JPH01157454A - Production of oxide superconducting sintered body - Google Patents

Production of oxide superconducting sintered body

Info

Publication number
JPH01157454A
JPH01157454A JP62314365A JP31436587A JPH01157454A JP H01157454 A JPH01157454 A JP H01157454A JP 62314365 A JP62314365 A JP 62314365A JP 31436587 A JP31436587 A JP 31436587A JP H01157454 A JPH01157454 A JP H01157454A
Authority
JP
Japan
Prior art keywords
powder
oxide superconductor
sintered body
oxide
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62314365A
Other languages
Japanese (ja)
Inventor
Shiyunji Nomura
俊自 野村
Hisashi Yoshino
芳野 久士
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62314365A priority Critical patent/JPH01157454A/en
Publication of JPH01157454A publication Critical patent/JPH01157454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce the title dense oxide superconducting sintered body having superior orientation characteristic of crystals by molding a powder mixture consisting of oxide superconducting powder having plate structure and oxide superconducting powder having granular structure, and sintering the mixture. CONSTITUTION:A mixture contg. a larger amt. of Cu than a chemical soichiometric ratio (0.1-10mole per 1mole Ln) among each element constituting a perovskite type oxide superconductor expressed by the formula (wherein Ln is at least one kind of rare earth elements; delta is a number of deficient oxygen atom), is heated at a temp. higher than the m.p. of the superconductor and melted, and then crystallized by cooling and pulverized. Thus, oxide superconducting powder (A) having a plate structure having iota5 ratio of particle size in the direction of C face to the thickness of particles in the C axis direction is obtd. Then, a mixture of each starting material consisting of 60-95vol.% (A) and 40-5vol.% granular oxide superconducting powder (B) obtd. by precalcining each starting material of the formula at 800-980 deg.C and pulverizing after crystallization, is molded and sintered at 900-1040 deg.C in O2-contg. atmosphere, then, annealed at 300-700 deg.C.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、緻密質でかつ結晶の配向性に優れた酸化物超
電導焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing an oxide superconducting sintered body that is dense and has excellent crystal orientation.

(従来の技術) 近年、Ba−La−Cu−0系の層状ベロアスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(Z、Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型((LnBa2Cu307−5)
(δは酸素欠陥を表わし通常1以下、[nは、Y 、 
La1Sc、 Nd15m、 Eu、 Gd。
(Prior Art) In recent years, since it was announced that Ba-La-Cu-0-based layered velorskite oxides may have a high critical temperature, research on oxide superconductors has been conducted in various places. (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, defective perovskite type ((LnBa2Cu307-5) with oxygen defects represented by Y-Ba-Cu-0 system)
(δ represents oxygen defect and is usually 1 or less, [n is Y,
La1Sc, Nd15m, Eu, Gd.

Dy、 Ho、ErlTm、 YbおよびLuから選ば
れた少なくとも1種の元素、8aの一部はsr等で置換
可能。)の酸化物超電導体は、臨界温度が90に以上と
液体窒素の沸点以上の高い温度を示すため非常に有望な
材料として注目されている(Phys、 Rev、 L
ett。
At least one element selected from Dy, Ho, ErlTm, Yb and Lu, and a part of 8a can be replaced with sr or the like. The oxide superconductor of
ett.

Vol、58 No、9,908−910)。Vol. 58 No. 9, 908-910).

このような酸化物超電導体は結晶性の酸化物であるため
、この酸化物超電導体を利用して各種形状の超電導部材
を作製するには、目的とする酸化物超電導体の構成元素
を含有する出発原料を所定の比率で混合し、この混合粉
末を一旦仮焼して結晶化させて酸化物超電導体粉末を作
製し、この酸化物超電導体粉末を用いて作製した所要形
状の成形体を焼成することにより行われている。
Since such oxide superconductors are crystalline oxides, in order to create superconducting members of various shapes using this oxide superconductor, it is necessary to contain the constituent elements of the desired oxide superconductor. The starting materials are mixed in a predetermined ratio, this mixed powder is once calcined and crystallized to produce an oxide superconductor powder, and a molded body of the desired shape made using this oxide superconductor powder is fired. This is done by

ところで、この酸化物超電導体は、結晶の0面に沿って
超電導電流が流れるため、単に酸化物超電導体粉末を成
形、焼成しただけでは結晶の配列方向がランダムになり
、所望の電流密度が得られないという問題がある。
By the way, in this oxide superconductor, superconducting current flows along the zero plane of the crystal, so simply molding and firing the oxide superconductor powder will cause the crystals to be arranged in random directions, making it difficult to obtain the desired current density. The problem is that it cannot be done.

一方、この酸化物超電導体粉末は、粉砕時にへき開面よ
り分割されて板状粉になりやすいという性質を有してい
ることから、この板状粉を利用して成形時に結晶の0面
を配向させることにより、電流密度を向上させるという
試みがなされている。
On the other hand, this oxide superconductor powder has the property that it easily splits from the cleavage plane during pulverization and becomes plate-like powder. Therefore, this plate-like powder is used to orient the zero plane of the crystal during molding. Attempts have been made to improve the current density by increasing the current density.

(発明が解決しようとする問題点) しかしながら、このような板状の酸化物超電導体粉末の
みを用いて、成形、焼成した酸化物超電導焼結体は、粉
末の形状的な理由から焼結体密度が低くなり、したがっ
て結晶のC面方向を配向させることによって、臨界電流
密度を向上させるという効果が充分に得られないという
問題がある。
(Problems to be Solved by the Invention) However, an oxide superconducting sintered body formed and fired using only such a plate-shaped oxide superconducting powder is difficult to form due to the shape of the powder. There is a problem that the density becomes low, and therefore, the effect of improving the critical current density cannot be sufficiently obtained by orienting the C-plane direction of the crystal.

また、前述したような固相反応によって得た酸化物超電
導体の仮焼物を粉砕することにより作製した板状の酸化
物超電導体粉末では、そのC軸方向の粒子の厚さに対す
るC面方向の粒子径の比が平均して2〜5程度と小さく
、充分な配向度が得られないという問題もある。
In addition, in the plate-shaped oxide superconductor powder produced by crushing the calcined product of the oxide superconductor obtained by the solid-phase reaction as described above, the thickness of the particle in the C-axis direction is There is also the problem that the ratio of particle diameters is as small as about 2 to 5 on average, making it impossible to obtain a sufficient degree of orientation.

本発明は、このような従来の事情に対処するためになさ
れたもので、結晶の0面を配向させるとともに焼結体密
度を向上させることにより、臨界電流密度のような超電
導特性を向上させた酸化物超電導焼結体を製造する方法
を提供することを目的とする。
The present invention was made to address these conventional circumstances, and by orienting the zero plane of the crystal and improving the density of the sintered body, superconducting properties such as critical current density were improved. An object of the present invention is to provide a method for manufacturing an oxide superconducting sintered body.

[発明の構成] (問題点を解決するための手段) 本発明の酸化物超電導焼結体の製造方法は、板状構造を
有する酸化物超電導体粉末と粒状構造を有する酸化物超
電導体粉末との混合粉末を所定の形状に成形し、次いで
得られた成形体を所定の温度で焼成することを特徴とし
ている。
[Structure of the Invention] (Means for Solving the Problems) The method for producing an oxide superconducting sintered body of the present invention comprises: an oxide superconductor powder having a plate-like structure; an oxide superconductor powder having a granular structure; The method is characterized in that the mixed powder is molded into a predetermined shape, and then the obtained molded body is fired at a predetermined temperature.

酸化物超電導体としては多数のものが知られているが、
臨界温度の高い、希土類元素含有のペロブスカイト型の
酸化物超電導体を用いることが実用上好ましい。ここで
いう希土類元素を含有しペロブスカイト型構造を有する
酸化物超電導体は、超電導状態を実現できるものであれ
ばよく、LnBa  COO(LnはV lYblTm
、 Er、Dy、 Ho、231−δ La、 Sc、 Nd、 Sm、 Eu、 Gd等の希
土類元素かう選ハれた少なくとも1種を、δは酸素欠陥
を表し通常1以下の数を表し、8a一部はSrやCaな
どで、Cuの一部は丁1、V 、 Cr、 HnSFe
、 Ni、Znなどで置換可能。)などの酸素欠陥を有
する欠陥ベロアスカイト型、5r−ta−cu−o系な
どの層状ペロブスカイト型等の広義にペロブスカイト型
を有する酸化物が例示される。また、希土類元素も広義
の定義とし、sc、 yおよULa系を含むものとする
。代表的な系としてはY−Ba−Cu−0系のほかに、
YをYb、 T+n、 Er。
Many oxide superconductors are known, but
It is practically preferable to use a rare earth element-containing perovskite-type oxide superconductor that has a high critical temperature. The oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, and may be LnBa COO (Ln is V lYblTm
, Er, Dy, Ho, 231-δ La, Sc, Nd, Sm, Eu, at least one selected rare earth element such as Gd, δ represents an oxygen defect and usually represents a number of 1 or less, 8a Part of it is Sr, Ca, etc., and part of Cu is D1, V, Cr, HnSFe.
, Ni, Zn, etc. can be substituted. Examples include oxides having a perovskite type in a broad sense, such as a defective velorskite type having oxygen defects such as ), and a layered perovskite type such as a 5r-ta-cu-o type. Rare earth elements are also broadly defined to include sc, y, and ULa elements. In addition to the Y-Ba-Cu-0 system, typical systems include
Y to Yb, T+n, Er.

Dy、 No、Euなどの希土類元素で置換した系、5
C−Ba−Cu−0系、5r−La−Cu−0系、さら
にはSrをBaやCaなとで置換した系などが挙げられ
る。
Systems substituted with rare earth elements such as Dy, No, and Eu, 5
Examples include C-Ba-Cu-0 system, 5r-La-Cu-0 system, and systems in which Sr is replaced with Ba, Ca, etc.

本発明に使用される板状構造を有する酸化物超電導体粉
末は、そのC軸方向の粒子の厚さに対するC面方向の粒
子径の比(以下、C面方向の板状比と称する。)が、5
以上であるものの使用が好ましい。このC面方向の板状
比が5未満では成形時における結晶の配向性が低下し、
本発明の効果が充分に得られない。また、C面方向の平
均粒子径は、0.2μm〜500μmのものが好ましい
The oxide superconductor powder having a plate-like structure used in the present invention has a ratio of the particle diameter in the C-plane direction to the particle thickness in the C-axis direction (hereinafter referred to as the plate-like ratio in the C-plane direction). But 5
It is preferable to use the above. If the plate ratio in the C-plane direction is less than 5, the crystal orientation during molding will decrease,
The effects of the present invention cannot be sufficiently obtained. Moreover, the average particle diameter in the C-plane direction is preferably 0.2 μm to 500 μm.

このような板状構造を有する酸化物超電導体粉末は、た
とえば以下のようにして製造される。
An oxide superconductor powder having such a plate-like structure is manufactured, for example, as follows.

まず、Y、 8a、 Cu等の構成元素を十分混合する
First, constituent elements such as Y, 8a, and Cu are thoroughly mixed.

混合の際には、Y203、BaC0,、CuO等の酸化
物や炭酸塩を原料として用いることができるほか、他の
焼成後酸化物に転化する硝酸塩、水酸化物等の化合物を
用いてもよい。さらには、共沈法等で得たシュウ酸塩等
を用いてもよい。通常、Y−Ba−Cu−0系酸化物超
1f)9体を構成する元素は、化学M論比の組成となる
ように混合するが、この混合の際にCu成分を化学M論
比より過剰に使用することにより、板状構造を有する酸
化物超電導体粉末が形成されやすくなる。このCU酸成
分添加量は、YllIlolに対して0.1mo1〜1
0molの範囲が好ましい。
When mixing, oxides and carbonates such as Y203, BaC0, and CuO can be used as raw materials, as well as other compounds such as nitrates and hydroxides that are converted to oxides after firing. . Furthermore, oxalate obtained by a coprecipitation method or the like may be used. Normally, the elements constituting the Y-Ba-Cu-0-based oxide super 1f)9 are mixed so that the composition has a chemical M stoichiometric ratio, but during this mixing, the Cu component is If used in excess, oxide superconductor powder having a plate-like structure is likely to be formed. The amount of this CU acid component added is 0.1 mo1 to 1 mo1 to YllIlol.
A range of 0 mol is preferred.

次いで、前述の原料を充分に混合した後、酸化物超電導
体の融点以上の温度に加熱して溶融させる。そして、こ
の溶融物を冷却し、この冷却過程において酸化物超電導
体を結晶化させる。なお、この溶融および冷却は充分に
酸素を供給することが可能な雰囲気中で行うことが好ま
しい。
Next, after thoroughly mixing the aforementioned raw materials, they are heated to a temperature equal to or higher than the melting point of the oxide superconductor to melt it. This melt is then cooled, and the oxide superconductor is crystallized during this cooling process. Note that this melting and cooling is preferably performed in an atmosphere that can supply sufficient oxygen.

次に、この酸化物超電導体をボールミル、サンドグライ
ンダ、その他公知の手段により粉砕する。
Next, this oxide superconductor is pulverized using a ball mill, a sand grinder, or other known means.

このとき、このような条件下で作製したペロブスカイト
型の酸化物超電導体は、へき916面から分割されて、
C面方向の板状比に優れた微粉末となる。
At this time, the perovskite-type oxide superconductor produced under these conditions is divided from the cleavage 916 plane,
The result is a fine powder with an excellent plate-like ratio in the C-plane direction.

また、本発明に使用される粒状構造を有する酸化物超電
導体粉末は、そのC面方向の板状比が、3以下であるも
のの使用が好ましい。このC面方向の板状比が3を超え
ると、粒状粉による板状構造を有する酸化物超電導体粉
末間の充填効果が充分に得られない。また、C面方向の
平均粒子径は、0.2μm〜100μmのものが好まし
い。
Further, the oxide superconductor powder having a granular structure used in the present invention preferably has a plate ratio of 3 or less in the C-plane direction. If the plate ratio in the C-plane direction exceeds 3, a sufficient filling effect between the oxide superconductor powders having a plate-like structure due to the granular powder cannot be obtained. Moreover, the average particle diameter in the C-plane direction is preferably 0.2 μm to 100 μm.

このような粒状構造を有する酸化物超電導体粉末は、た
とえば以下のようにして製造する。
Oxide superconductor powder having such a granular structure is produced, for example, as follows.

まず、前述したような酸化物超電導体の各出発原料を基
本的に化学量論比とな゛るように混合する。
First, the starting materials for the oxide superconductor as described above are mixed in basically a stoichiometric ratio.

なお、この混合の際には多少製造条件等との関係でずれ
ていても差支えない。たとえば、V 1a+olに対し
Ba 2mol 、Cu 3molが標準組成であるが
、実用上はY 1m01に対して、Ba 2±0.6m
ol 、Cu3±0.4n+ol程度のずれは問題ない
It should be noted that during this mixing, there may be no problem even if there is a slight deviation due to manufacturing conditions and the like. For example, the standard composition is Ba 2 mol and Cu 3 mol for V 1a + ol, but in practice, Ba 2 ± 0.6 m for Y 1 m 0
ol, a deviation of about Cu3±0.4n+ol is not a problem.

そして、この混合物を800℃〜980℃程度の温度条
件で仮焼して結晶化させる。この後、必要に応じて酸素
含有雰囲気中、好ましくはlli!2索雰囲気中で熱処
理するか、または同様な雰囲気中で300℃程度まで徐
冷することにより、酸素欠陥δに酸素を導入し超電導特
性を向上させることができる。
Then, this mixture is calcined and crystallized at a temperature of about 800°C to 980°C. After this, if necessary in an oxygen-containing atmosphere, preferably lli! By heat treatment in a two-wire atmosphere or by slow cooling to about 300° C. in a similar atmosphere, oxygen can be introduced into the oxygen defects δ and the superconducting properties can be improved.

この熱処理は、通常300℃〜100℃程度で行う。This heat treatment is usually performed at about 300°C to 100°C.

次に、この仮焼物を上記条件を満足するように、前述し
た板状粉と同様にして粉砕する。
Next, this calcined product is pulverized in the same manner as the plate-shaped powder described above so as to satisfy the above conditions.

本発明における板状構造を有する酸化物超電導体粉末と
粒状構造を有する酸化物超電導体粉末との混合比は、混
合粉末中の板状構造を有する酸化物超電導体粉末が体積
比で60%〜95%の範囲となるようにすることが好ま
しい。この板状粉の体積比が60%未満では結晶の配向
性が低下し、95%を超′えると焼結体密度が低下する
In the present invention, the mixing ratio of the oxide superconductor powder having a plate-like structure and the oxide superconductor powder having a granular structure is 60% to 60% by volume of the oxide superconductor powder having a plate-like structure in the mixed powder. It is preferable to set it within a range of 95%. If the volume ratio of the plate-shaped powder is less than 60%, the crystal orientation will decrease, and if it exceeds 95%, the density of the sintered body will decrease.

そして、このような混合粉末を用いて、所要形状の成形
体を作製すφ。この成形体の作製方法としては、たとえ
ばプレス成形法、スリップキャスティング法、射出成形
法などの各種手段を用いることが可能であるが、特にプ
レス成形法を用いることにより配向度が高まり好ましい
Then, using such mixed powder, a molded body having a desired shape is produced. Various methods such as press molding, slip casting, and injection molding can be used to produce this molded body, but press molding is particularly preferred because it increases the degree of orientation.

次いで、この成形体を大気中あるいは酸素雰囲気中で焼
結温度、たとえば900℃〜1040℃まで芹温し、焼
成して酸化物超電導焼結体を作製する。
Next, this molded body is heated to a sintering temperature, for example, 900° C. to 1040° C., in air or an oxygen atmosphere, and fired to produce an oxide superconducting sintered body.

なお、このようにして焼結を行った後に酸素を供給しな
がら室温近傍まで徐冷するか、あるいは酸素の十分に供
給可能な雰囲気中で300℃〜100℃程度の温度でア
ニールを行うことが好ましい。
After sintering in this way, it is possible to slowly cool the material to near room temperature while supplying oxygen, or to perform annealing at a temperature of about 300°C to 100°C in an atmosphere where oxygen can be sufficiently supplied. preferable.

これにより、酸素欠陥δへの酸素導入が行え、超電導特
性が向上する。
This allows oxygen to be introduced into the oxygen defects δ, improving superconducting properties.

(作 用) 本発明の酸化物超電導焼結体の製造方法においては、板
状粉と粒状粉との混合粉末を用いているので、板状粉に
よって結晶の0面を配向させることが可能になるととも
に、この板状粉だけでは焼結体密度が低下してしまうの
を粒状粉による充填効果により焼結体密度を向上さぼる
ことが可能となる。したがって、この結晶のC面方向に
電流を流すことによって、臨界電流密度が大幅に向上ケ
る。
(Function) In the method for manufacturing an oxide superconducting sintered body of the present invention, a mixed powder of plate-like powder and granular powder is used, so that the zero plane of the crystal can be oriented by the plate-like powder. At the same time, the filling effect of the granular powder makes it possible to improve the density of the sintered body, whereas the density of the sintered body decreases when using the plate-like powder alone. Therefore, by passing a current in the C-plane direction of this crystal, the critical current density can be greatly improved.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1〜3、比較例1〜2 まず、粒径2〜5μmのY2O3粉末、BaC03粉末
およびCUO粉末を、YOl 513mo1%、8aC
O327n+o1%、 Cu060mo1%と々るよう
に所定聞評吊し、これを充分混合した後、白金るつぼに
投入して酸素雰囲気中で1150℃×48時間の条件で
均一に溶融させ、次いで0.2℃/分の冷却速度で徐冷
した後、ボールミルを用いて粉砕し、C面方向の粒子径
10μlIl〜20μm(平均粒子径12μm ) 、
c軸方向の粒子の厚さ1μI11〜3μm、c面方向の
平均板状比7の板状構造を有するY−Ba−Cu−0系
酸化物超電導体粉末を得た。
Examples 1 to 3, Comparative Examples 1 to 2 First, Y2O3 powder, BaC03 powder and CUO powder with a particle size of 2 to 5 μm were mixed with YOl 513mol1%, 8aC
The mixture was hung for a predetermined test so that O327n+O1% and Cu060mo1% were reached, and after thoroughly mixing it, it was put into a platinum crucible and melted uniformly in an oxygen atmosphere at 1150°C for 48 hours, and then 0.2 After slow cooling at a cooling rate of °C/min, it was pulverized using a ball mill to obtain a particle size of 10 μl to 20 μm in the C-plane direction (average particle size of 12 μm),
A Y-Ba-Cu-0 based oxide superconductor powder having a plate-like structure with a particle thickness in the c-axis direction of 1 μI11 to 3 μm and an average plate-like ratio in the c-plane direction of 7 was obtained.

一方、上述の板状構造を有する酸化物超電導体粉末に使
用した各出発原料を、YOl517mo1%。
On the other hand, each starting material used for the oxide superconductor powder having the above-mentioned plate-like structure was 517 mo1% of YOl.

BaC0,33mo!%、CuO50mo1%となるよ
うに所定量評1し、充分に混合した後、大気中900℃
で48時間焼成して反応させ、この焼成物をさらに酸素
中で800℃で24時間焼成して反応させ、酸素空位に
酸素を導入した後、ボールミルを用いて粉砕し、分級し
て、平均粒径8μm、C面方向の平均板状比5の板状構
造を有するY−Ba−Cu−0系酸化物超電導体粉末を
得た。
BaC0,33mo! %, CuO50mo1%, and after mixing thoroughly, heated to 900℃ in the atmosphere.
The fired product was further fired in oxygen at 800°C for 24 hours to react, and after introducing oxygen into the oxygen vacancies, it was crushed using a ball mill and classified to obtain an average particle size. A Y-Ba-Cu-0 based oxide superconductor powder having a plate-like structure with a diameter of 8 μm and an average plate-like ratio of 5 in the C-plane direction was obtained.

次に、この板状構造を有する酸化物超電導体粉末と粒状
構造を有する酸化物超電導体粉末とを、第1表に示す混
合比でそれぞれ混合し、これら混合粉末を用いて、それ
ぞれプレス成形(プレス圧=200k(1/cぜ)によ
り1011111X 10m1llX厚さ2mm形状の
成形体を作製し、次いでこの成形体を酸素ガスを供給し
ながら950℃、8時間の条件で焼成して夫々酸化物超
電導焼結体を作製した。
Next, the oxide superconductor powder having a plate-like structure and the oxide superconductor powder having a granular structure are mixed at the mixing ratio shown in Table 1, and these mixed powders are used for press molding ( A molded body having a shape of 1011111×10ml×2mm in thickness was produced using a press pressure of 200k (1/c), and then this molded body was fired at 950°C for 8 hours while supplying oxygen gas to form an oxide superconductor. A sintered body was produced.

このようにして得た酸化物超電導焼結体について、それ
ぞれ焼結体密度、臨界温度、成形体作製時における加圧
方向と垂直方向の臨界電流密度およびX線回折による結
晶の0面の配向度の測定を行った。その結果も合せて第
1表に示す。
Regarding the oxide superconducting sintered body obtained in this way, the sintered body density, critical temperature, critical current density in the direction perpendicular to the pressing direction at the time of forming the compact, and degree of orientation of the 0-plane of the crystal determined by X-ray diffraction, respectively. Measurements were made. The results are also shown in Table 1.

(以下余白) 第1表 前表からも明らかなように、この実施例によれば板状構
造を有する酸化物超電導体粉末と粒状構造を有する酸化
動用Ti導体粉末との混合粉末を用いるので、焼結体密
度と結晶の0面の配向性とを同時に満足しており、よっ
て臨界電流密度に優れた酸化物超電導焼結体が得られた
。一方、比較例による板状粉のみの場合には焼結体密度
が低下し、粒状粉のみの場合にはC面配向が得られない
ため、どちらも臨界電流密度が低いものであった。
(Left below) As is clear from the previous table in Table 1, according to this example, a mixed powder of an oxide superconductor powder having a plate-like structure and an oxidizing dynamic Ti conductor powder having a granular structure is used. An oxide superconducting sintered body was obtained which satisfied both the sintered body density and the zero-plane orientation of the crystals, and thus had an excellent critical current density. On the other hand, in the case of only plate-like powder according to the comparative example, the sintered body density decreased, and in the case of only granular powder, C-plane orientation could not be obtained, so the critical current density was low in both cases.

[発明の効果コ 以上の実施例からも明らかなように、本発明の酸化物超
電導焼結体の製造方法は、板状構造を有する酸化物超電
導体粉末と粒状構造を有する酸化動用[3体粉末との混
合粉末を用いているので、得られる酸化物超電導焼結体
が焼結体密度と結晶の0面の配向性とを同時に満足し、
これにより臨界電流密度に優れたものを得ることが可能
となる。
[Effects of the Invention] As is clear from the above examples, the method for producing an oxide superconducting sintered body of the present invention is a method for producing an oxide superconducting sintered body having a plate-like structure and an oxide dynamic powder having a granular structure. Since the mixed powder is used, the obtained oxide superconducting sintered body satisfies both the sintered body density and the orientation of the zero plane of the crystal,
This makes it possible to obtain an excellent critical current density.

出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −Applicant: Toshiba Corporation Agent Patent Attorney Suyama Sa

Claims (9)

【特許請求の範囲】[Claims] (1)板状構造を有する酸化物超電導体粉末と粒状構造
を有する酸化物超電導体粉末との混合粉末を所定の形状
に成形し、次いで得られた成形体を所定の温度で焼成す
ることを特徴とする酸化物超電導焼結体の製造方法。
(1) A mixed powder of an oxide superconductor powder having a plate-like structure and an oxide superconductor powder having a granular structure is molded into a predetermined shape, and then the obtained molded body is fired at a predetermined temperature. A method for producing a featured oxide superconducting sintered body.
(2)前記板状構造を有する酸化物超電導体粉末のc軸
方向の粒子の厚さに対するc面方向の粒子径の比が、5
以上であることを特徴とする特許請求の範囲第1項記載
の酸化物超電導焼結体の製造方法。
(2) The ratio of the particle diameter in the c-plane direction to the particle thickness in the c-axis direction of the oxide superconductor powder having a plate-like structure is 5.
A method for producing an oxide superconducting sintered body according to claim 1, which is characterized in that the above is described above.
(3)前記混合粉末中における板状構造を有する酸化物
超電導体粉末が、体積比で60%〜90%の範囲である
ことを特徴とする特許請求の範囲第1項記載の酸化物超
電導焼結体の製造方法。
(3) The oxide superconductor powder according to claim 1, wherein the oxide superconductor powder having a plate-like structure in the mixed powder is in a volume ratio of 60% to 90%. Method for producing solids.
(4)前記混合粉末の成形が、プレス成形法により行わ
れることを特徴とする特許請求の範囲第1項記載の酸化
物超電導焼結体の製造方法。
(4) The method for producing an oxide superconducting sintered body according to claim 1, wherein the molding of the mixed powder is performed by a press molding method.
(5)前記焼成は、900℃〜1040℃の温度条件に
より行うことを特徴とする特許請求の範囲第1項記載の
酸化物超電導焼結体の製造方法。
(5) The method for producing an oxide superconducting sintered body according to claim 1, wherein the firing is performed under a temperature condition of 900°C to 1040°C.
(6)前記酸化物超電導体は、希土類元素を含有するペ
ロブスカイト型の酸化物超電導体であることを特徴とす
る特許請求の範囲第1項記載の酸化物超電導焼結体の製
造方法。
(6) The method for producing an oxide superconducting sintered body according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
(7)前記酸化物超電導体は、希土類元素、Baおよび
Cuを原子比で実質的に1:2:3の割合で含有するこ
とを特徴とする特許請求の範囲第1項記載の酸化物超電
導焼結体の製造方法。
(7) The oxide superconductor according to claim 1, wherein the oxide superconductor contains rare earth elements, Ba and Cu in an atomic ratio of substantially 1:2:3. A method for producing a sintered body.
(8)前記酸化物超電導体は、LnBa_2Cu_3O
_7_−_δ(Lnは希土類元素から選ばれた少なくと
も1種の元素を、δは酸素欠陥を表す。)で示される酸
素欠陥型ペロブスカイト構造の酸化物超電導体であるこ
とを特徴とする特許請求の範囲第1項記載の酸化物超電
導焼結体の製造方法。
(8) The oxide superconductor is LnBa_2Cu_3O
_7_-_δ (Ln represents at least one element selected from rare earth elements, and δ represents an oxygen defect.) An oxide superconductor with an oxygen-deficient perovskite structure is claimed. A method for producing an oxide superconducting sintered body according to scope 1.
(9)前記板状構造を有する酸化物超電導体粉末は、こ
の酸化物超電導体を構成する各元素の出発原料のうち、
Cu成分を化学量論比より多量に添加し、かつ焼成の際
に前記酸化物超電導体の分解温度以上に加熱して溶融さ
せた後に結晶化させることにより形成したものであるこ
とを特徴とする特許請求の範囲第7項または第8項記載
の酸化物超電導焼結体の製造方法。
(9) The above-mentioned oxide superconductor powder having a plate-like structure contains starting materials of each element constituting the oxide superconductor.
It is characterized in that it is formed by adding a Cu component in a larger amount than the stoichiometric ratio, heating it to a temperature higher than the decomposition temperature of the oxide superconductor to melt it during firing, and then crystallizing it. A method for manufacturing an oxide superconducting sintered body according to claim 7 or 8.
JP62314365A 1987-12-11 1987-12-11 Production of oxide superconducting sintered body Pending JPH01157454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314365A JPH01157454A (en) 1987-12-11 1987-12-11 Production of oxide superconducting sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314365A JPH01157454A (en) 1987-12-11 1987-12-11 Production of oxide superconducting sintered body

Publications (1)

Publication Number Publication Date
JPH01157454A true JPH01157454A (en) 1989-06-20

Family

ID=18052457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314365A Pending JPH01157454A (en) 1987-12-11 1987-12-11 Production of oxide superconducting sintered body

Country Status (1)

Country Link
JP (1) JPH01157454A (en)

Similar Documents

Publication Publication Date Title
JPH10101336A (en) Production of superconductor
US4861753A (en) Process for making superconductors using barium nitrate
CN116903369A (en) Preparation method of rare earth alkaline earth manganese-based perovskite electronic phase-change ceramic material
JPH01157454A (en) Production of oxide superconducting sintered body
JP3330962B2 (en) Manufacturing method of oxide superconductor
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JPH01157499A (en) Production of single crystal of oxide superconductor
JPH01160860A (en) Production of sintered material of oxide superconductor
JP2597578B2 (en) Superconductor manufacturing method
JPH01157453A (en) Production of oxide superconductor
JPH01157455A (en) Production of oxide superconducting sintered body
JP2554658B2 (en) How to connect complex oxide superconductors
JPH02120234A (en) Production of oxide superconductor
JP3157183B2 (en) Manufacturing method of oxide superconductor
JP2783559B2 (en) Oxide-based composite sintered body, method for producing the same, and resistor using the same
JPH01103950A (en) Production of superconductive material composition
JPH01157451A (en) Production of oxide superconducting sintered body
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPH01275493A (en) Method for growing oxide superconductor single crystal
JPH01126259A (en) Production of oxide superconductor
JP3444930B2 (en) Manufacturing method of oxide superconductor
JP3165921B2 (en) Manufacturing method of oxide superconducting sintered body
JPH0859342A (en) Production of high temperature superconductor
JPH01160859A (en) Oxide superconductor of complex type
JPH01164752A (en) Oxide superconductor