JP2007081128A - Superconductive coil and method of manufacturing same - Google Patents

Superconductive coil and method of manufacturing same Download PDF

Info

Publication number
JP2007081128A
JP2007081128A JP2005266991A JP2005266991A JP2007081128A JP 2007081128 A JP2007081128 A JP 2007081128A JP 2005266991 A JP2005266991 A JP 2005266991A JP 2005266991 A JP2005266991 A JP 2005266991A JP 2007081128 A JP2007081128 A JP 2007081128A
Authority
JP
Japan
Prior art keywords
compound
superconducting
wire
superconducting wire
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005266991A
Other languages
Japanese (ja)
Inventor
Kazutomi Miyoshi
一富 三好
Hidetoshi Oguro
英俊 小黒
Hajime Nishijima
元 西島
Satoshi Awaji
智 淡路
Kazuo Watanabe
和雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005266991A priority Critical patent/JP2007081128A/en
Publication of JP2007081128A publication Critical patent/JP2007081128A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive coil which is constituted by a compound superconductive wire in which an internal distortion is relaxed and can improve superconductive properties such as a distortion resistance property and a critical current value than before, and to provide a method of manufacturing the superconductive coil. <P>SOLUTION: The superconductive coil is formed by winding the compound superconductive wire in which a superconductive formation heat treatment is performed. The compound superconductive wire has a compound superconductor in at least a part of an interior of a cross section thereof, and after a predetermined compound superconductor formation heat treatment is performed, the internal distortion of the compound superconductive wire is relaxed by carrying out both vibrating and bending processes in which a bending distortion is added from both directions, that is, a forward direction and a backward direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、化合物超電導線を用いたリアクト・アンド・ワインド法による超電導コイルおよびその製造方法に関し、特に、励磁電流が大きく、製造コストが安い超電導コイルおよびその製造方法に関する。   The present invention relates to a superconducting coil by a react and wind method using a compound superconducting wire and a manufacturing method thereof, and more particularly to a superconducting coil having a large excitation current and a low manufacturing cost and a manufacturing method thereof.

従来、NbSn超電導等の化合物超電導体を用いた化合物超電導線またはケーブルからなる超電導コイルを製造する方法として、化合物超電導原料を内部に含む線材に化合物超電導体生成のための熱処理である化合物超電導体生成熱処理(以下、リアクト処理と称す)を施して化合物超電導線、またはこの化合物超電導線を撚り合わせてなる超電導ケーブルを用いて巻線して超電導コイルを形成する、いわゆる、リアクト・アンド・ワインド(React and Wind)法と、上述のリアクト処理前の線材、またはリアクト処理前の線材からなるケーブルを巻線してからリアクト処理を施す、所謂ワインド・アンド・リアクト(Wind and React)法とがある。 Conventionally, as a method of manufacturing a superconducting coil composed of a compound superconducting wire or cable using a compound superconductor such as Nb 3 Sn superconducting, compound superconducting, which is a heat treatment for generating a compound superconductor on a wire containing a compound superconducting raw material inside A so-called “react and wind” in which a superconducting coil is formed by winding a compound superconducting wire or a superconducting cable formed by twisting this compound superconducting wire after being subjected to body-forming heat treatment (hereinafter referred to as “react treatment”) (React and Wind) method and the so-called Wind and React method in which a wire made of the wire material before the reacting process or a cable made of the wire material before the reacting process is wound and then subjected to the reacting process. is there.

ワインド・アンド・リアクト法は、化合物超電導線形成後に化合物超電導線に加工を施さないことから、この加工に伴う歪みを回避し、臨界電流等の超電導特性の低下を防止するために取られる製造方法である。ワインド・アンド・リアクト法を用いる場合、巻線加工等の加工に伴う歪みが化合物超電導線材に導入されることを回避するために、予め未反応状態の超電導化合物原料をコイル状に巻き、この状態でリアクト処理を施してNbSnとを反応させることにより、コイル形状のNbSnを生成するものである。 Since the wind-and-react method does not process the compound superconducting wire after the compound superconducting wire is formed, the manufacturing method is taken to avoid distortion associated with this processing and to prevent deterioration of superconducting properties such as critical current. It is. When using the wind-and-react method, in order to avoid introduction of distortion caused by processing such as winding into the compound superconducting wire, the superconducting compound raw material in an unreacted state is wound in a coil shape in advance. in by reacting the Nb 3 Sn is subjected to react processing, and generates an Nb 3 Sn coil shape.

しかし、高磁界加速器用ダイボールマグネット、高磁界大口径マグネット等の大型マグネットの製造には、ワインド・アンド・リアクト法は適用されず、一般にリアクト・アンド・ワインド法を用いる。この理由は、NbSn生成のためのリアクト処理を、600℃以上の所定の温度で真空または不活性ガス雰囲気の炉内で行う必要があるが、上述の大型マグネットには炉の寸法上の制約から、マグネット形成後にリアクト処理を施すことができないからである。 However, the wind-and-react method is not applied to the production of large magnets such as a high-field accelerator die ball magnet and a high-field large-diameter magnet, and the react-and-wind method is generally used. This is because the reacting process for generating Nb 3 Sn needs to be performed in a furnace in a vacuum or an inert gas atmosphere at a predetermined temperature of 600 ° C. or higher. This is because the reacting process cannot be performed after the magnet is formed due to restrictions.

一方、リアクト・アンド・ワインド法により超電導コイルを製造する最大の利点は、コイルを熱処理するための大型熱処理炉を必要とせず、設備費用の節約によるコスト低減できる点にある。これまでにも、リアクト・アンド・ワインド法を用いて、高い特性を有する超電導コイルを得るために、いろいろな試みがなされてきた。例えば、特許文献1および特許文献2には、リアクト・アンド・ワインド法で化合物系の超電導コイルおよびその製造方法が開示されている。
特開2004−063128号公報 特開2001−126554号公報
On the other hand, the greatest advantage of manufacturing a superconducting coil by the react-and-wind method is that a large heat treatment furnace for heat-treating the coil is not required, and the cost can be reduced by saving equipment costs. Until now, various attempts have been made to obtain a superconducting coil having high characteristics by using the react and wind method. For example, Patent Document 1 and Patent Document 2 disclose a compound-based superconducting coil and a method for manufacturing the same based on a react and wind method.
JP 2004-063128 A JP 2001-126554 A

具体的に、特許文献1には、リアクト処理した歪み依存性を示す化合物超電導線に曲げ
歪みを付加した後、該曲げ歪みを除くことにより機械的特性および臨界電流値の応力特性と共に向上させたことが開示されている。
Specifically, in Patent Document 1, after adding bending strain to a compound superconducting wire exhibiting strain dependence subjected to a reaction treatment, the bending strain is removed to improve the mechanical characteristics and the stress characteristics of critical current values. It is disclosed.

また、特許文献2には、化合物超電導相が形成された化合物超電導裸線に、エナメルを被覆した化合物超電導線において、複数回の曲げを該化合物超電導裸線の断面最小幅の50倍以上の曲げ半径で行い、且つ70MPa以下の張力を保持した条件下でエナメル被覆することにより、超電導特性の劣化を顕著に抑制できることが示されている。
このように上述した様々な試みがなされ、その結果、化合物超電導線の歪み応力による臨界電流特性の劣化と耐歪み特性の改善をある程度図ることができた。
Further, Patent Document 2 discloses that a compound superconducting wire in which a compound superconducting phase is formed and a compound superconducting wire coated with enamel is bent a plurality of times at least 50 times the minimum cross-sectional width of the compound superconducting bare wire. It has been shown that degradation of superconducting properties can be remarkably suppressed by enamel coating under the condition of performing at a radius and maintaining a tension of 70 MPa or less.
As described above, various attempts as described above have been made, and as a result, it has been possible to achieve a certain degree of deterioration of critical current characteristics due to strain stress of compound superconducting wires and improvement of strain resistance characteristics.

しかしながら、化合物超電導線は、その超電導体が歪みを受けると超電導特性が劣化してしまうので、上記特許文献2記載のリアクト・アンド・ワインド法による超電導コイル製造をもってしても、撚り線加工や巻線加工に伴う0.4%を超える歪みの付加により、臨界電流などの超電導特性の低下が生じてしまい、結果超電導コイルの諸特性も低下してしまう問題があった。   However, since the superconducting properties of the compound superconducting wire are deteriorated when the superconductor is subjected to strain, even if the superconducting coil is manufactured by the react-and-wind method described in Patent Document 2, the twisted wire processing and winding are performed. Addition of strain exceeding 0.4% due to wire processing causes a decrease in superconducting characteristics such as critical current, resulting in a problem in that various characteristics of the superconducting coil also deteriorate.

本発明は、内部歪みが緩和されている化合物超電導線で構成され、従来よりも耐歪み特性および臨界電流値などの超電導特性の向上が図れる超電導コイルおよびその製造方法を提供することを目的とするものである。   An object of the present invention is to provide a superconducting coil composed of a compound superconducting wire with reduced internal strain and capable of improving the superconducting characteristics such as strain resistance and critical current value, and a method for manufacturing the same. Is.

請求項1記載の本発明は、超電導生成熱処理された化合物超電導線を巻線して形成する超電導コイルであって、前記化合物超電導線が、少なくともその断面内の一部に化合物超電導体を有し、且つ所定の化合物超電導体生成熱処理が施された後、正反両方向から曲げ歪みを加える両振り曲げ加工を施して、前記化合物超電導線の内部歪みを緩和したことを特徴とする超電導コイルである。   The present invention according to claim 1 is a superconducting coil formed by winding a compound superconducting wire that has been heat-treated for superconductivity generation, wherein the compound superconducting wire has a compound superconductor at least partially in its cross section. In addition, the present invention is a superconducting coil characterized in that after a predetermined compound superconductor generation heat treatment is performed, a double bending process is applied to apply bending strain from both the positive and negative directions to relieve internal strain of the compound superconducting wire. .

請求項2記載の本発明は、前記両振り曲げ加工が、正反両方向から1回ずつ曲げ歪みを加える単一両振り曲げ加工を1回以上施すものであり、前記単一両振り曲げ加工において、0.5%〜1.0%の範囲内で正反両方向から曲げ歪みを加えることを特徴とする請求項1記載の超電導コイルである。   The present invention according to claim 2 is characterized in that the double swing bending process is a single double swing bending process in which bending strain is applied once in both the forward and reverse directions. 2. The superconducting coil according to claim 1, wherein bending strain is applied from both the positive and negative directions within a range of 0.5% to 1.0%.

請求項3記載の本発明は、前記単一両振り曲げ加工が、5回〜20回の回数を繰り返されて行われることを特徴とする請求項2記載の超電導コイルである。   According to a third aspect of the present invention, in the superconducting coil according to the second aspect, the single double bending process is repeated 5 to 20 times.

請求項4記載の本発明は、前記化合物超電導体がNbSnまたはNbAlからなることを特徴とする請求項1〜請求項3のいずれか1項に記載の超電導コイルである。 The present invention according to claim 4 is the superconducting coil according to any one of claims 1 to 3, wherein the compound superconductor is made of Nb 3 Sn or Nb 3 Al.

請求項5記載の本発明は、前記化合物超電導線にCuNb、CuAl、CuNbTi及びTaの内のいずれか1種類の導電性材料からなる強化材を備えていることを特徴とする請求項1〜請求項4のいずれか1項に記載の超電導コイルである。 The present invention according to claim 5 is characterized in that the compound superconducting wire is provided with a reinforcing material made of any one of conductive materials of CuNb, CuAl 2 O 3 , CuNbTi and Ta. The superconducting coil according to any one of claims 1 to 4.

請求項6記載の本発明は、前記化合物超電導線材に安定化材を備えていることを特徴とする請求項1〜請求項5のいずれか1項に記載の超電導コイルである。   The present invention according to claim 6 is the superconducting coil according to any one of claims 1 to 5, wherein the compound superconducting wire is provided with a stabilizing material.

請求項7記載の本発明は、前記化合物超電導線を複数本撚り合わせてなる超電導ケーブル、または撚り合わせた後に成形加工を施して形成した超電導ケーブルからなることを特徴とする請求項1〜請求項6のいずれか1項に記載の超電導コイルである。   The present invention according to claim 7 comprises a superconducting cable formed by twisting a plurality of compound superconducting wires, or a superconducting cable formed by twisting and then forming. 6. The superconducting coil according to any one of 6 above.

請求項8記載の本発明は、化合物超電導体生成熱処理した化合物超電導線を巻線して超電導コイルを形成する超電導コイルの製造方法であって、前記化合物超電導線に正反両方向から曲げ歪みを付与する両振り曲げ加工工程を備えていることを特徴とする超電導コイルの製造方法である。   The present invention according to claim 8 is a method of manufacturing a superconducting coil by winding a compound superconducting wire subjected to heat treatment for generating a compound superconductor to form a superconducting coil, wherein the compound superconducting wire is subjected to bending strain from both positive and negative directions. A method of manufacturing a superconducting coil, comprising a double bending process.

請求項9記載の本発明は、化合物超電導体生成熱処理した化合物超電導線を巻線して超電導コイルを形成する超電導コイルの製造方法であって、前記化合物超電導線が正反両方向から曲げ歪みを付与された化合物超電導線であることを特徴とする超電導コイルの製造方法である。   The present invention according to claim 9 is a method of manufacturing a superconducting coil by winding a compound superconducting wire subjected to heat treatment for generating a compound superconductor to form a superconducting coil, wherein the compound superconducting wire imparts bending strain from both forward and reverse directions. A method of manufacturing a superconducting coil, characterized in that the compound superconducting wire is manufactured.

本発明によるリアクト処理した化合物超電導線に正反両方向から曲げ歪みを付与した化合物超電導線からなる超電導コイルおよびその製造方法は、化合物超電導線の内部残留歪みが緩和し、加工硬化を起こしているために、耐応力特性および臨界電流値などの超電導特性に優れた効果を発現する。
更に、本発明による超電導コイルは、リアクトした化合物超電導線を用いて巻線して形成する。即ち、リアクト・アンド・ワインド方式を適用することで、大型な熱処理設備を必要とせず製造コスト低減に繋ぎ、経済効果が高い。なお、これまで熱処理炉の寸法制約で製造不可能な大型コイルが製造可能となり、工業上利用価値が高い。
The superconducting coil composed of a compound superconducting wire in which bending strain is imparted from both the positive and negative directions to the reacting compound superconducting wire according to the present invention, and the manufacturing method thereof, because the internal residual strain of the compound superconducting wire is relaxed and work hardening occurs. In addition, it exhibits excellent effects in superconducting characteristics such as stress resistance characteristics and critical current values.
Furthermore, the superconducting coil according to the present invention is formed by winding using a reacted compound superconducting wire. That is, by applying the react and wind method, a large heat treatment facility is not required, leading to a reduction in manufacturing cost and a high economic effect. In addition, it becomes possible to manufacture a large coil that cannot be manufactured due to dimensional constraints of the heat treatment furnace so far, and the industrial utility value is high.

以下に、本発明による超電導コイルおよびその製造方法について、図面を参照しながら詳細に説明する。
先ず、本発明にかかる超電導コイルに使用される化合物超電導線、又は化合物超電導ケーブルには、図1〜図4で示されるような方法で両振り曲げ加工が施される。この両振り曲げ加工とは、リアクト処理を施した化合物超電導線に、正反両方向から曲げ歪みを付与する加工を1回以上施して前記化合物超電導線の耐歪み特性を向上させる加工方法である。
Hereinafter, a superconducting coil and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings.
First, the compound superconducting wire or the compound superconducting cable used in the superconducting coil according to the present invention is subjected to a double bending process by a method as shown in FIGS. This double-bending is a processing method for improving the strain resistance of the compound superconducting wire by subjecting the compound superconducting wire that has been subjected to the react treatment to at least one bending strain from both the front and back directions.

図1〜図2は、両振り曲げ加工法の実施例を各々示したものである。
1はリアクトされた化合物超電導線、2は曲げ歪みを付与するためのパスライン、2aはパスラインを構成する曲げ歪み付与プーリー、2bは曲げ歪み付与プーリー2aの側面図、3はリアクトされた化合物超電導線が巻かれている巻き出しコイル、4は曲げ歪みを付与された化合物超電導線を巻き取った巻き取りコイル、5は化合物超電導線の送りプーリーである。
巻き出しコイル3から巻き出された化合物超電導線1または化合物超電導ケーブルは、送りプーリー5を通して曲げ歪みを付与するパスライン2に導かれ、所定の曲げ歪量および曲げ回数を受けた後、巻き取りコイル5に巻き取られる。次いで、巻線工程で超電導コイルに巻線される。
1 to 2 show examples of the double bending method.
1 is a reacted compound superconducting wire, 2 is a pass line for imparting bending strain, 2a is a bending strain imparting pulley constituting the pass line, 2b is a side view of the bending strain imparting pulley 2a, and 3 is a reacted compound A winding coil around which a superconducting wire is wound, 4 is a winding coil wound around a compound superconducting wire to which bending strain is applied, and 5 is a feed pulley for the compound superconducting wire.
The compound superconducting wire 1 or the compound superconducting cable unwound from the unwinding coil 3 is guided to a pass line 2 for applying a bending strain through a feed pulley 5 and is wound after receiving a predetermined bending strain amount and the number of bending times. The coil 5 is wound up. Next, it is wound around the superconducting coil in a winding process.

図1に示す両振り曲げ加工法は、化合物超電導線1の走行方向上に、曲げ歪み付与プーリー2aを所定数配置することで、化合物超電導線1は、その走行時に上下両反方向から等しい曲げ歪みが付与されるもので、この時に用いる曲げ歪み付与プーリー2aは、化合物超電導線が走行する単一の溝を有するものが使われる。   In the double swing bending method shown in FIG. 1, a predetermined number of bending strain imparting pulleys 2a are arranged on the traveling direction of the compound superconducting wire 1, so that the compound superconducting wire 1 is bent in the same direction from the top and bottom in the traveling direction. Strain is imparted, and the bending strain imparting pulley 2a used at this time has a single groove in which the compound superconducting wire travels.

図2に示す両振り曲げ加工は、曲げ歪み付与プーリー2aを、その中心軸が化合物超電導線1の走行方向に対して垂直方向になるように配し、所定の曲げ歪み特性が得られるように所定数配置した構成となり、化合物超電導線は、やや斜めの上下両反方向から曲げ歪みが付与されるものである。この時に用いる曲げ歪み付与プーリー2aは、化合物超電導線が走行する複数の溝を有する構造となっている。   In the double swing bending process shown in FIG. 2, the bending strain imparting pulley 2a is arranged so that the central axis thereof is perpendicular to the traveling direction of the compound superconducting wire 1 so that a predetermined bending strain characteristic can be obtained. The compound superconducting wire has a configuration in which a predetermined number is arranged, and bending strain is imparted from the slightly upside down direction. The bending strain imparting pulley 2a used at this time has a structure having a plurality of grooves in which the compound superconducting wire travels.

図3は、両振り曲げ加工法の他方の実施例である。6は化合物超電導線材表面の油脂分を除去する洗浄装置で、7は化合物超電導線材に絶縁層を被覆する絶縁施工装置であって、絶縁層の被覆は、この絶縁施工装置7を複数回通過させることで行うもので、同時に曲げ歪み付加プーリー20で、所定の曲げ歪みを化合物超電導線に付与する構成で、図1および図2のように、曲げ歪の付与に専用のバスラインを用いずに、リアクトされた化合物超電導線に絶縁被覆層を施す工程で、1回以上の両振り曲げを施すことで両振り曲げ加工を行うことができる。   FIG. 3 shows another embodiment of the double bending method. 6 is a cleaning device that removes oil and fat from the surface of the compound superconducting wire, and 7 is an insulating construction device that coats the compound superconducting wire with an insulating layer. The insulating layer is passed through the insulating construction device 7 a plurality of times. At the same time, a configuration in which a predetermined bending strain is applied to the compound superconducting wire by the bending strain adding pulley 20 without using a dedicated bus line for applying the bending strain as shown in FIGS. In the step of applying the insulating coating layer to the reacted compound superconducting wire, the double bending process can be performed by performing the double bending process one or more times.

他の両振り曲げ加工方法としては、図4のように化合物超電導線1を巻線して超電導コイル8を作製する工程の中間部に、曲げ歪み付与プーリー21aからなる曲げ歪みを付与するためのパスライン21を配置し、リアクトされた化合物超電導線1に両振り曲げ加工による曲げ歪みが付与されるようにすることで、曲げ歪みが付与できる。
更に、両振り曲げ加工時に、化合物超電導線に撚りを加えてから、その撚りを戻すようにパスラインを用意することでも良い。
As another swing bending method, as shown in FIG. 4, a bending strain composed of a bending strain imparting pulley 21 a is applied to an intermediate portion of a process of winding the compound superconducting wire 1 to produce the superconducting coil 8. Bending distortion can be imparted by arranging the pass line 21 and imparting bending distortion due to the double bending process to the reacted compound superconducting wire 1.
Furthermore, it is also possible to prepare a pass line so as to return the twist after adding twist to the compound superconducting wire at the time of the double bending process.

上述の両振り曲げ加工の条件として、付与される曲げ歪み量は、0.1から1.0%の間で加えられると臨界電流の向上が大きく、望ましくは0.5から0.8%、特には0.8%前後の曲げ歪みの印加が良く、その付与回数は、1回以上、20回以下が望ましい。   As a condition of the above-described double bending process, when the applied bending strain is applied between 0.1 and 1.0%, the critical current is greatly improved, preferably 0.5 to 0.8%, In particular, it is preferable to apply a bending strain of about 0.8%, and the number of times of application is preferably 1 to 20 times.

次に、図4に示すように、上述の両振り曲げ加工を施した化合物超電導線、または化合物超電導ケーブルを、所定のコイル形状に巻き取ることで優れた超電導特性を有する超電導コイルを得る。   Next, as shown in FIG. 4, a superconducting coil having excellent superconducting characteristics is obtained by winding the compound superconducting wire or the compound superconducting cable subjected to the above-mentioned double bending process into a predetermined coil shape.

化合物超電導線は、ブロンズ法によるCuNb強化型NbSn化合物超電導線(以下、化合物超電導線と略す)を用いた。その仕様を表1に示す。この化合物超電導線は、その断面の一部にCuNbTiやCuAlやTaなどの強化材を配置したものでも良いし、強化材を含まず安定化金属(Cu)のみでも良い。さらに製造プロセスは、ブロンズ法以外のチューブ法や内部拡散法やジェリーロール法やパウダーインチューブ法でも良い。 As the compound superconducting wire, a bronze CuNb reinforced Nb 3 Sn compound superconducting wire (hereinafter abbreviated as compound superconducting wire) was used. The specifications are shown in Table 1. This compound superconducting wire may be one in which a reinforcing material such as CuNbTi, CuAl 2 O 3 or Ta is arranged in a part of its cross section, or may contain only a stabilizing metal (Cu) without including the reinforcing material. Furthermore, the manufacturing process may be a tube method other than the bronze method, an internal diffusion method, a jelly roll method, or a powder-in-tube method.

Figure 2007081128
Figure 2007081128

表1に記した化合物超電導線をステンレス製のボビン(胴径φ440mm、巻幅200mm)にガラステープ(幅5mm、厚さ50μm)と一緒に巻き付けてから、このボビンを真空炉に入れてリアクト処理を施した。その熱処理条件は、670℃×96時間であった。この熱処理条件は、前記以外にも化合物超電導体を生成する条件であれば良い。   The compound superconducting wire described in Table 1 is wound around a stainless steel bobbin (body diameter φ440 mm, winding width 200 mm) together with a glass tape (width 5 mm, thickness 50 μm), and this bobbin is placed in a vacuum furnace to react. Was given. The heat treatment condition was 670 ° C. × 96 hours. The heat treatment conditions may be any conditions other than the above as long as the compound superconductor is generated.

次に前記化合物超電導線をステンレスのボビンから引き出しながら、ガラステープを除いて、さらにポリイミドテープ(幅5mm、厚さ50μm)をハーフラップで巻き付けて絶縁層を形成し、それを胴径φ450mm、幅300mmの供給ドラムに巻き取った。絶縁層は、これ以外にもホルマールやネオマールなどの樹脂を塗布したりしても良い。
この絶縁を施した化合物超電導線の供給ドラムを図4に示すコイル巻線のパスラインにセットした。パスラインには、直径125mmのプーリーを10個配置し、このプーリーに化合物超電導線を通して、曲げ歪みを約0.8%付与した。従って、両振り曲げは5回であった。
この両振り曲げを付与された化合物超電導線をボビンに巻き付けて、エポキシ樹脂を塗り込みながら線材を巻線して超電導コイルを形成した。巻線時の線材張力は31から37MPaであった。この超電導コイルの諸元を表2に示す。
Next, while pulling out the compound superconducting wire from the stainless steel bobbin, the glass tape is removed and a polyimide tape (width 5 mm, thickness 50 μm) is further wound with a half wrap to form an insulating layer having a body diameter φ450 mm, width It was wound up on a 300 mm supply drum. In addition to this, the insulating layer may be coated with a resin such as formal or neomarl.
The insulated drum superconducting wire supply drum was set on the coil winding pass line shown in FIG. Ten pulleys having a diameter of 125 mm were arranged on the pass line, and a bending strain of about 0.8% was applied to the pulley through a compound superconducting wire. Therefore, the double bending was 5 times.
The compound superconducting wire provided with the double bending was wound around a bobbin, and a wire was wound while applying an epoxy resin to form a superconducting coil. The wire tension during winding was 31 to 37 MPa. Table 2 shows the specifications of this superconducting coil.

Figure 2007081128
Figure 2007081128

この超電導コイルの特性を測定するために、超電導コイルを液体ヘリウムの中に浸漬して、外部から10Tの磁界を印加した状態で励磁したところ、コイル巻線部の超電導線の受ける電磁力が圧縮方向になる通電方向で350Aまで通電できた。また電磁力が圧縮方向の反対のフープ方向の通電方向で270Aまで通電することができ、このときのフープ力は330MPaであった。   In order to measure the characteristics of this superconducting coil, the superconducting coil was immersed in liquid helium and excited with a 10T magnetic field applied from the outside, and the electromagnetic force received by the superconducting wire in the coil winding was compressed. It was possible to energize up to 350A in the energizing direction. Further, the electromagnetic force can be energized up to 270 A in the energizing direction in the hoop direction opposite to the compression direction, and the hoop force at this time was 330 MPa.

このように事前曲げ歪みの効果により圧縮方向の励磁で通電可能な電流値が大幅に上昇した。また、フープ方向でもこれまでのCuNb強化型NbSn化合物超電導線の使用範囲の限界は200〜300MPaであったものが、事前曲げ歪みを付与した超電導線による超電導コイルでは330MPaまで向上させることができた。 Thus, the current value that can be energized by excitation in the compression direction has increased significantly due to the effect of the pre-bending strain. Further, the limit of the use range of the CuNb-reinforced Nb 3 Sn compound superconducting wire so far is 200 to 300 MPa even in the hoop direction, but the superconducting coil using the superconducting wire to which pre-bending strain is applied can be improved to 330 MPa. did it.

化合物超電導線への事前曲げ歪み付与方法の一つの態様を説明する工程図である。It is process drawing explaining one aspect of the prior bending distortion provision method to a compound superconducting wire. 化合物超電導線への事前曲げ歪み付与方法の他の態様を説明する工程図である。It is process drawing explaining the other aspect of the pre-bending distortion provision method to a compound superconducting wire. 絶縁層被覆工程における事前曲げ歪み付与方法を説明する工程図である。It is process drawing explaining the prior bending distortion provision method in an insulating layer coating process. 超電導コイル巻線の工程図である。It is process drawing of a superconducting coil winding.

符号の説明Explanation of symbols

1 リアクトされた化合物超電導線
2 曲げ歪み付与するためのパスライン
2a 曲げ歪み付与プーリー
2b 曲げ歪み付与プーリーの側面
3 巻き出しコイル
4 巻き取りコイル
5 送りプーリー
6 洗浄装置
7 絶縁施工装置
8 超電導コイル
20 曲げ歪み付与プーリー
21 曲げ歪み付与するためのパスライン
21a 曲げ歪み付与プーリー
DESCRIPTION OF SYMBOLS 1 Reacted compound superconducting wire 2 Pass line for imparting bending strain 2a Bending strain imparting pulley 2b Side surface of bending strain imparting pulley 3 Unwinding coil 4 Winding coil 5 Feeding pulley 6 Cleaning device 7 Insulating construction device 8 Superconducting coil 20 Bending strain imparting pulley 21 Pass line for imparting bending strain 21a Bending strain imparting pulley

Claims (9)

超電導生成熱処理された化合物超電導線を巻線して形成する超電導コイルであって、前記化合物超電導線が、少なくともその断面内の一部に化合物超電導体を有し、且つ所定の化合物超電導体生成熱処理が施された後、正反両方向から曲げ歪みを加える両振り曲げ加工を施して、前記化合物超電導線の内部歪みを緩和したことを特徴とする超電導コイル。 A superconducting coil formed by winding a superconducting heat-treated compound superconducting wire, wherein the compound superconducting wire has a compound superconductor at least in a part of its cross section, and a predetermined compound superconductor generating heat treatment A superconducting coil is characterized in that, after being applied, a double bending process is applied to apply bending strain from both the positive and negative directions to relieve internal strain of the compound superconducting wire. 前記両振り曲げ加工が、正反両方向から1回ずつ曲げ歪みを加える単一両振り曲げ加工を1回以上施すものであり、前記単一両振り曲げ加工において、0.5%〜1.0%の範囲内で正反両方向から曲げ歪みを加えることを特徴とする請求項1記載の超電導コイル。 In the single swing bending process, the double swing bending process is a single double swing bending process in which bending strain is applied at least once in both the forward and reverse directions. The superconducting coil according to claim 1, wherein bending strain is applied from both the positive and negative directions within a range of%. 前記単一両振り曲げ加工が、5回〜20回の回数を繰り返されて行われることを特徴とする請求項2記載の超電導コイル。 The superconducting coil according to claim 2, wherein the single swing bending process is repeated 5 to 20 times. 前記化合物超電導体がNbSnまたはNbAlからなることを特徴とする請求項1〜請求項3のいずれか1項に記載の超電導コイル。 The superconducting coil according to claim 1, wherein the compound superconductor is made of Nb 3 Sn or Nb 3 Al. 前記化合物超電導線にCuNb、CuAl、CuNbTi及びTaの内のいずれか1種類の導電性材料からなる強化材を備えていることを特徴とする請求項1〜請求項4のいずれか1項に記載の超電導コイル。 The compound superconducting wire is provided with a reinforcing material made of any one of conductive materials of CuNb, CuAl 2 O 3 , CuNbTi, and Ta. The superconducting coil according to item. 前記化合物超電導線材に安定化材を備えていることを特徴とする請求項1〜請求項5のいずれか1項に記載の超電導コイル。 The superconducting coil according to any one of claims 1 to 5, wherein the compound superconducting wire is provided with a stabilizing material. 前記化合物超電導線を複数本撚り合わせてなる超電導ケーブル、または撚り合わせた後に成形加工を施して形成した超電導ケーブルからなることを特徴とする請求項1〜請求項6のいずれか1項に記載の超電導コイル。 The superconducting cable formed by twisting a plurality of the compound superconducting wires, or a superconducting cable formed by twisting and then forming the superconducting cable according to any one of claims 1 to 6. Superconducting coil. 化合物超電導体生成熱処理した化合物超電導線を巻線して超電導コイルを形成する超電導コイルの製造方法であって、前記化合物超電導線に正反両方向から曲げ歪みを付与する両振り曲げ加工工程を備えていることを特徴とする超電導コイルの製造方法。 A superconducting coil manufacturing method for forming a superconducting coil by winding a compound superconducting wire that has been heat-treated to form a compound superconductor, comprising a double bending process for imparting bending strain to the compound superconducting wire from both directions A method of manufacturing a superconducting coil, comprising: 化合物超電導体生成熱処理した化合物超電導線を巻線して超電導コイルを形成する超電導コイルの製造方法であって、前記化合物超電導線が正反両方向から曲げ歪みを付与された化合物超電導線であることを特徴とする超電導コイルの製造方法。
A method for producing a superconducting coil by winding a compound superconducting wire that has been heat-treated to form a compound superconducting coil, wherein the compound superconducting wire is a compound superconducting wire to which bending strain is imparted from both the positive and negative directions. A method of manufacturing a superconducting coil, which is characterized.
JP2005266991A 2005-09-14 2005-09-14 Superconductive coil and method of manufacturing same Pending JP2007081128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266991A JP2007081128A (en) 2005-09-14 2005-09-14 Superconductive coil and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266991A JP2007081128A (en) 2005-09-14 2005-09-14 Superconductive coil and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2007081128A true JP2007081128A (en) 2007-03-29

Family

ID=37941104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266991A Pending JP2007081128A (en) 2005-09-14 2005-09-14 Superconductive coil and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2007081128A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004242A (en) * 2011-06-14 2013-01-07 Furukawa Electric Co Ltd:The Method of manufacturing compound superconductive twisted wire
WO2013154187A1 (en) * 2012-04-12 2013-10-17 古河電気工業株式会社 Compound superconductive wire and method for manufacturing same
KR20160122219A (en) * 2014-03-12 2016-10-21 루바타 워터버리, 아이엔씨. Methods and systems for preparing superconductors for reaction and integration
WO2020066907A1 (en) 2018-09-28 2020-04-02 古河電気工業株式会社 Insulation coating compound superconducting wire and rewinding method thereof
US12020830B2 (en) 2018-09-28 2024-06-25 Furukawa Electric Co., Ltd. Insulation-coated compound superconducting wire and rewinding method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004242A (en) * 2011-06-14 2013-01-07 Furukawa Electric Co Ltd:The Method of manufacturing compound superconductive twisted wire
WO2013154187A1 (en) * 2012-04-12 2013-10-17 古河電気工業株式会社 Compound superconductive wire and method for manufacturing same
US9711262B2 (en) 2012-04-12 2017-07-18 Tohoku Techno Arch Co., Ltd. Compound superconducting wire and method for manufacturing the same
KR20160122219A (en) * 2014-03-12 2016-10-21 루바타 워터버리, 아이엔씨. Methods and systems for preparing superconductors for reaction and integration
JP2017517899A (en) * 2014-03-12 2017-06-29 ルヴァータ ウォーターベリー インコーポレイテッドLuvata Waterbury, Inc Method and system for manufacturing superconductors for reaction and integration
US9941033B2 (en) 2014-03-12 2018-04-10 Luvata Waterbury, Inc. Methods and systems for preparing superconductors for reaction and integration
KR102018419B1 (en) * 2014-03-12 2019-09-04 루바타 워터버리, 아이엔씨. Methods and systems for preparing superconductors for reaction and integration
WO2020066907A1 (en) 2018-09-28 2020-04-02 古河電気工業株式会社 Insulation coating compound superconducting wire and rewinding method thereof
EP3859755A4 (en) * 2018-09-28 2022-06-29 Furukawa Electric Co., Ltd. Insulation coating compound superconducting wire and rewinding method thereof
US12020830B2 (en) 2018-09-28 2024-06-25 Furukawa Electric Co., Ltd. Insulation-coated compound superconducting wire and rewinding method thereof

Similar Documents

Publication Publication Date Title
JP4791309B2 (en) Nb3Sn superconducting wire and precursor therefor
JP6182577B2 (en) Method for producing compound superconducting wire and method for producing compound superconducting cable
JP2009211880A (en) Nb3Sn SUPERCONDUCTING WIRE ROD MADE BY USING INTERNAL Sn METHOD, AND PRECURSOR THEREFOR
JP4227143B2 (en) Nb3Sn superconducting wire and precursor therefor
JP2007081128A (en) Superconductive coil and method of manufacturing same
JP2014137917A (en) Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF
JP4934497B2 (en) Nb3Sn superconducting wire, precursor therefor, and method for producing the precursor
JP2008300337A (en) Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME
JP2011159455A (en) Thin-film superconducting wire rod and method for manufacturing the same
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
JP2013197072A (en) Mgb2 superconducting multi-core wire material, superconducting cable, superconducting magnet
JP7335886B2 (en) Insulation coating compound superconducting wire and its rewinding method
JP2014072039A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP4532369B2 (en) Compound superconducting wire and compound superconducting cable manufacturing method
JP2010097902A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTIVE WIRE, AND Nb3Sn SUPERCONDUCTIVE WIRE
JP5718171B2 (en) Method for producing compound superconducting stranded wire
US9349936B2 (en) Reinforced high temperature superconducting silver wire
WO2008065781A1 (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconducting magnet
JP2023041520A (en) MgB2 SUPERCONDUCTIVE WIRE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2003158010A (en) Terminal structure for superconducting coil
JP2004063128A (en) Compound-based superconductive wire showing strain dependency and superconductive magnet using it
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
JP4476755B2 (en) Method for producing Nb3Sn superconducting wire and composite wire therefor
JP2007042455A (en) MANUFACTURING METHOD FOR Nb3Al SUPERCONDUCTIVE WIRE ROD, PRIMARY COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD, AND MULTICORE COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD
WO2023013726A1 (en) Precursor wire for compound superconducting wire, compound superconducting wire, and rewinding method for compound superconducting wire

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100218