxially textured Ni-7 at.% W/Ni-12 at.% W multi-layer substrates developed for coated conductors
Hishinuma et al. Study of RHQT-processed Nb3Al multifilamentary rectangular tape strand to be applied to a fusion magnet
CN105415795B (en) A kind of preparation method of low no ferromagnetism, strength texture nickel tungsten composite baseband
JP6537131B2 (en) Iron plate and method of manufacturing the same
US20040245506A1 (en) Processing of high density magnesium boride wires and tapes by hot isostatic pressing
JP5069948B2 (en) Nb or Nb-based alloy sheet for producing superconducting wire and precursor for producing superconducting wire
CN114360807B (en) Iron-based superconducting multi-core wire rod and preparation method and application thereof
JPH0917249A (en) Oxide superconducting wire and its manufacture
KR100949015B1 (en) Superconducting thin film wire improved in lattice structure
JP2001357734A (en) Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL AND SUPERCONDUCTIVE MAGNET USING IT
Zhao et al. Sparking plasma sintering method for developing cube textured Ni7W/Ni12W/Ni7W multi-layer substrates used for coated conductors
Lim et al. Development of textured Ni substrates for coated conductor prepared by powder metallurgy and plasma arc melting method
Ji et al. Fabrication and characterization of cube textured Ni substrate for YBCO coated conductors
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180816

R150 Certificate of patent or registration of utility model

Ref document number: 6398138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees