JPH0214826A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH0214826A
JPH0214826A JP63164364A JP16436488A JPH0214826A JP H0214826 A JPH0214826 A JP H0214826A JP 63164364 A JP63164364 A JP 63164364A JP 16436488 A JP16436488 A JP 16436488A JP H0214826 A JPH0214826 A JP H0214826A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxide
vanadium
compound
composition formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63164364A
Other languages
Japanese (ja)
Inventor
Hozumi Endo
穂積 遠藤
Yasuo Oguri
康生 小栗
Naoto Kijima
直人 木島
Akihiko Sumiyama
住山 昭彦
Masaaki Mizuno
正明 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP63164364A priority Critical patent/JPH0214826A/en
Priority to PCT/JP1989/000133 priority patent/WO1989007579A1/en
Priority to EP19890902293 priority patent/EP0359827A4/en
Priority to KR1019890701879A priority patent/KR900700394A/en
Publication of JPH0214826A publication Critical patent/JPH0214826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor capable of exhibiting superconductivity at nitrogen liquefaction temperature or above by providing an oxide superconductor with a specific composition formula. CONSTITUTION:An oxide superconductor is oxides of bismuth, vanadium, strontium, calcium and copper and expressed by the following composition formula. The composition formula BaalphaVbetaSrgammaCadeltaCuepsilonOx (alpha, beta, gamma, delta and epsilon represent number of mol of respective elements) alpha=2.0-beta; 0.2<=beta<=0.8; 1.8<=gamma<=2.2; 1.8<=delta<=2.2; 2.7<=epsilon<=3.3).

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は酸化物超伝導体およびその製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an oxide superconductor and a method for producing the same.

特に、本発明は高い臨界温度(Tc)を有する高温酸化
物超伝導体に関するものである。
In particular, the present invention relates to high temperature oxide superconductors with high critical temperatures (Tc).

[従来の技術とその課題1 従来、酸化物超伝導体としてBa (Pb Bi ) 
03が知られていたが、この物質のTcは12にであり
冷媒として液体ヘリウムを使用する必要があった。
[Conventional technology and its problems 1 Conventionally, Ba (Pb Bi ) was used as an oxide superconductor.
03 was known, but this material had a Tc of 12 and required the use of liquid helium as a refrigerant.

最近、RBa2Cu307 x(R;希土類元素)で示
される物質のなかにはTcが90Kを越えるものが見出
され、冷媒として液体窒素が使用できるようになった。
Recently, among substances represented by RBa2Cu307x (R; rare earth element), a substance with Tc exceeding 90K has been found, and liquid nitrogen has become usable as a refrigerant.

しかし超伝導材料として実用に供するためには、更に高
い臨界温度を有する材料が望ましい。
However, in order to put it into practical use as a superconducting material, it is desirable to have a material with an even higher critical temperature.

[課題を解決するための手段1 本発明の目的は、窒素の液化温度以上で超伝導を示す酸
化物超伝導体を提供することにあり、かかる目自勺はビ
スマス、バナジウム、ストロンチウム、カルシウムおよ
び銅を含有する酸化物超伝導体により達成される。
[Means for Solving the Problems 1] An object of the present invention is to provide an oxide superconductor that exhibits superconductivity above the liquefaction temperature of nitrogen. This is achieved with copper-containing oxide superconductors.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係る酸化物超伝導体は、ビスマス、バナジウム
、ストロンチウム、カルシウムおよび銅の酸化物であっ
て、下記組成式、 BiaV13SrγCaδCueOx (式中、α、I3.γ、δ、εおよびXはそれぞれの元
素のモル数を表わし、 α= 2.0−13 0.2≦p≦0,8 1.8≦γ≦2.2 1.8≦δ≦2.2 2.7≦8≦3.3 好ましくは、 α= 2.0−13 0.4≦p≦0.6 γ=2.0 δ=2.0 ε=3.0 である。) で示される。
The oxide superconductor according to the present invention is an oxide of bismuth, vanadium, strontium, calcium, and copper, and has the following compositional formula: BiaV13SrγCaδCueOx (where α, I3.γ, δ, ε, and X are each Represents the number of moles of the element, α = 2.0-13 0.2≦p≦0,8 1.8≦γ≦2.2 1.8≦δ≦2.2 2.7≦8≦3.3 Preferably, α=2.0-13 0.4≦p≦0.6 γ=2.0 δ=2.0 ε=3.0.

本発明に係る酸化物超伝導体は、ビスマス、バナジウム
、ストロンチウム、カルシウムおよび銅の酸化物、炭酸
塩、水酸化物、硝酸塩、硫酸塩、蓚酸塩、塩化物、アル
コキサイド等を原料として製造することができる。これ
らの原料化合物から適宜選択して、Bi 、 V 、 
Sr 、 CaおよびCuの原子比が前記組成になるよ
うに秤量し、粉末混合法、湿式共沈法、蒸発乾固法、ア
ルコキサイドによるゾルゲル法等、従来から知られてい
る均一混合を目的とする方法により混合される。得られ
た混合物は乾燥されたのち焼成される。
The oxide superconductor according to the present invention can be produced using oxides, carbonates, hydroxides, nitrates, sulfates, oxalates, chlorides, alkoxides, etc. of bismuth, vanadium, strontium, calcium, and copper as raw materials. I can do it. By appropriately selecting from these raw material compounds, Bi, V,
Weigh so that the atomic ratios of Sr, Ca and Cu become the above composition, and aim for homogeneous mixing using conventionally known methods such as powder mixing method, wet coprecipitation method, evaporation to dryness method, sol-gel method using alkoxide, etc. Mixed by method. The resulting mixture is dried and then fired.

この際、固相反応を十分に進行させるためには、粉末を
加圧成形してペレット状で焼成することが好ましい。焼
成温度は、通常、各塩類を分解させるため、500℃以
上で行なうことが好ましい。バナジウム化合物としては
酸化バナジウムが好ましく使用されるが、酸化バナジウ
ムの融点は690℃であるため、−次焼成を680℃以
下で十分性ない、酸化バナジウムが実質上認められなく
なった後、830〜870℃1好ましくは、850〜8
60℃で二次焼成される。酸化バナジウムの消失はX線
回折により(五酸化バナジウムの主回折角は2θ:20
.3°に現れる)検出することができる。二次焼成は、
少なくとも1時間は必要であり、好ましくは24時間以
上、さらに好ましくは120時間以上行なうことが推奨
され、長時間焼成するほど得られる超伝導体の超伝導特
性が向上する。
At this time, in order to allow the solid phase reaction to proceed sufficiently, it is preferable that the powder is press-molded and fired in the form of pellets. Generally, the firing temperature is preferably 500° C. or higher in order to decompose each salt. Vanadium oxide is preferably used as the vanadium compound, but since the melting point of vanadium oxide is 690°C, it is not sufficient to perform the second firing at 680°C or lower. ℃1 Preferably 850-8
Secondary firing is performed at 60°C. Vanadium oxide disappeared by X-ray diffraction (the main diffraction angle of vanadium pentoxide is 2θ:20
.. 3°) can be detected. The secondary firing is
At least one hour is required, preferably 24 hours or more, more preferably 120 hours or more, and the longer the firing time, the better the superconducting properties of the superconductor obtained.

このようにして得られた複合酸化物は超伝導特性につい
て解析することにより、Tc−ll0Kを有する酸化物
超伝導体であることを確認することができる。すなわち
、CuKa線(1,5418A )による粉末X線回折
を行なうと、ビスマス、ストロンチウム、カルシウム、
および銅を必須成分として含む公知の酸化物超伝導体の
回折パターンに現れるものと同様のTc−80にの物質
による回折ピークおよびTc−110にの物質による回
折ピークが現れる。その他に不純物であるCub、 C
a2CuO3等のピークおよび若干の不明ピークが現れ
る。本発明の焼結体は、110にの回折ピーク群を有す
る物質の体積分率が大きいはどTcが高くなる。焼結体
中での110にの回折ピーク群を有する物質の体積分率
の大小は粉末X線回折により、Tc−80にの物質に特
異的に現れる2θ=23.3±0.2°の回折ピークの
強度(L)に対するTc−110にの回折ピーク群を有
する物質に特異的に現れる2<3 = 24.0±0.
2°の回折ピークの強度(H)の比率を求めることによ
り、便宜的に比較することが可能であり、H/L≧0.
1、特に、H/L≧1.0の酸化物超伝導体は極めて良
好な超伝導特性を示す。
By analyzing the superconducting properties of the composite oxide thus obtained, it can be confirmed that it is an oxide superconductor having Tc-ll0K. That is, when powder X-ray diffraction is performed using CuKa radiation (1,5418A), bismuth, strontium, calcium,
A diffraction peak due to the substance at Tc-80 and a diffraction peak due to the substance at Tc-110 similar to those appearing in the diffraction pattern of a known oxide superconductor containing copper as an essential component appear. In addition, impurities Cub, C
Peaks such as a2CuO3 and some unknown peaks appear. In the sintered body of the present invention, the larger the volume fraction of the substance having the diffraction peak group at 110, the higher the Tc. The size of the volume fraction of a substance having a diffraction peak group at 110 in a sintered body is determined by powder X-ray diffraction at 2θ = 23.3 ± 0.2°, which appears specifically for a substance at Tc-80. 2<3 = 24.0±0. which appears specifically in a substance having a diffraction peak group at Tc-110 with respect to the intensity (L) of the diffraction peak.
By determining the ratio of the intensities (H) of the 2° diffraction peak, it is possible to conveniently compare, and H/L≧0.
1. In particular, oxide superconductors with H/L≧1.0 exhibit extremely good superconducting properties.

[実施例] 次に本発明を実施例により更に具体的に説明するが、本
発明はその要旨を越えない限り、以下の実施例に限定さ
れるものではない。
[Examples] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1 酸化ビスマス(III ) 0.8777g 、酸化バ
ナジウム(V ) 0.1468g 、炭酸ストロンチ
ウム0.7946g、炭酸カルシウム0.5387 g
、酸化銅(II ) 0.6421g (いずれも純度
99.9%以上の粉末)をメハン乳鉢に入れ、エタノー
ルを約1me添加し、スラリー状にして充分撹拌混合し
た。混合物のBi 、 V 、 Sr 、 Caおよび
Cuの原子比は、1.4:0.6+2.0+2.0:3
.0である。
Example 1 Bismuth (III) oxide 0.8777g, vanadium (V) oxide 0.1468g, strontium carbonate 0.7946g, calcium carbonate 0.5387g
, 0.6421 g of copper (II) oxide (all powders with a purity of 99.9% or higher) were placed in a Mehan mortar, and approximately 1 me of ethanol was added to form a slurry and thoroughly stirred and mixed. The atomic ratio of Bi, V, Sr, Ca and Cu in the mixture is 1.4:0.6+2.0+2.0:3
.. It is 0.

得られた混合粉末0.4gを、常法により加圧成形(1
ton / cm2) L、直径10mmのベレットを
作成した。このペレットを空気中にて600 ’Cで2
4時間−次焼成し、次いで860℃で24時時間法焼成
した後、50℃/ hrの降温速度で室温まで徐冷した
0.4 g of the obtained mixed powder was press-molded (1
ton/cm2) L, a pellet with a diameter of 10 mm was created. This pellet was heated to 600'C in air for 2 hours.
After 4-hour secondary firing and then 24-hour firing at 860°C, it was slowly cooled to room temperature at a cooling rate of 50°C/hr.

得られた焼成物の電気抵抗および交流複素帯磁率の温度
依存性を測定した結果、110にで臨界l益度に達し、
本物質が110に級超伝導体であることが確認された。
As a result of measuring the temperature dependence of the electrical resistance and AC complex magnetic susceptibility of the obtained fired product, the critical gain was reached at 110,
It was confirmed that this material is a class 110 superconductor.

本物質のCuKa線(1,5418A )による粉末X
線回折の結果、不純物およびTc−80にの物質による
回折ピークに混じって、2θ=4.8°、2θ= 24
.0°、2θ:26.2°およびその他の角度に、Tc
−110にの物質による回折ピークが得られた。得られ
たX線回折図を図−1に示した。
Powder X of this substance by CuKa ray (1,5418A)
As a result of line diffraction, 2θ = 4.8°, 2θ = 24, mixed with the diffraction peaks due to impurities and Tc-80
.. At 0°, 2θ: 26.2° and other angles, Tc
A diffraction peak due to the substance at -110 was obtained. The obtained X-ray diffraction pattern is shown in Figure 1.

また、lloK級の超伝導物質の体積分率の大小を比較
するために、Tc−80にの物質に特異的に現れる2e
 :23.3±0.2°の回折ピークの強度(図−2に
おけるL)に対する前記回折ピーク群を有する物質に特
異的に現れる2e :24.0±0.2°の回折ピーク
の強度(図−2におけるH)の比率を求めたところ、H
/L=2.7であり、Tc−110にの超伝導物質を大
量に含有すること力’I7I:’認された。
In addition, in order to compare the volume fractions of lloK-class superconducting materials, 2e, which specifically appears in Tc-80 materials, was
2e: Intensity of the diffraction peak at 24.0±0.2° (L in Figure 2) that appears specifically in the substance having the above diffraction peak group for the intensity of the diffraction peak at 23.3±0.2° (L) When we calculated the ratio of H) in Figure 2, we found that H
/L=2.7, and it was recognized that Tc-110 contained a large amount of superconducting material.

実施例2〜5、比較例1〜6 ビスマス、バナジウム、ストロンチウム、カルシウムお
よび銅の原子比率を表−1に記載したように変更したこ
と以外は実施例1と同様の方法で酸化物超伝導体を製造
し、H/Lを測定した。得られた結果を表−1に示す。
Examples 2 to 5, Comparative Examples 1 to 6 Oxide superconductors were produced in the same manner as in Example 1, except that the atomic ratios of bismuth, vanadium, strontium, calcium, and copper were changed as shown in Table 1. was manufactured and H/L was measured. The results obtained are shown in Table-1.

表−1 られる。Table-1 It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は、実施例1で製造された超伝導体について、C
uKa線(1,5418Aンを用いて得られた粉末X 
線回折パターンである。図−1において、([)印が付
されたピークはTC〜110にの相を示し、Δ印が付さ
れたピークはTC〜80にの相を示し、0印が付された
ピークはCuOを示し、・印が付されたピークはCa2
CuO3を示す。 図−2は、図−1における回折角(20)が23〜24
°付近の拡大図であり、HおよびLはそれぞれ2 E3
 :24.04°および2 (3= 23.29°の回
折ピークの強度を表わす。 回折強度 図−2 回折角2θ (度)
Figure 1 shows the superconductor manufactured in Example 1 with C
Powder X obtained using uKa radiation (1,5418A)
This is a line diffraction pattern. In Figure 1, the peaks marked ([) indicate the phase of TC~110, the peaks marked Δ indicate the phase of TC~80, and the peaks marked 0 indicate the phase of CuO The peaks marked with ・ are Ca2
Indicates CuO3. In Figure 2, the diffraction angle (20) in Figure 1 is 23 to 24.
This is an enlarged view around °, H and L are each 2 E3
:24.04° and 2 (3 = represents the intensity of the diffraction peak at 23.29°. Diffraction intensity diagram-2 Diffraction angle 2θ (degrees)

Claims (2)

【特許請求の範囲】[Claims] (1)組成式  BiαVβSrγCaδCuεOx (式中、α,β,γ,δ,εおよびxはそれぞれの元素
のモル数を表わし、 α=2.0−β 0.2≦β≦0.8 1.8≦γ≦2.2 1.8≦δ≦2.2
(1) Composition formula BiαVβSrγCaδCuεOx (In the formula, α, β, γ, δ, ε and x represent the number of moles of each element, α=2.0−β 0.2≦β≦0.8 1.8 ≦γ≦2.2 1.8≦δ≦2.2
2.7≦ε≦3.3 である。) で示される酸化物超伝導体。 (2)ビスマス化合物、バナジウム化合物、ストロンチ
ウム化合物、カルシウム化合物および銅化合物の混合物
を、酸素含有ガス雰囲気下、680℃以下の温度で酸化
バナジウムが実質上認められなくなるまで一次焼成した
後、830〜870℃で二次焼成することを特徴とする
特許請求の範囲第1項記載の酸化物超伝導体の製造法。
2.7≦ε≦3.3. ) oxide superconductor. (2) A mixture of a bismuth compound, a vanadium compound, a strontium compound, a calcium compound, and a copper compound is primarily fired in an oxygen-containing gas atmosphere at a temperature of 680°C or lower until vanadium oxide is virtually no longer observed, and then 2. The method for producing an oxide superconductor according to claim 1, wherein the secondary firing is carried out at a temperature of .degree.
JP63164364A 1988-02-12 1988-07-01 Oxide superconductor and production thereof Pending JPH0214826A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63164364A JPH0214826A (en) 1988-07-01 1988-07-01 Oxide superconductor and production thereof
PCT/JP1989/000133 WO1989007579A1 (en) 1988-02-12 1989-02-10 Superconducting oxide and method of producing the same
EP19890902293 EP0359827A4 (en) 1988-02-12 1989-02-10 Superconducting oxide and method of producing the same
KR1019890701879A KR900700394A (en) 1988-02-12 1989-10-12 Oxide superconductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63164364A JPH0214826A (en) 1988-07-01 1988-07-01 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH0214826A true JPH0214826A (en) 1990-01-18

Family

ID=15791741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164364A Pending JPH0214826A (en) 1988-02-12 1988-07-01 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH0214826A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124798U (en) * 1981-01-29 1982-08-03
JPS59132397A (en) * 1983-01-18 1984-07-30 株式会社神戸製鋼所 Storage container of radioactive material
JPS61140999U (en) * 1985-02-21 1986-09-01

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124798U (en) * 1981-01-29 1982-08-03
JPS59132397A (en) * 1983-01-18 1984-07-30 株式会社神戸製鋼所 Storage container of radioactive material
JPS61140999U (en) * 1985-02-21 1986-09-01

Similar Documents

Publication Publication Date Title
HUT52645A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
JPH0214826A (en) Oxide superconductor and production thereof
EP0359827A1 (en) Superconducting oxide and method of producing the same
JP2593475B2 (en) Oxide superconductor
JPH0264018A (en) Oxide superconducting substance and production thereof
JPH01257132A (en) Oxide superconducting material and production thereof
JP2752969B2 (en) Oxide superconductor
JP2593480B2 (en) Manufacturing method of oxide superconductor
JP3034267B2 (en) Oxide superconductor
JP2879448B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JPH0264017A (en) Oxide superconducting substance and production thereof
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPH0269321A (en) Oxide superconducting material and its production
JP3151558B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JP2597579B2 (en) Superconductor manufacturing method
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2879447B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JPH02149426A (en) Oxide superconducting material and its production
JPH0222129A (en) Production of oxide superconducting substance
JPH01226736A (en) Oxide superconductor
JPH01234326A (en) Oxide superconductor
JPH03223118A (en) Production of oxide superconductor
JPH0446015A (en) Oxide superconducting material and its production
JPH03247550A (en) Production of bismuth-containing superconductor