JPH05804B2 - - Google Patents

Info

Publication number
JPH05804B2
JPH05804B2 JP59054993A JP5499384A JPH05804B2 JP H05804 B2 JPH05804 B2 JP H05804B2 JP 59054993 A JP59054993 A JP 59054993A JP 5499384 A JP5499384 A JP 5499384A JP H05804 B2 JPH05804 B2 JP H05804B2
Authority
JP
Japan
Prior art keywords
reinforcing
superconducting
wire
copper
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59054993A
Other languages
Japanese (ja)
Other versions
JPS60198009A (en
Inventor
Yasuzo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP59054993A priority Critical patent/JPS60198009A/en
Publication of JPS60198009A publication Critical patent/JPS60198009A/en
Publication of JPH05804B2 publication Critical patent/JPH05804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化合物超電導導体に関し、特に素線補
強構造を改良した化合物超電導導体に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compound superconducting conductor, and particularly to a compound superconducting conductor having an improved wire reinforcement structure.

[従来の技術] 従来の補強型超電導導体としては、以下に説明
する6種の構造のものが提案されている。第1の
超電導導体は、第1図aに示すように補強体1の
周囲に複数の超電導素線2を撚線した構造であ
る。第2の超電導導体は、第1図bに示すように
複数の超電導素線2が予め撚線化された2次素線
3を補強体1の周囲に複数撚線した構造である。
第3の超電導導体は、第1図cに示すように複数
の補強素線1′及び複数の超電導素線2を撚線化
し、更にそれらをテープ状補強体1によつて巻い
た構造である。第4の超電導導体は、第1図dに
示すように複数の超電導素線2を撚線し、これら
を内面に溝4を有する補強体1のケース内部に収
納してハンダ50などで固めた構造である。第5
の超電導導体は、第1図eに示すように、前記第
2の導体と同様に複数の超電導素線が予め撚線化
された2次素線3を補強体1″の周囲に複数撚線
した後、これらを一辺が開放されたコの字型補強
体1内に収納した構造である。第6の補強型超電
導導体は、第1図fに示すように、複数の超電導
素線が予め撚線化された2次素線3を形成し、複
数の前記2次素線3を側面に冷却孔5を有する管
状の補強体1内に収納した構造である。
[Prior Art] As conventional reinforced superconducting conductors, six types of structures described below have been proposed. The first superconducting conductor has a structure in which a plurality of superconducting strands 2 are twisted around a reinforcing body 1, as shown in FIG. 1a. The second superconducting conductor has a structure in which a plurality of secondary strands 3 in which a plurality of superconducting strands 2 are twisted in advance are stranded around a reinforcing body 1, as shown in FIG. 1b.
The third superconducting conductor has a structure in which a plurality of reinforcing strands 1' and a plurality of superconducting strands 2 are stranded and then wrapped around a tape-shaped reinforcing body 1, as shown in FIG. 1c. . The fourth superconducting conductor is made by twisting a plurality of superconducting strands 2 as shown in FIG. It is a structure. Fifth
As shown in FIG. 1e, the superconducting conductor is composed of a plurality of secondary strands 3 in which a plurality of superconducting strands are twisted in advance, similar to the second conductor, around a reinforcing body 1''. After that, these are housed in a U-shaped reinforcing body 1 with one side open.As shown in FIG. It has a structure in which twisted secondary strands 3 are formed and a plurality of the secondary strands 3 are housed in a tubular reinforcing body 1 having cooling holes 5 on the side surface.

これらの構造を化合物超電導導体に適用する場
合、次のような問題がある。
When applying these structures to compound superconducting conductors, there are the following problems.

a 前記第1,2の素線集合型化合物超電導導体
では、超電導線2又は2次素線3が最外層に位
置するため絶縁処理工程や巻線工程などで外部
応力や歪みを受けてしまうという問題がある。
a In the first and second wire assembly type compound superconducting conductors, the superconducting wire 2 or the secondary wire 3 is located in the outermost layer, so it is subject to external stress and strain during the insulation treatment process, winding process, etc. There's a problem.

b 前記第3の素線集合型化合物超電導導体で
は、線材外部に不連続に補強体1が配置されて
長手方向に凹凸があるため、巻線工程において
コイルの隣接ターン間でこの凹凸が無秩序に当
接し、その部分に不規則なギヤツプが生じて応
力が集中し、その結果、電流特性が劣化すると
いう問題がある。
b In the third wire assembly type compound superconducting conductor, the reinforcing bodies 1 are arranged discontinuously on the outside of the wire and there are irregularities in the longitudinal direction, so that the irregularities become disordered between adjacent turns of the coil during the winding process. There is a problem in that when the two contacts contact each other, an irregular gap is generated in that part, stress is concentrated, and as a result, the current characteristics are deteriorated.

c 前記第4〜6の素線集合型化合物超電導導体
では、外部からの応力や歪みに対する保護機能
を有するが、補強体が切削、型押出しなどの機
械加工により製作されるため厚肉であり、計量
化することができず過剰の占績率となつて導体
全体としての電流密度がそれだけ低下する。ま
た、補強体が厚肉であるため巻線工程での可撓
性が悪い。更に機械加工で冷却孔を補強体に多
数密に設けるには限界があり、巻線後のコイル
は隣接導体の冷却孔同士が会合する確率が少な
いため冷媒の液体HeやHeガスの通路が隣接導
体を連通せず冷却効率か悪いという問題があ
る。
c The fourth to sixth wire assembly type compound superconducting conductors have a protective function against external stress and distortion, but are thick because the reinforcing bodies are manufactured by machining such as cutting and die extrusion; This cannot be quantified, resulting in an excessive occupancy rate, and the current density of the conductor as a whole decreases accordingly. Further, since the reinforcing body is thick, flexibility during the winding process is poor. Furthermore, there is a limit to how many cooling holes can be densely provided in the reinforcing body through machining, and after winding the coil, there is a low probability that the cooling holes of adjacent conductors will meet each other, so the passages for the refrigerant liquid He or He gas are adjacent to each other. There is a problem that the conductors are not connected and the cooling efficiency is poor.

ところで、化合物超電導導体は、本来、臨界温
度、臨界磁場、臨界電流密度などの超電導特性が
優れている。このため、高磁界用巻線として有望
である。しかしながら、化合物超電導導体は、合
金超電導導体と異なり、歪みを受けると超電導特
性が著しく劣化するという歪敏感性があつて、通
常0.2〜0.6%以上の歪み領域では使用に耐えな
い。一方、化合物超電導導体を使用する側からの
要請として、小さい曲率半径に曲げうること、大
電流容量を有すること、長尺連続大導体であるこ
と、コイル中での補強効果が均一に構成されてい
ることが挙げられる。
Incidentally, compound superconducting conductors inherently have excellent superconducting properties such as critical temperature, critical magnetic field, and critical current density. Therefore, it is promising as a winding for high magnetic fields. However, unlike alloy superconducting conductors, compound superconducting conductors are strain-sensitive in that their superconducting properties are significantly degraded when subjected to strain, and they are usually unusable in a strain range of 0.2 to 0.6% or more. On the other hand, the requirements of the users of compound superconducting conductors are that they must be able to be bent to a small radius of curvature, have a large current capacity, be a long continuous large conductor, and have a uniform reinforcement effect in the coil. One example is that there are

これらの要請しに応えるものとして素線集合型
化合物超電導導体が注目されている。素線集合型
化合物超電導導体の代表的な形態は、撚線、編組
線、転位線及びこれらを圧縮成形したものであ
る。
Fiber aggregate type compound superconducting conductors are attracting attention as a material that meets these demands. Typical forms of wire assembly type compound superconducting conductors are twisted wires, braided wires, dislocation wires, and compression molded products of these wires.

しかしながら、前記素線集合型化合物超電導導
体には本質的な欠点として、小さな張力で容易
に長手方向に伸びかつ径方向に収縮するため導体
サイズが巻線時等で変化すること、素線間に間
隙が多いので素線の充填率が低いこと、及び導
体を補強体などで所定間隔に締め付けるなどのよ
うに素線が局部的に拘束されるとコイルにした場
合、コイルに発生する強大な電磁力によつて非締
め付部の素線に応力や歪みが集中し、その結果、
超電導特定が著しく低下することが挙げられる。
However, the essential drawbacks of the wire assembly type compound superconducting conductor are that the conductor size changes during winding because it easily stretches in the longitudinal direction and contracts in the radial direction under small tension, and that the conductor size changes during winding. There are many gaps, so the filling rate of the strands is low, and if the strands are locally restrained, such as by tightening the conductor at specified intervals with reinforcements, etc., the strong electromagnetic force generated in the coil will occur. Due to the force, stress and strain are concentrated on the strands of the untightened part, and as a result,
One example of this is that superconductivity characteristics are significantly reduced.

従つて、集合型化合物超電導導体の補強構造
は、上述した本質的な欠点を克服し、付随的に発
生する可撓性、冷却効率及び電流密度の低下を最
小限にする必要がある。
Therefore, there is a need for a reinforced structure for aggregated compound superconducting conductors that overcomes the above-mentioned essential drawbacks and minimizes the concomitant reductions in flexibility, cooling efficiency, and current density.

本発明は、従来の問題点を解決するためになさ
れたもので、機械的強度、可撓性、冷却効率、及
び導体電流密度に優れた化合物超電導導体を提供
しようとするものである。
The present invention was made in order to solve the conventional problems, and aims to provide a compound superconducting conductor having excellent mechanical strength, flexibility, cooling efficiency, and conductor current density.

[課題を解決するための手段] 本発明は、表面に銅に有する超電導素線と補強
用素線とを組合わせてなる素線集合型化合物超電
導導体において、前記補強用素線として、補強芯
材としてのTiNb合金を銅又は銅合金により被覆
した後、500〜800℃の温度範囲で1〜20日間熱処
理し、前記TiNb合金と銅又は銅合金との界面に
Cu−Ti金属間化合物を生成しせしめた、4.2Kに
おけるヤング率が15×103Kg/mm2以上である補強
用素線を用いることを特徴とする化合物超電導導
体である。
[Means for Solving the Problems] The present invention provides a wire assembly type compound superconducting conductor formed by combining a superconducting wire having copper on the surface and a reinforcing wire, in which the reinforcing wire is a reinforcing core. After covering the TiNb alloy as a material with copper or a copper alloy, it is heat-treated in a temperature range of 500 to 800°C for 1 to 20 days, so that the interface between the TiNb alloy and the copper or copper alloy is coated.
This is a compound superconducting conductor characterized by using a reinforcing strand in which a Cu-Ti intermetallic compound is formed and whose Young's modulus at 4.2K is 15×10 3 Kg/mm 2 or more.

本発明において超電導素線と補強用素線との組
合わせについては特に限定されないが、例えば第
2図に示すように化合物超電導フイラメントを多
数本内蔵した10本の超電導素線2と、予め銅被覆
層6を設けた4本の補強用素線7とを成形撚線し
したものでもよく、また第3図に示すように複数
本の超電導素線2の集合体の内部及び外部に補強
用素線7及び補強用素線7′をそれぞれ集合形態
で配置して成形撚線したものでもよい。
In the present invention, the combination of superconducting strands and reinforcing strands is not particularly limited, but for example, as shown in FIG. It may be formed by forming and twisting four reinforcing wires 7 provided with a layer 6, or as shown in FIG. The wires 7 and the reinforcing wires 7' may be arranged in a collective form and formed into twisted wires.

前記補強用素線は、第2図に示すように補強芯
材1が単一芯であるもののほか、銅又は銅合金か
らなる基材内に補強芯材が多芯状に埋め込まれた
ものでもよい。
The reinforcing wire may have a single reinforcing core material 1 as shown in FIG. 2, or may have a multi-core reinforcing core material embedded in a base material made of copper or copper alloy. good.

前記補強芯材の材質としては非磁性のチタンニ
オブ合金が使用される。この補強芯材の外側には
銅又は銅合金が被覆される。
A non-magnetic titanium niobium alloy is used as the material for the reinforcing core material. The outside of this reinforcing core material is coated with copper or copper alloy.

また、本発明に係る化合物超電導導体の形態と
しては、特に限定されるものではなく、多芯化合
物超電導素線の複数本からなる撚線、編組線、転
位線もしくはこれらの圧縮形態線、又はこれらの
線を1次素線もしくは2次素線として上記と同様
に撚線、編組線、転位線もしくはこれらの圧縮形
態線などにしたものでもよい。
Further, the form of the compound superconducting conductor according to the present invention is not particularly limited, and may be a stranded wire, a braided wire, a dislocation wire, or a compressed form line thereof consisting of a plurality of multicore compound superconducting strands, or a compressed form line thereof. The wires may be used as primary strands or secondary strands, and may be made into twisted wires, braided wires, dislocation wires, or compressed wires thereof in the same manner as described above.

[作用] 前記補強用素線として補強芯材を銅又は銅合金
により被覆したものを用いた理由は、次のような
効果を発揮させるためである。
[Function] The reason for using a reinforcing core material coated with copper or copper alloy as the reinforcing wire is to achieve the following effects.

(1) 補強用素線の表面が超電導素線の表面と同様
な銅又は銅合金からなるため成形撚線加工に際
し、素線の変形が均一になる。
(1) Since the surface of the reinforcing wire is made of copper or copper alloy, which is the same as the surface of the superconducting wire, deformation of the wire becomes uniform during shaping and stranding.

(2) 熱処理による拡散時に補強芯材からの異種原
子しが超電導素線の表面の銅を汚染しないため
残留抵抗値が高く、クエンチによつてもコイル
が焼損することがない。
(2) Since foreign atoms from the reinforcing core material do not contaminate the copper on the surface of the superconducting wire during diffusion during heat treatment, the residual resistance value is high, and the coil will not burn out even during quenching.

(3) 補強用素線の表面が銅又は銅合金よりなるた
め液体ヘリウム等の冷媒中で使用する場合の熱
伝達性が改善される。
(3) Since the surface of the reinforcing wire is made of copper or copper alloy, heat transfer performance is improved when used in a coolant such as liquid helium.

(4) 補強用素線の表面が銅又は銅合金よりなるた
め半田付け或いは端部ジヨイントを行う場合、
超電導素線と同様の接続特性及び作業性を有す
る。
(4) When soldering or end jointing is performed because the surface of the reinforcing wire is made of copper or copper alloy,
It has the same connection characteristics and workability as superconducting strands.

また、前記補強用素線はヤング率が4.2Kにお
いて15×103Kg/mm2以上であることが必要である。
この理由は、化合物成形撚線を用いて10T程度の
強磁場を発生し得る超電導マグネツトにおいては
200MPa(20.4Kg/mm2)程度の電磁圧力に耐える構
造のものが要求される。しかも化合物超電導体に
0.5%以上の歪を与えることなく導体電流密度を
最大にするためである。
Further, the reinforcing wire needs to have a Young's modulus of 15×10 3 Kg/mm 2 or more at 4.2K.
The reason for this is that in superconducting magnets that can generate a strong magnetic field of about 10 T using compound-molded stranded wires,
A structure that can withstand electromagnetic pressure of approximately 200 MPa (20.4 Kg/mm 2 ) is required. Moreover, it is a compound superconductor.
This is to maximize the conductor current density without giving a strain of 0.5% or more.

更に、前記補強用素線は500〜800℃の温度範囲
で1〜20日間熱処理したものであることが必要で
ある。この理由は集合導体において超電導素線と
補強用素線とを機械的に成形し易くすると共に、
通常のWind and React法によるコイル設計では
かかる熱処理を行つている。この熱処理を施すこ
とにより補強芯材としてのTiNb合金とこの芯材
を被覆する銅又は銅合金との間に金属間化合物を
形成してヤング率を向上させることができる。例
えばCuとチタン合金との複合基材に500℃で6日
間熱処理を施すことにより厚さ約15μmのCu−Ti
化合物が形成される。
Furthermore, it is necessary that the reinforcing wire be heat-treated in a temperature range of 500 to 800°C for 1 to 20 days. The reason for this is that it makes it easier to mechanically form the superconducting strands and reinforcing strands in the collective conductor, and
Such heat treatment is performed in coil design using the normal Wind and React method. By performing this heat treatment, it is possible to form an intermetallic compound between the TiNb alloy serving as the reinforcing core material and the copper or copper alloy covering this core material, thereby improving Young's modulus. For example, by heat-treating a composite base material of Cu and titanium alloy at 500℃ for 6 days, a Cu-Ti alloy with a thickness of approximately 15 μm is produced.
A compound is formed.

このように補強用素線として補強芯材を銅又は
銅合金により被覆したものを用いることにより、
機械的強度が改善されると共に、超電導素線及び
補強用素線の加工性を向上させて成形撚線加工時
における超電導素線の異常変形を防止できるため
電流密度等の超電導特性が改善され、更に可撓
性、巻線性、冷却効率、及び半田付け性が改善さ
れた化合物超電導導体を得ることができる。更に
前記補強芯材と銅又は銅合金被覆層との界面に熱
処理により金属間化合物を形成せしめて、補強用
素線のヤング率を高めるとにより、必要最小限の
補強用素線によつて導体やコイルの補強効果を向
上させ、コイル全体の電流密度をより大幅に改善
できる。
In this way, by using a reinforcing core material coated with copper or copper alloy as a reinforcing wire,
In addition to improving the mechanical strength, the processability of the superconducting strands and reinforcing strands can be improved to prevent abnormal deformation of the superconducting strands during forming and stranding processing, thereby improving superconducting properties such as current density. Furthermore, a compound superconducting conductor with improved flexibility, windability, cooling efficiency, and solderability can be obtained. Furthermore, an intermetallic compound is formed at the interface between the reinforcing core material and the copper or copper alloy coating layer by heat treatment to increase the Young's modulus of the reinforcing wire, thereby making it possible to form a conductor using the minimum necessary reinforcing wire. This improves the reinforcing effect of the coil and the current density of the entire coil.

[実施例] 以下、本発明の実施例について詳細に説明す
る。
[Examples] Examples of the present invention will be described in detail below.

実施例 1 Cu−Suブロンズマトリツクス中に505本のNb
コアを埋め込み、その外側に拡散障壁層として
Ta管を被覆し、更にその外側に安定化材として
高純度銅管を被覆したものに減面加工を施して安
定化銅の占有率50%の外径0.37mmの複合素線を得
た。
Example 1 505 Nb in Cu-Su bronze matrix
Embed the core and use the outside as a diffusion barrier layer
A Ta tube was coated, and a high-purity copper tube was coated on the outside as a stabilizing material, and the surface was reduced to obtain a composite wire with an outer diameter of 0.37 mm and a stabilized copper occupancy of 50%.

先ず、第1の補強用素線として径50μmのTiCu
合金フイラメントの複数本を外径0.37mmの銅線中
に埋め込んだものを用意した。なお、この補強用
素線のCu/TiCu合金の断面積比率は1.1/1.0で
ある。また、第2の補強用素線として径50μmの
TiNb合金フイラメントの複数本を外径1.1mmの銅
線中に埋め込んだものを用意した。なお、の補強
用素線のCu/TiNb合金の断面積比率は1.5/1.0
である。
First, TiCu with a diameter of 50 μm was used as the first reinforcing wire.
A plurality of alloy filaments embedded in a copper wire with an outer diameter of 0.37 mm was prepared. Note that the cross-sectional area ratio of the Cu/TiCu alloy of this reinforcing wire is 1.1/1.0. In addition, as the second reinforcing strand, a diameter of 50 μm was used.
A plurality of TiNb alloy filaments embedded in a copper wire with an outer diameter of 1.1 mm was prepared. The cross-sectional area ratio of the Cu/TiNb alloy of the reinforcing wire is 1.5/1.0.
It is.

次いで、前記第1の補強用素線を中心線とし、
その外周に前記複合素線6本を撚合せて外径1.1
mmの撚線を得た。
Next, the first reinforcing strand is used as a center line,
The six composite wires are twisted around the outer circumference and the outer diameter is 1.1.
A stranded wire of mm was obtained.

次いで、前記第2の補強用素線6本と前記撚線
18本とを撚合せロールにて圧縮成形して上底2.5
mm、下底1.5mm、高さ11.5mmのキーストン型成形
撚線を得た。
Next, the six second reinforcing strands and the stranded wire
18 pieces are twisted together and compression molded using rolls to create an upper base of 2.5 mm.
A keystone shaped stranded wire with a diameter of 1.5 mm, a bottom base of 1.5 mm, and a height of 11.5 mm was obtained.

本発明品と比較するために上記の第1、第2の
補強用素線に代えてステンレス鋼線のみからなる
ものをそれぞれ用いた以外、実施例と同様にして
キーストン型成形撚線(比較列品1)を得た。
又、上記の第1、第2の補強用素線を全く使用し
ない以外、実施例と同様にしてキーストン型成形
撚線(比較例品2)を得た。
Keystone molded stranded wire (comparison row Product 1) was obtained.
Further, a keystone molded stranded wire (comparative example product 2) was obtained in the same manner as in the example except that the first and second reinforcing wires described above were not used at all.

これらの成形撚線に650℃で10日間拡散熱処理
を施してブロンズマトリツクスとNbコアとの界
面にNb3Sn化合物層を形成させると共に、補強用
素線のTiNb合金と銅被覆層との界面にCu−Ti金
属間化合物を生成せしめ、更に樹脂を含浸してコ
イルを形成した。
These formed strands were subjected to diffusion heat treatment at 650°C for 10 days to form a Nb 3 Sn compound layer at the interface between the bronze matrix and the Nb core, and at the same time to form an Nb 3 Sn compound layer at the interface between the TiNb alloy of the reinforcing wire and the copper coating layer. A Cu-Ti intermetallic compound was formed, and a coil was further impregnated with resin.

こうして得られたコイルについて液体ヘリウム
中で通電実験を行つたところ、その値(クエンチ
電流)は本発明品は15300Aであつたのに対して、
比較例品1及び2はそれぞれ10000A及び5300A
であり、又成形撚線(本発明品)ののヤング率は
18.2×103Kg/mm2を示し補強効果が確認された。
When we conducted an energization experiment on the coil obtained in this way in liquid helium, the value (quench current) was 15,300 A for the product of the present invention, whereas
Comparative example products 1 and 2 are 10000A and 5300A respectively.
And the Young's modulus of the formed stranded wire (product of the present invention) is
The reinforcing effect was confirmed as 18.2×10 3 Kg/mm 2 .

[発明の効果] 以上詳述した如く、本発明によれば、優れた機
械的強度を有し、しかも可撓性、巻線性、冷却特
性及び半田付け特性を著しく改善し、更にコイル
全体としての電流密度を大幅に改善し得る等の利
点を有する化合物超電導導体を提供することがで
きる。
[Effects of the Invention] As detailed above, the present invention has excellent mechanical strength, significantly improves flexibility, winding properties, cooling properties, and soldering properties, and furthermore improves the coil as a whole. It is possible to provide a compound superconducting conductor that has advantages such as being able to significantly improve current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の補強型超電導導体の一例を示
し、第1図a,b,d,eは断面図、第1図c,
fは斜視図、第2図及び第3図は本発明の化合物
超電導導体の一例を示す断面図である。 1……補強芯材(補強体)、2……超電導素線、
3……超電導2次素線、4……溝、5……冷却
孔、6……銅被覆層、7,7′……補強用素線、
50……半田。
Fig. 1 shows an example of a conventional reinforced superconducting conductor, Fig. 1 a, b, d, e are cross-sectional views, Fig. 1 c,
f is a perspective view, and FIGS. 2 and 3 are cross-sectional views showing an example of the compound superconducting conductor of the present invention. 1...Reinforcement core material (reinforcement body), 2...Superconducting wire,
3... Superconducting secondary strand, 4... Groove, 5... Cooling hole, 6... Copper coating layer, 7, 7'... Reinforcing strand,
50...Solder.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に銅を有する超電導素線と補強用素線と
を組合わせてなる素線集合型化合物超電導導体に
おいて、前記補強用素線として、補強芯材として
のTiNb合金を銅又は銅合金により被覆した後、
500〜800℃の温度範囲で1〜20日間熱処理し、前
記TiNb合金と銅又は銅合金との界面にCu−Ti金
属間化合物を生成せしめた、4.2Kにおけるヤン
グ率が15×103Kg/mm2以上である補強用素線を用
いることを特徴とする化合物超電導導体。
1. In a strand assembly type compound superconducting conductor formed by combining a superconducting strand having copper on the surface and a reinforcing strand, the reinforcing strand is coated with a TiNb alloy as a reinforcing core material with copper or a copper alloy. After that,
A Cu-Ti intermetallic compound was generated at the interface between the TiNb alloy and copper or copper alloy by heat treatment at a temperature range of 500 to 800°C for 1 to 20 days, and the Young's modulus at 4.2K was 15 × 10 3 Kg/ A compound superconducting conductor characterized by using a reinforcing wire having a diameter of mm 2 or more.
JP59054993A 1984-03-22 1984-03-22 Compound superconductive conductor Granted JPS60198009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59054993A JPS60198009A (en) 1984-03-22 1984-03-22 Compound superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59054993A JPS60198009A (en) 1984-03-22 1984-03-22 Compound superconductive conductor

Publications (2)

Publication Number Publication Date
JPS60198009A JPS60198009A (en) 1985-10-07
JPH05804B2 true JPH05804B2 (en) 1993-01-06

Family

ID=12986171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59054993A Granted JPS60198009A (en) 1984-03-22 1984-03-22 Compound superconductive conductor

Country Status (1)

Country Link
JP (1) JPS60198009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092033A (en) * 2001-09-17 2003-03-28 Fujikura Ltd Transposition superconductive tape unit and superconductive application equipment using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523630B2 (en) * 1987-05-09 1996-08-14 株式会社フジクラ Superconducting cable
JPS63291312A (en) * 1987-05-23 1988-11-29 Fujikura Ltd Superconductor
JP6155253B2 (en) * 2012-04-12 2017-06-28 古河電気工業株式会社 Compound superconducting wire and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430486A (en) * 1977-08-11 1979-03-06 Vacuumschmelze Gmbh Superconductive composite conductor and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430486A (en) * 1977-08-11 1979-03-06 Vacuumschmelze Gmbh Superconductive composite conductor and method of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092033A (en) * 2001-09-17 2003-03-28 Fujikura Ltd Transposition superconductive tape unit and superconductive application equipment using the same

Also Published As

Publication number Publication date
JPS60198009A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
US4611390A (en) Method of manufacturing superconducting compound stranded cable
US4195199A (en) Superconducting composite conductor and method of manufacturing same
EP1029330A1 (en) Electrical cables and methods of making the same
JP4213290B2 (en) Method for producing stabilized composite superconducting wire
JP2003217370A (en) Magnesium diboride superconductive wire
US20220115168A1 (en) Compound superconducting twisted wire and rewinding method for compound superconducting twisted wire
JPH05804B2 (en)
JP2011124575A (en) Superconductor with improved mechanical strength
JP5718171B2 (en) Method for producing compound superconducting stranded wire
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP2742436B2 (en) Method for producing compound superconducting stranded wire
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
WO2022075127A1 (en) Nbti superconducting multi-core wire
JP2525016B2 (en) Superconducting wire
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JPH11238418A (en) Compound superconductive wire
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JPH0452569B2 (en)
JP2993986B2 (en) Manufacturing method of aluminum stabilized superconducting wire
JPH02126519A (en) Superconducting conductor
JPH07141939A (en) Manufacture of element wire for low ac loss nbti superconductive twisted wire
JP2742421B2 (en) Superconducting wire and its manufacturing method
JPS6215965B2 (en)