JPH06263520A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH06263520A
JPH06263520A JP5055703A JP5570393A JPH06263520A JP H06263520 A JPH06263520 A JP H06263520A JP 5055703 A JP5055703 A JP 5055703A JP 5570393 A JP5570393 A JP 5570393A JP H06263520 A JPH06263520 A JP H06263520A
Authority
JP
Japan
Prior art keywords
oxide
oxide superconductor
sintered body
pressure
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5055703A
Other languages
Japanese (ja)
Inventor
Hiromi Fujioka
ひろみ 藤岡
Takayuki Inoue
貴之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5055703A priority Critical patent/JPH06263520A/en
Publication of JPH06263520A publication Critical patent/JPH06263520A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To raise degree of orientation of crystal particles of a sintered, to attain increase in density and to stably obtain a superconductor of oxide having a high critical temperature. CONSTITUTION:A mixture comprising oxides of elements constituting a oxide superconductor such as Bi-Sr-Ca-Cu-O-based oxide superconductor or oxide- forming compounds is molded or the mixture is calcined and molded and the molding is burnt in an oxidizing atmosphere. The sintered compact is subjected to hot forging treatment under >=100kg/mm<2> pressure for >=1 hour in such a way that the crystal particles are subjected to plastic deformation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体の製造
方法に関し、詳細には、高密度で且つ高配向性を有する
酸化物超電導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor, and more particularly to a method for producing an oxide superconductor having high density and high orientation.

【0002】[0002]

【従来技術】近年、超電導体として従来から用いられて
きた金属系超電導体によりも高い臨界温度Tc(抵抗が
ゼロになる温度)を有する材料として酸化物超電導体が
発見され、その実用化が期待されている。
2. Description of the Related Art In recent years, oxide superconductors have been discovered as a material having a higher critical temperature Tc (temperature at which resistance becomes zero) than metal superconductors that have been conventionally used as superconductors, and their practical application is expected. Has been done.

【0003】現在、酸化物超電導体としては、主として
Y−Ba−Cu−O系(以下、Y系という)およびBi
−Sr−Ca−Cu−O系(以下、Bi系という)の2
種が知られており、後者の酸化物超電導体では、更にT
cが110Kの高Tc相と、Tcが80K相の低Tc相
と、Tcが20K以下の低々Tc相の3種が知られてお
り、Y系に比較してTcが高いことからその実用化が特
に進められている。
At present, the oxide superconductors are mainly Y-Ba-Cu-O-based (hereinafter referred to as Y-based) and Bi.
-Sr-Ca-Cu-O system (hereinafter referred to as Bi system) 2
The species is known, and in the latter oxide superconductor, T
Three types are known: a high Tc phase with a c of 110K, a low Tc phase with a Tc of 80K, and a low Tc phase with a Tc of 20K or less. Is being promoted especially.

【0004】これら酸化物超電導体は、その実用化に際
しては高い臨界温度を有するとともに臨界電流密度(抵
抗ゼロにおける電流値)が大きいことが必要とされてい
る。
In order to put these oxide superconductors into practical use, it is required that they have a high critical temperature and a large critical current density (current value at zero resistance).

【0005】そこでBi系酸化物超電導体においてはそ
の結晶が燐片状粒子からなることから、この燐片状粒子
を一方向に配向させることにより臨界電流密度を高くす
ることができると考えられている。また、焼結体として
その相対密度を高め、高緻密化することも特性上大きな
要因であると言われている。
Since the crystals of the Bi-based oxide superconductor are composed of scaly particles, it is considered that the critical current density can be increased by orienting the scaly particles in one direction. There is. In addition, it is said that the fact that the relative density of the sintered body is increased and the sintered body is highly densified is a major factor in terms of characteristics.

【0006】そこで、高密度の酸化物超電導体を作製す
る方法として、高い機械的な圧力を加えつつ加熱するホ
ットプレス法が採用されている。
Therefore, as a method for producing a high-density oxide superconductor, a hot press method of heating while applying a high mechanical pressure is adopted.

【0007】[0007]

【発明が解決しようとする問題点】しかしながら、Bi
系酸化物超電導体を作製する場合、例えば低Tc相の仮
焼粉末をホットプレス焼成すると緻密化自体は進行する
が、高Tc相の生成が少ないために高Tc化、高Jc化
が望めない。そこで、上記ホットプレス後の焼結体をさ
らに熱処理し、高Tc相を生成することも提案される
が、熱処理によって粒成長が生じるために密度は逆に低
下する傾向にある。
[Problems to be Solved by the Invention] However, Bi
When a low-Tc phase calcined powder is hot-press fired in the production of a system oxide superconductor, densification itself proceeds, but high Tc and high Jc cannot be expected due to the small generation of high Tc phase. . Therefore, it is also proposed to further heat-treat the sintered body after the hot pressing to generate a high Tc phase, but the density tends to decrease conversely because grain growth occurs due to the heat treatment.

【0008】また上記の方法では、焼結体の緻密化には
それなりの効果があるが、粒子の配向化の点からは不十
分であるために、得られる焼結体のJc値もせいぜい1
000A/cm2 以下であり、実用的レベルには到底達
していないのが現状であった。
Further, the above method has some effect on the densification of the sintered body, but it is insufficient from the viewpoint of grain orientation, so that the Jc value of the obtained sintered body is at most 1.
The current value is 000 A / cm 2 or less, which has not reached the practical level.

【0009】[0009]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して先に低Tc相の仮焼粉末を常圧で焼成して
充分に高Tc相を生成した後、該焼結体に圧力を加えつ
つ加熱処理を行う、いわゆるホットフォージング処理を
行うことによって、高配向、高密度でJc値が1500
〜4500A/cm2 程度の優れた酸化物超電導体が得
られることを提案した。このホットフォ−ジング処理は
繰り返し行うことによって、さらに焼結体の密度および
配向度を高めることが可能であるが、さらに高いJc値
が得られる方法について検討したところ、このホットフ
ォージング処理において結晶粒子内の原子を加圧方向に
垂直な方向に拡散させて塑性変形させて加圧面のアスペ
クト比が大きくなるような粒子にすると、高いJc値を
有する酸化物超電導体となることを知見した。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention first calcined a calcined powder of a low Tc phase at atmospheric pressure to form a sufficiently high Tc phase, and then calcined the same. By performing so-called hot forging treatment in which heat treatment is performed while applying pressure to the bonded body, the Jc value is 1500 with high orientation and high density.
It was proposed that an excellent oxide superconductor of about 4500 A / cm 2 can be obtained. It is possible to further increase the density and the degree of orientation of the sintered body by repeating this hot fogging treatment, but when a method for obtaining a higher Jc value was examined, the crystal grains in this hot forging treatment were examined. It was found that when the atoms inside are diffused in a direction perpendicular to the pressing direction and plastically deformed to form particles having a large aspect ratio on the pressing surface, an oxide superconductor having a high Jc value is obtained.

【0010】即ち、本発明は、酸化物超電導体を構成す
る元素の酸化物あるいは酸化物形成化合物からなる混合
体を成形するか、あるいは該混合体を仮焼した後に成形
し、該成形体を一旦酸化性雰囲気中で焼成した後に、該
焼結体を圧力100kg/mm2 以上で1時間以上加圧
加熱処理して、結晶粒子を塑性変形せしめることを特徴
とするものである。
That is, according to the present invention, a mixture comprising an oxide of an element constituting an oxide superconductor or an oxide-forming compound is molded, or the mixture is calcined and then molded to obtain a molded body. After being fired once in an oxidizing atmosphere, the sintered body is heated under pressure at a pressure of 100 kg / mm 2 or more for 1 hour or more to plastically deform the crystal grains.

【0011】以下、本発明を図面を参照しつつ説明す
る。
The present invention will be described below with reference to the drawings.

【0012】本発明の製造方法における工程 (a)〜(c)
について個々に説明する。
Steps (a) to (c) in the production method of the present invention
Will be explained individually.

【0013】調合成形工程(a) 酸化物超電導体を構成する金属元素の酸化物粉末あるい
は焼成により酸化物を形成しうる炭酸塩や硝酸塩粉末等
を用いてこれらを酸化物超電導体を形成しうる割合に秤
量混合する。具体的には前述したBi系酸化物超電導体
のうち高Tc相を作成する場合には、Bi2 3 、Sr
O、CaCO3 、CuOの各粉末を用いてこれらを原子
比においてSrを2としたとき、Biが1.8〜2.
2、Caが2.0〜3.5、Cuが3.0〜4.5の範
囲になるように秤量する。また、高Tc相の生成量を増
加させることを目的として上記の混合体にさらにPbO
粉末、およびK2 CO3 、Na2 CO3 、Li2 CO2
等をSrを2としてPbを0.〜0.5、K、Li、N
aから選ばれる1種を0.05〜0.6の割合で混合す
ることができる。
Formulation and molding step (a) The oxide superconductor can be formed by using an oxide powder of a metal element constituting the oxide superconductor or a carbonate or nitrate powder capable of forming an oxide by firing. Weigh and mix to proportions. Specifically, in the case of forming a high Tc phase in the Bi-based oxide superconductor described above, Bi 2 O 3 , Sr
When each powder of O, CaCO 3 , and CuO is used and Sr is set to 2 in the atomic ratio, Bi is 1.8 to 2.
2. Weigh so that Ca is in the range of 2.0 to 3.5 and Cu is in the range of 3.0 to 4.5. Further, PbO was added to the above mixture for the purpose of increasing the production amount of the high Tc phase.
Powder, and K 2 CO 3 , Na 2 CO 3 , Li 2 CO 2
, Sr is 2, Pb is 0. ~ 0.5, K, Li, N
One kind selected from a can be mixed at a ratio of 0.05 to 0.6.

【0014】上記のようにして得られた混合粉末を公知
の成形手段によって成形する。また、所望によっては上
記の混合粉末を700〜850℃の酸化性雰囲気中で1
〜20時間程度仮焼後、粉砕し同様に成形する。この仮
焼工程によれば、前述した組成からなる混合粉末を仮焼
すると低Tc相を主体とする酸化物超電導粉末が生成さ
れる。なお、成形方法としてはプレス成形、押し出し成
形、ドクターブレード成形法等が採用される。
The mixed powder thus obtained is molded by a known molding means. If desired, the above mixed powder may be mixed in an oxidizing atmosphere at 700 to 850 ° C.
After calcination for about 20 hours, it is crushed and similarly shaped. According to this calcining step, when the mixed powder having the above-described composition is calcined, the oxide superconducting powder mainly composed of the low Tc phase is generated. As the molding method, press molding, extrusion molding, doctor blade molding and the like are adopted.

【0015】焼成工程(b) 次に、上記のようにして得られた成形体を840〜85
5℃の酸化性雰囲気中で5〜200時間程度焼成する。
この焼成によって一旦低Tc相の燐片状の結晶が生成さ
れるが、焼成が進行するに従い低Tc相は高Tc相に変
換される。なお、この焼成を非加圧で行うと燐片状の結
晶の成長により低密度の焼結体となるために、ホットプ
レス焼成を行ってもよい。このような焼成工程終了時点
では、焼結体の燐片状結晶はほとんど無配向状態であ
る。
Baking step (b) Next, the molded body obtained as described above is heated to 840-85.
Baking is performed in an oxidizing atmosphere at 5 ° C. for about 5 to 200 hours.
By this firing, scaly crystals of low Tc phase are once produced, but as the firing proceeds, the low Tc phase is converted to the high Tc phase. If this firing is performed without applying pressure, a low-density sintered body is formed due to the growth of flaky crystals, and thus hot press firing may be performed. At the end of such a firing step, the scaly crystals of the sintered body are in a substantially non-oriented state.

【0016】ホットフォージング処理工程(c) 次に、工程(b)で得られた焼結体をホットフォージン
グ処理する。このホットフォージング処理は、図1に示
すように、焼結体1をプレスパンチ2,3により方向A
に圧力を付加すると同時に適当な加熱手段(図示せず)
で加熱する。ホットプレス法とは、焼結体1に対する加
圧方向Aと直角方法が開放状態である点で異なる。
Hot Forging Treatment Step (c) Next, the sintered body obtained in the step (b) is subjected to hot forging treatment. In this hot forging treatment, as shown in FIG. 1, the sintered body 1 is pressed by the press punches 2 and 3 in the direction A.
Appropriate heating means (not shown) while applying pressure to the
Heat with. It differs from the hot press method in that the method perpendicular to the pressing direction A for the sintered body 1 is in an open state.

【0017】このときのホットフォージング処理では処
理を行うことにより工程(b)終了後の特性よりも向上
させることができるが、本発明によれば、加熱加圧処理
時の条件を結晶粒子が塑性変形するような条件で処理す
ることにより、さらに特性を向上させることができる。
具体的には、圧力100kg/cm2 以上で、800〜
850℃の温度で大気中などの酸化性雰囲気中で1時間
以上、特に10〜300時間保持するが、結晶粒子の塑
性変形は、温度が低い場合には、圧力を高め長時間処理
することが必要であり、圧力が低い場合には温度を高く
設定し長時間保持することが必要である。なお、このホ
ットフォージング処理は、繰り返し行うことによりさら
に塑性変形量を大きくすることができる。
By performing the hot forging treatment at this time, the characteristics after the step (b) can be improved by performing the treatment. According to the present invention, however, the crystal grains are used under the conditions during the heat and pressure treatment. The characteristics can be further improved by processing under the condition of causing plastic deformation.
Specifically, at a pressure of 100 kg / cm 2 or more, 800 to
It is kept at a temperature of 850 ° C. in an oxidizing atmosphere such as the air for 1 hour or more, particularly 10 to 300 hours, but the plastic deformation of the crystal particles may be carried out for a long time by increasing the pressure when the temperature is low. When the pressure is low, it is necessary to set the temperature high and hold it for a long time. The hot forging treatment can be repeated to further increase the amount of plastic deformation.

【0018】また、ホットフォージング処理に際しては
図1において焼結体1とプレスパンチ2,3との間に銀
や金、銅等の延性金属板を介して圧力を付加することに
よってさらに配向性を高めることができる。
Further, in the hot forging process, in FIG. 1, pressure is applied between the sintered body 1 and the press punches 2 and 3 via a ductile metal plate such as silver, gold or copper to further improve the orientation. Can be increased.

【0019】[0019]

【作用】本発明の構成によれば、工程(c)において、
焼成工程(b)にて得られた焼結体に対して結晶粒子を
塑性変形させる程度に加熱加圧処理することが最も重要
である。このホットフォージング処理工程(c)によれ
ば、焼成工程(b)によって生成された燐片状の結晶粒
子が圧縮されて全体として緻密化が進行するとともに燐
片状粒子が配向することにより、粒子同士の接触面積が
増大し臨界電流密度を高めることができる。この時、低
温あるいは低圧で短時間のホットフォージング処理で
は、粒子の滑りが支配的となり結晶粒子が配向するが、
同時に粒子の破壊が起こるために配向度はある程度しか
進まなくなってしまう。
According to the constitution of the present invention, in the step (c),
It is most important to heat and press the sintered body obtained in the firing step (b) to such an extent that the crystal grains are plastically deformed. According to this hot forging treatment step (c), the flake-like crystal particles produced in the firing step (b) are compressed, the densification progresses as a whole, and the flake-like particles are oriented, The contact area between particles is increased, and the critical current density can be increased. At this time, in the hot forging treatment at low temperature or low pressure for a short time, the slip of particles becomes dominant and the crystal particles are oriented,
At the same time, since the particles are destroyed, the degree of orientation progresses only to some extent.

【0020】ところが、例えば高温、高圧下で長時間処
理すると一旦破壊された粒子が原子の拡散によって塑性
変形し加圧面のアスペクト比が大きい粒子になって変形
活性化され、焼結体の密度および配向度がさらに向上す
る。これにより飛躍的に酸化物超電導体の臨界電流密度
を高めることができるのである。
However, for example, when it is treated at a high temperature and a high pressure for a long time, the once broken particles are plastically deformed by the diffusion of atoms into particles having a large aspect ratio on the pressing surface, which are deformed and activated. The degree of orientation is further improved. As a result, the critical current density of the oxide superconductor can be dramatically increased.

【0021】[0021]

【実施例】以下、本発明を次の例で説明する。The present invention will be described below with reference to the following examples.

【0022】実施例1 (I)原料粉末としてBi2 3 、PbO、SrC
3 、CaCO3 、CuOの各粉末を各金属のモル比が
Bi:Pb:Sr:Ca:Cu=1.93:0.36:
2:3.17:4.25となるように秤量後、750〜
810℃で20時間仮焼し、粉砕して平均粒径5μmの
低Tc相を多量に含む仮焼粉末を得た。
Example 1 (I) As raw material powder, Bi 2 O 3 , PbO, SrC
The powder of O 3 , CaCO 3 , and CuO has a molar ratio of each metal of Bi: Pb: Sr: Ca: Cu = 1.93: 0.36:
After weighing so as to be 2: 3.17: 4.25,
It was calcined at 810 ° C. for 20 hours and pulverized to obtain a calcined powder containing a large amount of low Tc phase having an average particle size of 5 μm.

【0023】(II)この仮焼粉末をφ12mmの金型を
用いて成形圧1ton/cm2 で成形して厚み約1mm
の円板状成形体を得た。
(II) This calcined powder was molded at a molding pressure of 1 ton / cm 2 using a die of φ12 mm to have a thickness of about 1 mm.
A disk-shaped molded body of was obtained.

【0024】(III)上記成形体を大気中で840℃の
温度で150時間焼成したところ、比重2.0(アルキ
メデス法に基づく)の焼結体が得られた。また、組織観
察したところ、高Tc相の燐片状の結晶がランダムに配
列していた。
(III) When the molded body was fired in the atmosphere at a temperature of 840 ° C. for 150 hours, a sintered body having a specific gravity of 2.0 (based on the Archimedes method) was obtained. Further, when the structure was observed, scaly crystals of high Tc phase were randomly arranged.

【0025】(IV)次に、この焼結体を図1に従い、焼
結体の上下面に焼結体に対して表1の条件でホットフォ
ージング処理を行った。
(IV) Next, according to FIG. 1, this sintered body was subjected to hot forging treatment on the upper and lower surfaces of the sintered body under the conditions shown in Table 1.

【0026】最終的に得られた焼結体に対してアルキメ
デス法により比重を調べるととにX線回折を測定し、X
線回折のチャートデータに基づき、下記数1
When the specific gravity of the finally obtained sintered body was examined by the Archimedes method, X-ray diffraction was measured, and X was measured.
Based on the chart data of line diffraction, the following formula 1

【0027】[0027]

【数1】 [Equation 1]

【0028】から(001)面の配向度fを求めた。From the above, the orientation degree f of the (001) plane was obtained.

【0029】さらに、上記焼結体について、抵抗法に基
づき、試料を液体窒素中で電流を徐々に高め、高圧端子
に1μV/cmの電圧が生じた時の電流値を臨界電流密
度Jcとして求め、同時に臨界温度Tcも測定した。ま
た、処理前後で結晶粒子形状の変化を観察し塑性変形の
有無を確認した。結果は表1に示した。
Further, regarding the above-mentioned sintered body, the current value when the current of the sample was gradually increased in liquid nitrogen based on the resistance method and a voltage of 1 μV / cm was generated at the high voltage terminal was obtained as the critical current density Jc. At the same time, the critical temperature Tc was also measured. Moreover, the presence or absence of plastic deformation was confirmed by observing the change in crystal grain shape before and after the treatment. The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】表1から明らかなように、ホットフォージ
ング処理条件を結晶粒子が塑性変形するように設定する
ことにより配向性を高めるとともに臨界電流密度および
臨界温度を向上させることができた。
As is clear from Table 1, by setting the hot forging treatment conditions so that the crystal grains plastically deform, it was possible to enhance the orientation and improve the critical current density and the critical temperature.

【0032】また、ホットフォ−ジング処理時間が極端
に長い試料No.8では、揮発成分(ビスマス及び鉛)の
蒸発により組成ずれが顕著になり超電導特性が低下した
ものと考えられる。
It is considered that in Sample No. 8 having an extremely long hot fogging treatment time, the compositional deviation was remarkable due to the evaporation of the volatile components (bismuth and lead), and the superconducting characteristics were deteriorated.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明の方法によれ
ば、ホットフォージング処理に際して結晶粒子の塑性変
形が生じるように処理することにより、焼結体の結晶粒
子の配向度を高めるとともに高密度化が達成でき、臨界
電流密度が高い酸化物超電導体を安定して得ることがで
きる。
As described above in detail, according to the method of the present invention, the degree of orientation of the crystal grains of the sintered body is increased by performing the hot forging treatment so that the plastic deformation of the crystal grains occurs. It is possible to achieve high density and to stably obtain an oxide superconductor having a high critical current density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法におけるホットフォージング
処理工程を説明するための図である。
FIG. 1 is a diagram for explaining a hot forging treatment step in the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・酸化物超電導焼結体 2,3・・プレスパンチ 1 ... Oxide superconducting sintered body 2,3 ... Press punch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記の工程(a)〜(c)、(a)酸化物
超電導体を構成する元素の酸化物あるいは酸化物形成化
合物からなる混合体を成形するか、あるいは該混合体を
仮焼後成形する工程、(b)該成形体を酸化性雰囲気中
で焼成する工程、(c)該焼結体を圧力100kg/m
2 以上で1時間以上加圧加熱処理して、結晶粒子を塑
性変形せしめる工程、を具備することを特徴とする酸化
物超電導体の製造方法。
1. The following steps (a) to (c), (a) forming a mixture of oxides or oxide-forming compounds of the elements constituting the oxide superconductor, or temporarily preparing the mixture. A step of forming after firing, (b) a step of firing the molded body in an oxidizing atmosphere, (c) a pressure of 100 kg / m of the sintered body
A method for producing an oxide superconductor, comprising the step of subjecting the crystal grains to plastic deformation by applying a pressure and heat treatment at m 2 or more for 1 hour or more.
JP5055703A 1993-03-16 1993-03-16 Production of oxide superconductor Pending JPH06263520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5055703A JPH06263520A (en) 1993-03-16 1993-03-16 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055703A JPH06263520A (en) 1993-03-16 1993-03-16 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH06263520A true JPH06263520A (en) 1994-09-20

Family

ID=13006254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055703A Pending JPH06263520A (en) 1993-03-16 1993-03-16 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH06263520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336023A (en) * 2004-05-28 2005-12-08 National Institute For Materials Science Method of manufacturing oriented apatite sintered compact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336023A (en) * 2004-05-28 2005-12-08 National Institute For Materials Science Method of manufacturing oriented apatite sintered compact
JP4504100B2 (en) * 2004-05-28 2010-07-14 独立行政法人物質・材料研究機構 Method for producing oriented apatite sintered body

Similar Documents

Publication Publication Date Title
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
US5026680A (en) Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing a sintered body therefrom
JPH06263520A (en) Production of oxide superconductor
JP2969220B2 (en) Manufacturing method of oxide superconductor
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP3164640B2 (en) Manufacturing method of oxide superconductor
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH07232960A (en) Production of oxide superconductor
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP2791408B2 (en) Method for manufacturing high-density and highly-oriented oxide superconductor
JP2881423B2 (en) Oxide superconductor and manufacturing method thereof
JP3568657B2 (en) Manufacturing method of oxide superconductor
JP3285636B2 (en) Manufacturing method of oxide superconductor
JP2866503B2 (en) Manufacturing method of oxide superconducting structure
JP2555734B2 (en) Production method of superconducting material
JP2964258B2 (en) Manufacturing method of oxide superconductor
JPH07242424A (en) Oxide superconducting structure and production thereof
EP0500966A1 (en) Oxide superconductor and method of manufacturing said superconductor
JP2844208B2 (en) Manufacturing method of ceramic superconducting material
JPH08181487A (en) Manufacturing method of magnetic shield
EP0459359A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPS63270342A (en) Production of oxide superconductor
JPH02153701A (en) Manufacture of bismuth-based superconductor wire material