JPH0244028A - Bi-pb-sr-ca-cu-o superconducting material - Google Patents

Bi-pb-sr-ca-cu-o superconducting material

Info

Publication number
JPH0244028A
JPH0244028A JP63150634A JP15063488A JPH0244028A JP H0244028 A JPH0244028 A JP H0244028A JP 63150634 A JP63150634 A JP 63150634A JP 15063488 A JP15063488 A JP 15063488A JP H0244028 A JPH0244028 A JP H0244028A
Authority
JP
Japan
Prior art keywords
superconducting
electrical resistance
pbo
results
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63150634A
Other languages
Japanese (ja)
Other versions
JP2893405B2 (en
Inventor
Toshio Takada
高田 利夫
Mikio Takano
幹夫 高野
Yoshiya Miura
三浦 嘉矢
Jun Takada
潤 高田
Kiichi Oda
小田 喜一
Naoichi Yamamoto
山本 直一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Production Development
Original Assignee
Research Institute for Production Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Production Development filed Critical Research Institute for Production Development
Priority to JP63150634A priority Critical patent/JP2893405B2/en
Publication of JPH0244028A publication Critical patent/JPH0244028A/en
Application granted granted Critical
Publication of JP2893405B2 publication Critical patent/JP2893405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting material high in superconducting critical temp. by using Bi-Pb-Sr-Ca-Cu-O type oxide having a specified molar composition. CONSTITUTION:Pb is incorporated into a Bi-Sr-Ca-Cu-O superconducting material and the molar ratio of Bi:Pb:Sr:Ca:Cu is regulated to (0.8-2.2):(0.01-1.5):(1.5-2.2):(0.8-2.2):(0.01-4). Bi2O3, SrCO3, CaCO3, CuO and PbO are used as starting materials and mixed in a desired ratio and this mixture is directly heated to produce a superconductor. An oxalate precipitating method may be adopted. Since Pb is used, production is facilitated and the superconducting critical temp. is raised to 77-105K.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は近時、液体窒素の沸点である77に以上、場合
によって更に高温の100に以上で超電導を示す可能性
があるとして注目されている旧−3r−Ca−Cu−0
系物質にpbを含有させた超電導物質に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has recently attracted attention as it has the potential to exhibit superconductivity at temperatures above 77, which is the boiling point of liquid nitrogen, and in some cases even at higher temperatures, above 100. old-3r-Ca-Cu-0
The present invention relates to a superconducting material containing PB.

〔従来の技術〕[Conventional technology]

最近、金属材料研究所よりBi、Sr、Ca1Cuzの
組成の焼結体が120にで電気抵抗が減少しはじめ、約
107Kまで急激に電気抵抗が落ちた後、約75にで電
気抵抗がゼロになるとの発表があった。
Recently, the Institute of Metals Research has found that the electrical resistance of a sintered body with a composition of Bi, Sr, and Ca1Cuz begins to decrease at 120K, and after rapidly dropping to about 107K, the electrical resistance reaches zero at about 75K. There was an announcement that it would happen.

この発表によれば、この物質には電気抵抗がゼロになる
超電導遷移終了点が約105K(実験ブタから外挿して
得た値)の超電導相(高Tc用)と約75にの超電導相
(低Tc相)の2種類の超電導相が存在していて、全体
が完全に高Tc用の試料とはなっていないとのことであ
るが、この物質には、マイスナー効果が認められるとの
ことであった。
According to this announcement, this material has a superconducting transition end point at which the electrical resistance becomes zero: a superconducting phase (for high Tc) at about 105 K (value obtained by extrapolating from experimental pigs) and a superconducting phase (for high Tc) at about 75 K. Although it is said that there are two types of superconducting phases (low Tc phase) and the whole is not a complete high Tc sample, the Meissner effect is observed in this material. Met.

また、この物質は希土類を含まない超電導物質であり、
かつY −Ba−Cu−0系に比して水等に安定である
点も特徴があると報しられた。
Additionally, this material is a superconducting material that does not contain rare earth elements.
It was also reported that it is more stable in water and the like than the Y-Ba-Cu-0 system.

この発表があった後、日、米のみならず世界各国で、そ
の追試が行われたが、その−例は次のとおりである。
After this announcement, follow-up tests were held not only in Japan and the United States, but also in other countries around the world. Examples of such tests are as follows.

即ち、無機材研等は、!3+ z (Ca、 Sr) 
3CLIZO9或いはBiz(Ca、Sr)z−xCL
IzOll−yの組成の焼結体が約110により電気抵
抗が低下し始め約70〜40にでゼロとなることを発表
した。
In other words, inorganic materials research, etc.! 3+z (Ca, Sr)
3CLIZO9 or Biz (Ca, Sr)z-xCL
It was announced that the electrical resistance of a sintered body having a composition of IzOll-y starts to decrease at about 110 and becomes zero at about 70 to 40.

C発明が解決しようとする課題〕 現在名に発表されたBi −Ca−3r−Cu−0系物
質は高Tc相、低Tc相が混在するものが殆どであり、
その化学組成も種々異なる。
Problems to be solved by the invention] Most of the Bi-Ca-3r-Cu-0-based materials currently announced have a mixture of high Tc phase and low Tc phase,
Their chemical composition also varies.

また、本発明者等の追試によれば、この物質は製法的に
も、試料の融点ぎりぎりの熱処理温度で処理しなければ
高臨界温度物質とならず、合成条件が極めて制限されて
いることが判明している。
Further, according to additional tests conducted by the present inventors, this substance does not become a high critical temperature substance unless it is treated at a heat treatment temperature close to the melting point of the sample, and the synthesis conditions are extremely limited. It's clear.

本発明者等はこの様な欠点を克服すべく、B1−Sr−
Ca −Cu −0系にpbを添加するとともに、成分
元素の組成比を種々変え、また熱処理条件を種々変える
等の研究を重ね、超電導臨界温度が少なくとも液体窒素
の沸点77に以上で、条件次第では105 K以上にも
達する物質の合成に成功し、本発明に到達したものであ
る。
In order to overcome such drawbacks, the present inventors have developed B1-Sr-
Through repeated research such as adding PB to the Ca-Cu-0 system, varying the composition ratio of the component elements, and varying the heat treatment conditions, the superconducting critical temperature was at least higher than the boiling point of liquid nitrogen, 77, depending on the conditions. They succeeded in synthesizing a substance that reaches a temperature of 105 K or higher, leading to the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

即ら、本発明は金属材料研究所の発表したBi+Sr+
Ca+Cu20xにpbを含有させた物質、更にはこれ
に加うるに構成各元素の組成比をも変化させた物質を提
供するものであり、更に詳しくは、B1−PbSr  
Ca−Cu−0系酸化物であって、構成元素Bi。
That is, the present invention is based on Bi+Sr+ announced by the Institute for Metal Materials.
The purpose is to provide a material in which Ca+Cu20x contains Pb, and in addition to this, a material in which the composition ratio of each constituent element is changed.More specifically, B1-PbSr
It is a Ca-Cu-0 based oxide, and the constituent element is Bi.

Pb、 Sr、 Ca、 Cuのモル数の比が旧n+ 
Pb1I、Sr、、Cay、Cuz  (n、 m、 
x、 y、 zは0.5< n <2.6,0゜O1≦
m≦1.5.1.5≦x≦2.2.0.8≦y≦2.2
.2.0≦2≦4.0の値を示す)で表される旧−Pb
 −Sr −Ca−Cu−0系超伝導物質で、少なくと
も77に以上の超電導臨界温度をもつB1−Pb−Sr
−Ca−CuO系超電導物質を提供するものである。
The molar ratio of Pb, Sr, Ca, and Cu is old n+
Pb1I, Sr, , Cay, Cuz (n, m,
x, y, z are 0.5< n <2.6, 0°O1≦
m≦1.5.1.5≦x≦2.2.0.8≦y≦2.2
.. old-Pb expressed as 2.0≦2≦4.0)
-Sr -Ca-Cu-0 based superconducting material, B1-Pb-Sr having a superconducting critical temperature of at least 77°C
-Ca-CuO based superconducting material is provided.

本発明は、この様に従来の旧−3r−Ca−Cu−0系
にpbを含有させるものであるが、この際Pbの含有量
、即ちm値が1.5より大きいと、物質が半導体になる
ことが多く、逆に0.01より小さいと物質がpbを添
加しない従来のものに比較して大差のないものとなる。
In this way, the present invention incorporates Pb into the conventional old-3r-Ca-Cu-0 system, but in this case, if the content of Pb, that is, the m value is larger than 1.5, the material becomes a semiconductor. On the other hand, if it is smaller than 0.01, the substance will not be much different from the conventional one in which no PB is added.

上記の化合物は下記する方法によって製造することがで
きる。
The above compound can be produced by the method described below.

即ち、原料としてBizO:+、SrCO3,CaCO
3,CuO及びPbOを出発原料としてそれぞれを所望
の比に秤量混合するか、Bi、 Pb、 Sr、 Ca
、 Cuをそれぞれを所望の比に含む蓚酸塩を沈殿法で
合成する。この際Bi、 Sr、 Ca、 Cuは、目
的とする組成比でよいが、pbは、後程行う熱処理中薄
発するため、pbの目的とする組成比以上になるよう加
える必要がある。
That is, BizO:+, SrCO3, CaCO as raw materials
3. Using CuO and PbO as starting materials, weigh and mix each in the desired ratio, or use Bi, Pb, Sr, Ca
, Cu, and oxalate containing each of them in a desired ratio is synthesized by a precipitation method. At this time, Bi, Sr, Ca, and Cu may be added at desired composition ratios, but since PB is lightly emitted during the heat treatment performed later, it is necessary to add Pb so that the composition ratio is equal to or higher than the intended composition ratio.

これら混合粉或いは蓚酸塩を、空気中で約800°むで
加熱固相反応を行わせるが、蓚酸塩を加熱する場合は約
250°Cで熱分解を行わせた後、約800°Cでの加
熱反応を行うのが好ましい。その後これを粉砕して約1
000 kg/cnlで加圧しペレントとした後、更に
810°C〜880°Cで焼成すればよい。
These mixed powders or oxalate are heated in air at about 800°C to perform a solid phase reaction, but when heating oxalate, thermal decomposition is carried out at about 250°C, and then at about 800°C. It is preferable to carry out a heating reaction. Then crush it to about 1
After pressurizing at 000 kg/cnl to form a pellet, it may be further fired at 810°C to 880°C.

以下、生成するB1−Pb−Sr−Ca−Cu−0系超
電導物質の性状と、構成元素のモル数の比や製法上の条
件との関係について更に具体的に説明する。
Hereinafter, the relationship between the properties of the produced B1-Pb-Sr-Ca-Cu-0 based superconducting material, the ratio of the number of moles of the constituent elements, and the manufacturing process conditions will be explained in more detail.

先ず、生成する超電導物質の超電導臨界温度は、構成元
素のモル数の比によって大きな影響をうける。Cuを2
として他の構成元素のモル数の比の範囲を示すと、13
i0.7−wl、2  Pbo、o4−o、z  Sr
+、ow+−3Ca1.Osb +−z  Cu2が好
適な範囲であり、この範囲の超電導物質は、100に以
上の超電導臨界温度を達成する確立が高い。
First, the superconducting critical temperature of the produced superconducting material is greatly influenced by the ratio of the number of moles of the constituent elements. 2 Cu
If the range of the ratio of the number of moles of other constituent elements is shown as 13
i0.7-wl, 2 Pbo, o4-o, z Sr
+, ow+-3Ca1. Osb + -z Cu2 is a preferred range, and superconducting materials in this range have a high probability of achieving superconducting critical temperatures of 100 or higher.

次に、製法であるが、本発明に係る超電導物質の製造に
あたり、原料粉末をそのまま混合して所定の組成比に調
製する場合と、沈澱法により所定の組成比の蓚酸塩、ク
エン酸塩等のカルボン酸塩として沈澱させ調製する場合
とでは、後者の調製法を採用する方が、同一性状の目的
物を得る点で製法上の再現性が高(なり、また高Tc相
の比率の高い目的物も得易い。
Next, regarding the manufacturing method, in manufacturing the superconducting material according to the present invention, there are two cases in which the raw material powders are mixed as they are and adjusted to a predetermined composition ratio, and two cases in which oxalate, citrate, etc. are prepared in a predetermined composition ratio by a precipitation method. Compared to the case of precipitating and preparing as a carboxylate salt of It's also easy to get what you're looking for.

〔実施例〕〔Example〕

実施例1 原料粉末としてBizO:+、PbO,SrCO3,C
aCO3及びCuOを構成元素のモル比がBiz、0+
 pbo、 6+ Srz+ Caz+Cu3.、とな
るように秤量し、これを乳鉢にて充分混合粉砕した後、
アルミナボート中に入れ、800℃ 24時間 電気炉
中、空気中で加熱固相反応を行わせて黒色粉末を得た。
Example 1 BizO:+, PbO, SrCO3, C as raw material powder
The molar ratio of the constituent elements of aCO3 and CuO is Biz, 0+
pbo, 6+ Srz+ Caz+Cu3. , and after thoroughly mixing and pulverizing it in a mortar,
The mixture was placed in an alumina boat, and a solid phase reaction was carried out in an electric furnace at 800° C. for 24 hours in the air to obtain a black powder.

この粉末を乳鉢で再び充分混合粉砕した後、約1000
 kg/c+aのプレスで直径約1 cm、厚さ約1m
mの圧粉体ベレットとなし、これを845°Cで143
時間電気炉中、空気中加熱焼成した。焼成後の試料につ
いてICAPにより構成元素のモル比を分析した結果(
CUのモル数でノーマライズした結果) Bit、wa
+ PbO,IIl+ Sr2. OO+ Cat、 
9b+ Cu3.60であった。
After thoroughly mixing and pulverizing this powder in a mortar, approximately 1,000
Approximately 1 cm in diameter and 1 m in thickness with a press of kg/c+a
m green compact pellet and heat it at 845°C to 143°C.
It was heated and fired in air in an electric furnace for an hour. The results of analyzing the molar ratio of the constituent elements of the sample after firing using ICAP (
Results normalized by the number of moles of CU) Bit, wa
+ PbO, IIl+ Sr2. OO+Cat,
9b+ Cu3.60.

このものの電気抵抗の温度変化は第1図に示す通りであ
る。本図からも明らかな通り、この物質の電気抵抗は1
20により落下し始め、115により急激に落下し約1
05にでゼロとなっており、この物質が極めて超電導特
性に優れていることを認めた。
The temperature change in electrical resistance of this material is as shown in FIG. As is clear from this figure, the electrical resistance of this material is 1
It started to fall by 20, and it suddenly fell by 115, and about 1
05, and it was recognized that this material has extremely excellent superconducting properties.

また、マイスナー効果測定結果は、第2図に示す通り、
約105に以上で超電導体となることが確認された。
In addition, the Meissner effect measurement results are as shown in Figure 2.
It was confirmed that a superconductor becomes a superconductor when the temperature is about 105 or more.

更に、本物質は実用上機械的強度の充分な焼結体となっ
ていた。
Furthermore, this material was a sintered body with sufficient mechanical strength for practical use.

実施例2 実施例1における845°Cでの焼成時間を244時間
に延長し、他は同様に実施した。焼成後の試料について
ICAPにより組成を分析した結果(Cuのモル数でノ
ーマライズした結果)その組成はaftowar Pb
o、+o+ SrZ、00+ Ca1.qa* CL1
3.60であった。
Example 2 The firing time at 845° C. in Example 1 was extended to 244 hours, and the other procedures were the same. As a result of analyzing the composition of the sample after firing by ICAP (normalized by the number of moles of Cu), the composition was aftowar Pb
o, +o+ SrZ, 00+ Ca1. qa* CL1
It was 3.60.

本実施例で得た物質の、電気抵抗の温度変化は第3図に
示す通りである。本図からも明らかな通り、この物質の
電気抵抗は115により落下し始め、110により急激
に落下し約107にでゼロとなっており、この物質が極
めて超電導特性に優れていることを認めた。
The temperature change in electrical resistance of the material obtained in this example is as shown in FIG. As is clear from this figure, the electrical resistance of this material begins to drop at 115, rapidly drops at 110, and reaches zero at about 107, confirming that this material has extremely excellent superconducting properties. .

実施例3 原料粉末としてBizOz+PbO,SrCOz、Ca
C0:+及びCuOを、その焼成後の化学組成比が旧1
.2+ Pt11. Z*Srz+ Ca1n Cu3
.zとなるように秤量し、これを乳鉢で充分混合した後
、アルミナボート中に入れ800°C24時間 電気炉
中、空気中で加熱固相反応を行って黒色粉末を得た。こ
の黒色粉末を再び乳鉢で混合粉砕した後、約1000k
g/cAのプレスで直径約1 cm、厚さ約1 mmの
圧粉体ベレットとなし、これを845°C48時間電気
炉中、空気中加熱焼成した。焼成後の試料についてIC
APにより組成を分析した結果(Cuのモル数でノーマ
ライズした結果) lli+、+z+ Pbo、q4+
 Sr1.a6+ CaI。
Example 3 BizOz+PbO, SrCOz, Ca as raw material powder
C0:+ and CuO, the chemical composition ratio after firing is old 1
.. 2+ Pt11. Z*Srz+ Ca1n Cu3
.. After thoroughly mixing the mixture in a mortar and a mortar, the mixture was placed in an alumina boat and heated at 800° C. for 24 hours in an electric furnace in air for solid phase reaction to obtain a black powder. After mixing and pulverizing this black powder in a mortar again, approximately 1000 kg
A green pellet having a diameter of about 1 cm and a thickness of about 1 mm was formed by pressing at g/cA, and the pellet was fired in air at 845° C. for 48 hours. IC about the sample after firing
Results of composition analysis by AP (normalized by number of moles of Cu) lli+, +z+ Pbo, q4+
Sr1. a6+ CaI.

90+ Cub、Zであった。It was 90+ Cub, Z.

このものの電気抵抗の温度変化は第4図に示す通りであ
る。図に示す通り電気抵抗は約120により急激に落下
し90にでゼロとなる。
The temperature change in electrical resistance of this material is as shown in FIG. As shown in the figure, the electrical resistance suddenly drops at about 120 and becomes zero at about 90.

また、本物質のマイスナー効果及び機械的強度は、実施
例1の場合と略同様の結果を示した。
Furthermore, the Meissner effect and mechanical strength of this material showed substantially the same results as in Example 1.

実施例4 Bi、 Pb、 Sr、 Ca、 Cuのそれぞれの硝
酸塩の混合水溶液に蓚酸アンモニウムを加え成分元素の
組成比が旧r、qz+ Pbo、as+ Sr2.0+
 Ca2.0+ ct13.2の蓚酸塩を沈殿させ、こ
れを100°Cで乾燥、250°Cで加熱後800°C
24時間電気炉中、空気中で加熱して黒色粉末を合成し
た。これを再粉砕混合し、約1000 kg/cm”の
プレスで直径1 cm、厚さ1柵の圧粉体ベレットとし
て、これを845°C48時間電気炉中、空気中加熱焼
成した。この試料をI CAPで分析した結果(Coの
モル数でノーマライズした結果) B’ 1.eat 
PbO* ZO+ S’2−00+Cal、q6 Cu
3.zoであった・このものの電気抵抗の温度変化は第
5図に示すように約120により急激に落下し約105
にでゼロとなった。また本物質のマイスナー効果及び機
械的強度は実施例1の場合と略同様の結果を示した。
Example 4 Ammonium oxalate was added to a mixed aqueous solution of nitrates of Bi, Pb, Sr, Ca, and Cu, and the composition ratio of the component elements was adjusted to old r, qz+ Pbo, as+ Sr2.0+
Ca2.0+ ct13.2 oxalate was precipitated, dried at 100°C, heated at 250°C, and then heated to 800°C.
A black powder was synthesized by heating in air in an electric furnace for 24 hours. This was re-pulverized and mixed, pressed at approximately 1000 kg/cm'' to form a green pellet with a diameter of 1 cm and a thickness of 1 bar, and then heated and fired in air at 845°C for 48 hours in an electric furnace. I CAP analysis results (normalized by the number of moles of Co) B' 1. eat
PbO* ZO+ S'2-00+Cal, q6 Cu
3. As shown in Figure 5, the temperature change in the electrical resistance of this object suddenly dropped from about 120 to about 105.
It became zero. Furthermore, the Meissner effect and mechanical strength of this material showed substantially the same results as in Example 1.

実施例5 実施例4と同様の方法で、成分元素の組成比がBio、
tz+ Pb1har Srz、Or Ca2.Or 
Cu3.2 \旧2.12+Pbo、z4+ Srz、
z+ C7)z、z+ C113,2、又は旧1.71
 Pb6゜:ll Sr2.0+ ca、、 0+ C
u:+、 oの蓚酸塩を夫々沈殿させ、実施例4と同様
の方法で焼成ベレットを合成した。これらの試料のIC
APによる分析結果(Cuのモル比でノーマライズした
結果)は、夫々順に、Bfo、、z Pb1.14 S
r+、qa CaI、、6Cui、z 、旧z、orl
Pbo、+z Srz、+q Ca2.16 Cu=、
z 、Bit、t Pbo。
Example 5 In the same manner as in Example 4, the composition ratio of the component elements was set to Bio,
tz+ Pb1har Srz, Or Ca2. Or
Cu3.2 \old 2.12+Pbo, z4+ Srz,
z+ C7) z, z+ C113,2 or old 1.71
Pb6゜:ll Sr2.0+ ca,, 0+ C
The oxalates of u:+ and o were precipitated, respectively, and baked pellets were synthesized in the same manner as in Example 4. IC of these samples
The analysis results by AP (results normalized by the molar ratio of Cu) are, in order, Bfo, z Pb1.14 S
r+, qa CaI,, 6Cui, z, old z, orl
Pbo, +z Srz, +q Ca2.16 Cu=,
z, Bit, t Pbo.

+ o Srz、 o Cao、 9’7 C1l:1
. oであった。
+ o Srz, o Cao, 9'7 C1l:1
.. It was o.

これらのうち、第1番目の物質の電気抵抗の温度変化は
、第6図に示す通り、約120により落下し約85にで
ゼロとなり、第2、第3番目の物質も略同様であった。
Among these, the temperature change in the electrical resistance of the first substance, as shown in Figure 6, falls at about 120 and becomes zero at about 85, and the same was true for the second and third substances. .

また本物質のマイスナー効果及び機械的強度は実施例1
の場合と略同様の結果を示した。
In addition, the Meissner effect and mechanical strength of this substance were determined in Example 1.
The results were almost the same as in the case of .

実施例6 Bt、 pb、 Sr、 Ca、 Cuのそれぞれの硝
酸塩の混合水溶液に蓚酸アンモニウムを加え成分元素の
組成比がBI +、 921 Pbo、 4B+ Sr
2. O+ Caz、 O+ Cu3.Zの蓚酸塩を沈
殿させ、これを100°Cで乾燥、250°Cで加熱後
800’C24時間電気炉中、空気中で加熱して黒色粉
末を合成した。これを再粉砕混合し、約1000 kg
/cm2のプレスで直径1cm、厚さ1 mmの圧粉体
ベレットとして、これを835”C92時間電気炉中、
空気中加熱焼成した。この試料をICAPで分析した結
果(Cuのモル数でノーマライズした結果) Bj+−
82+ PbO0O1l+ Srz、 OO+(:al
、 qo Cui、 zoであった。
Example 6 Ammonium oxalate was added to a mixed aqueous solution of nitrates of Bt, pb, Sr, Ca, and Cu so that the composition ratio of the component elements was BI +, 921 Pbo, 4B + Sr
2. O+ Caz, O+ Cu3. The oxalate of Z was precipitated, dried at 100°C, heated at 250°C, and then heated in air at 800°C for 24 hours in an electric furnace to synthesize a black powder. This is re-pulverized and mixed to produce approximately 1000 kg
/cm2 press to form a green pellet with a diameter of 1 cm and a thickness of 1 mm, and then heated in an electric furnace at 835"C for 92 hours.
Fired in air. Results of analyzing this sample with ICAP (results normalized by the number of moles of Cu) Bj+-
82+ PbO0O1l+ Srz, OO+(:al
, qo cui, zo.

このものの電気抵抗の温度変化は第7図に示すように約
120により急激に落下し約107にでゼロとなった。
As shown in FIG. 7, the temperature change in electrical resistance of this product dropped sharply at about 120°C and became zero at about 107°C.

このもののX線回折図は第8図の如く高温相は90%以
上となった。また本物質のマイスナー効果は第9図の如
(高温相は約95%以上となっていることを認めた。
The X-ray diffraction diagram of this product, as shown in Figure 8, showed that the high temperature phase accounted for 90% or more. Furthermore, the Meissner effect of this material was confirmed as shown in Figure 9 (the high temperature phase was approximately 95% or more).

実施例7 旧、 Pb−+ Sr、 Ca、 Cuのそれぞれの硝
酸塩の混合水溶液に蓚酸アンモニウムを加え成分元素の
組成比がBi+、qz+ Pb0.4B+ Srz、o
+ CaZ、O+ Cux、zの蓚酸塩を沈殿させ、こ
れを100°Cで乾燥、250°Cで加熱後800°C
24時間電気炉中、空気中で加熱して黒色粉末を合成し
た。これを再粉砕混合し、約1000 kg/ cm2
のプレスで直径1 cm、厚さ1 nunの圧粉体ベレ
ットとして、これを830°C72時間電気炉中、空気
中加熱焼成した。この試料をICAPで分析した結果(
Cuのモル数でノーマライズした結果) Bt l+ 
’lo+ l’bo、 2G+ Srz、 o。
Example 7 Ammonium oxalate was added to a mixed aqueous solution of nitrates of old, Pb-+ Sr, Ca, and Cu, and the composition ratio of the component elements was Bi+, qz+ Pb0.4B+ Srz, o
+ CaZ, O+ Cux, oxalate of z is precipitated, dried at 100°C, heated at 250°C, and then heated to 800°C.
A black powder was synthesized by heating in air in an electric furnace for 24 hours. This is re-pulverized and mixed to approximately 1000 kg/cm2
This was pressed into a green pellet with a diameter of 1 cm and a thickness of 1 nm, and this was fired in air at 830° C. for 72 hours in an electric furnace. The results of analyzing this sample with ICAP (
Results normalized by the number of moles of Cu) Bt l+
'lo+ l'bo, 2G+ Srz, o.

Ca1.q6 cu3.20であった。Ca1. It was q6 cu3.20.

このものの電気抵抗の温度変化は約120により急激に
落下し約107にでゼロとなった。このもののX線回折
図は第10図の如く高温相は約95%以上であった。ま
た本物質のマイスナー効果は実施例6の場合と略同様の
結果を示した。
The temperature change in electrical resistance of this product dropped sharply at about 120°C and became zero at about 107°C. The X-ray diffraction diagram of this product is shown in Figure 10, and the high temperature phase was about 95% or more. Furthermore, the Meissner effect of this substance showed substantially the same results as in Example 6.

実施例8 Bi、 Pb、 Sr、 Ca、 Cuのそれぞれの硝
酸塩の混合水溶液に蓚酸アンモニウムを加え成分元素の
組成比がBl 1.4+ Pbo、6+ Sr2.O+
 ”a2−0+ CCl2−6の蓚酸塩を沈殿させ、こ
れを100“Cで乾燥、250°Cで加熱後800°C
24時間電気炉中、空気中で加熱して黒色粉末を合成し
た。これを再粉砕混合し、約1000 kg/cm”の
プレスで直径1(1、厚さ1. mmの圧粉体ペレット
として、これを845°0150時間電気炉中、空気中
加熱焼成した。この試料をICAPで分析した結果(C
uのモル数でノーマライズした結果) Bi+1+ r
’bo、oq+ Sr1.96+ Cal、 q。CU
3. haであった。
Example 8 Ammonium oxalate was added to a mixed aqueous solution of nitrates of Bi, Pb, Sr, Ca, and Cu so that the composition ratio of the component elements was Bl 1.4+ Pbo, 6+ Sr2. O+
"a2-0+ CCl2-6 oxalate is precipitated, dried at 100"C, heated at 250°C, and then heated to 800°C.
A black powder was synthesized by heating in air in an electric furnace for 24 hours. This was re-pulverized and mixed, pressed at approximately 1000 kg/cm'' to form green pellets with a diameter of 1 (1 mm) and a thickness of 1. mm. Results of analyzing the sample with ICAP (C
Results normalized by the number of moles of u) Bi+1+ r
'bo, oq+ Sr1.96+ Cal, q. C.U.
3. It was ha.

このものの電気抵抗の温度変化は約120により>、m
に落下し約107にでゼロとなった。このもののX線回
折図およびマイスナー効果測定の結果高温相は約95%
程度含有されることが認められた。
The temperature change in electrical resistance of this material is approximately 120 >, m
It fell to zero at about 107. As a result of the X-ray diffraction diagram and Meissner effect measurement of this product, the high temperature phase is approximately 95%.
It was recognized that some amount of

〔発明の効果〕〔Effect of the invention〕

本発明によるDi−Pb−Sr−Ca−Cu−0系物質
は少なくとも液体窒素沸点77に以上に超電導臨界温度
があり、さらに高温の105に以上に臨界温度をもつ超
電導物質である。
The Di-Pb-Sr-Ca-Cu-0 based material according to the present invention is a superconducting material having a superconducting critical temperature at least above the liquid nitrogen boiling point of 77, and an even higher critical temperature of 105.

この物質の製法は上記の如く容易であり、特に沈澱法よ
る場合は、前述したように製法上の再現性が高くなり、
又高Tc相の比率の高い目的物も得やすいという特徴を
もっている。
The manufacturing method for this substance is easy as described above, and especially when using the precipitation method, as described above, the reproducibility of the manufacturing method is high,
It also has the characteristic that it is easy to obtain a target product with a high ratio of high Tc phase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で得た物質の電気抵抗温度相関図で
あり、第2図は同物質の複素帯磁率−温度相関図である
。 第3図は、実施例2で得た物質の、第4図は、実施例3
で得た物質の、第5図は実施例4で得た物質の、第6図
は実施例5で得た物質の、夫々電気抵抗−温度相関図で
ある。 第7図は実施例6で得た物質の電気抵抗−温度相関図、
第8図は同実施例で得た物質のX線回折図、第9図は同
実施例で得た物質の複素帯磁率〜温度相関図を夫々示す
。 第10図は実施例7で得た物質のX線回折図である。 R/R(300K) ロ(盲体頃 X (左已対辷ヒ)
FIG. 1 is an electrical resistance-temperature correlation diagram of the material obtained in Example 1, and FIG. 2 is a complex magnetic susceptibility-temperature correlation diagram of the same material. FIG. 3 shows the material obtained in Example 2, and FIG. 4 shows the material obtained in Example 3.
FIG. 5 is an electrical resistance-temperature correlation diagram of the material obtained in Example 4, and FIG. 6 is an electrical resistance-temperature correlation diagram of the material obtained in Example 5. FIG. 7 is an electrical resistance-temperature correlation diagram of the material obtained in Example 6,
FIG. 8 shows an X-ray diffraction diagram of the material obtained in the same example, and FIG. 9 shows a complex magnetic susceptibility-temperature correlation diagram of the material obtained in the same example. FIG. 10 is an X-ray diffraction diagram of the substance obtained in Example 7. R/R (300K) Ro (blind body X (left hand vs. side)

Claims (1)

【特許請求の範囲】[Claims] (1)Bi−Pb−Sr−Ca−Cu−O系酸化物であ
って、構成元素Bi、Pb、Sr、Ca、Cuのモル数
の比が、Bi_n、Pb_m、Sr_x、Ca_y、C
u_z(n、m、x、y、zは0.5<n<2.6、0
.01≦m≦1.5、1.5≦x≦2.2、0.8≦y
≦2.2、2.0≦z≦4の値を示す)で表されるBi
−Pb−Sr−Ca−Cu−O系超電導物質。
(1) A Bi-Pb-Sr-Ca-Cu-O based oxide, in which the molar ratio of constituent elements Bi, Pb, Sr, Ca, and Cu is Bi_n, Pb_m, Sr_x, Ca_y, and C
u_z (n, m, x, y, z are 0.5<n<2.6, 0
.. 01≦m≦1.5, 1.5≦x≦2.2, 0.8≦y
≦2.2, 2.0≦z≦4)
-Pb-Sr-Ca-Cu-O based superconducting material.
JP63150634A 1988-05-09 1988-06-17 Bi-Pb-Sr-Ca-Cu-o based superconducting material Expired - Fee Related JP2893405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150634A JP2893405B2 (en) 1988-05-09 1988-06-17 Bi-Pb-Sr-Ca-Cu-o based superconducting material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11183188 1988-05-09
JP63-111831 1988-05-09
JP63150634A JP2893405B2 (en) 1988-05-09 1988-06-17 Bi-Pb-Sr-Ca-Cu-o based superconducting material

Publications (2)

Publication Number Publication Date
JPH0244028A true JPH0244028A (en) 1990-02-14
JP2893405B2 JP2893405B2 (en) 1999-05-24

Family

ID=26451132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150634A Expired - Fee Related JP2893405B2 (en) 1988-05-09 1988-06-17 Bi-Pb-Sr-Ca-Cu-o based superconducting material

Country Status (1)

Country Link
JP (1) JP2893405B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344483A (en) * 2005-06-08 2006-12-21 Dowa Holdings Co Ltd Black electrode and display panel having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344483A (en) * 2005-06-08 2006-12-21 Dowa Holdings Co Ltd Black electrode and display panel having the same
JP4644878B2 (en) * 2005-06-08 2011-03-09 Dowaエレクトロニクス株式会社 Black electrode and plasma display panel

Also Published As

Publication number Publication date
JP2893405B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JPH0696450B2 (en) High temperature superconductor and manufacturing method thereof
US4898851A (en) Process for making 90 k superconductors using a spray dried oxalate precursor
NO180765B (en) Process for the preparation of a superconducting material
US4861753A (en) Process for making superconductors using barium nitrate
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
US5449660A (en) Method of producing compound oxide by using partly citrating process
JPH0244028A (en) Bi-pb-sr-ca-cu-o superconducting material
JP2879448B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
WO1988010515A1 (en) Improved process for making 90 k superconductors
JPH01242419A (en) Bi-pb-ca-sr-cu-o based superconducting material
JP3151558B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JP2879447B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
US5300486A (en) Synthesis of BiPbSrCaCuO superconductor
US5378682A (en) Dense superconducting bodies with preferred orientation
JP3021639B2 (en) Dense superconductor with suitable orientation
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPH0574528B2 (en)
JP2648524B2 (en) Ceramics and their manufacturing method
EP0446552B1 (en) Superconductive compounds and process for producing said compounds
JPH0238359A (en) Production of superconductor
JP2859283B2 (en) Oxide superconductor
JPH01320226A (en) Production of bismuth-containing oxide superconducting material
JPH0214826A (en) Oxide superconductor and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees