JPH0269321A - Oxide superconducting material and its production - Google Patents

Oxide superconducting material and its production

Info

Publication number
JPH0269321A
JPH0269321A JP63216756A JP21675688A JPH0269321A JP H0269321 A JPH0269321 A JP H0269321A JP 63216756 A JP63216756 A JP 63216756A JP 21675688 A JP21675688 A JP 21675688A JP H0269321 A JPH0269321 A JP H0269321A
Authority
JP
Japan
Prior art keywords
compd
superconducting material
epsilon
gamma
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63216756A
Other languages
Japanese (ja)
Inventor
Hozumi Endo
穂積 遠藤
Atsushi Tsuchiya
淳 土屋
Naoto Kijima
直人 木島
Akihiko Sumiyama
住山 昭彦
Masaaki Mizuno
正明 水野
Yasuo Oguri
康生 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP63216756A priority Critical patent/JPH0269321A/en
Priority to PCT/JP1989/000133 priority patent/WO1989007579A1/en
Priority to EP19890902293 priority patent/EP0359827A4/en
Priority to KR1019890701879A priority patent/KR900700394A/en
Publication of JPH0269321A publication Critical patent/JPH0269321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide superconducting material having high critical temp. as high as 120K level by calcining a mixture consisting of an Sr compd., Ca compd., Bi compd., Cu compd., and Cr compd. under a specified condition. CONSTITUTION:A mixture consisting of an Sr compd., Ca compd, Bi compd., Cu compd. and Cr compd. is calcined primarily at 750-820 deg.C in O2-contg. atmosphere until Bi oxide becomes unrecognizable. Then, the product is calcined secondarily at 830-860 deg.C to obtain thus a target oxide superconducting material, which is expressed by the formula wherein each alpha, beta, gamma, delta, epsilon, and x is number of mole of each element; alpha/beta is <=1.0; 0<epsilon/beta<=0.6; gamma>0.; 0.5<=alpha/(gamma+epsilon) <=1.2; 0.25>=delta/(alpha+beta+gamma+delta+epsilon)<=0.65; pref. 1.8<=alpha<=2.2; 1.8<=beta<=2.2) 2.7<=delta<=3.3) 0.1<=epsilon<1.0; 1.0<=gamma<=2.2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物超伝導物質およびその製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an oxide superconducting material and a method for producing the same.

特に、本発明は高い臨界温度(Tc)を有する高温酸化
物超伝導物質に関するものである。
In particular, the present invention relates to high temperature oxide superconducting materials with high critical temperatures (Tc).

[従来の技術とその課題] 窒素の液化温度(77K)以上で超伝導を示す希土類系
超伝導物質(Tc=90Klr&)が発見されて以来、
超伝導フィーバ−が世界的な規模で起こったが、このフ
ィーバ−を支えたのは技術革新に対する一般の期待感で
あり、産業上ではパワーエレクトロニクスにおける電力
貯蔵、輸送、発電分野や、弱電エレクトロニクス分野、
高磁場を利用する科学技術、医療分野等、広範な利用分
野が期待されている。
[Prior art and its challenges] Since the discovery of rare earth superconducting materials (Tc = 90Klr&) that exhibit superconductivity above the liquefaction temperature of nitrogen (77K),
Superconducting fever has occurred on a global scale, and this fever has been supported by the public's expectations for technological innovation, and in industry, it has increased in the fields of power storage, transportation, and power generation in power electronics, and in the field of low-power electronics. ,
It is expected to be used in a wide range of fields, including science and technology that utilize high magnetic fields and medical fields.

従来の高Tcを有する超伝導物質としては、RBa 2
 Cu 30゜−X(R;希土類元素)で示されるペロ
ブスカイト型化合物が知られている。全世界的にこの物
質について研究がなされてきたが、その理由は、上記物
質が従来知られている超伝導物質のうち、唯一窒素の液
化温度以上で超伝導を示すことがわかったためである。
As a conventional superconducting material with high Tc, RBa 2
A perovskite type compound represented by Cu 30°-X (R; rare earth element) is known. Research on this material has been carried out all over the world, and the reason for this is that it has been found that of all the previously known superconducting materials, it is the only one that exhibits superconductivity at temperatures above the liquefaction temperature of nitrogen.

しかしながら、従来この物質の超伝導転移温度は77に
よりは高いものの、90に程度であって、冷媒に安価な
液化窒素を使用する限り、温度的に近接していることが
不安材料であり、工業材料として実用化するためには、
窒素の液化温度の少なくとも1.5倍である120に以
上の高Tc超伝導物質の開発が望まれていた。しかるに
、90に級の超伝導物質である前記ペロブスカイト型化
合物について本物質周辺の組成や元素置換を行なっても
90に級を越える高Tc超伝導物質は得られていなかっ
た。
However, although the superconducting transition temperature of this substance is higher than 77, it is around 90, and as long as cheap liquefied nitrogen is used as a refrigerant, the close temperature is a cause for concern, and industrial In order to put it into practical use as a material,
It has been desired to develop a superconducting material with a high Tc of 120 or higher, which is at least 1.5 times the liquefaction temperature of nitrogen. However, even if the perovskite type compound, which is a 90 class superconducting material, were subjected to composition changes and element substitutions around the material, a high Tc superconducting material exceeding 90 class could not be obtained.

一方、Bi −Sr −Cu −0系の酸化物超伝導物
質は、C,Michelら(Z、 Phys、 B −
Condensed Matter 68 。
On the other hand, the Bi-Sr-Cu-0-based oxide superconducting material was developed by C. Michel et al. (Z, Phys, B-
Condensed Matter 68.

421−423 (1987))により報告されていた
。このBi −Sr −Cu −0系物質は、超伝導を
示すものの、残念ながらTc−22に程度と低いもので
あった。
421-423 (1987)). Although this Bi-Sr-Cu-0 type material exhibited superconductivity, it was unfortunately as low as Tc-22.

〔課題を解決するための手段1 本発明の目的は、窒素の液化温度以上で超伝導を示し、
とくに120に級の高Tcを有する酸化物超伝導物質お
よびその、製造法を提供することにある。
[Means for Solving the Problems 1] An object of the present invention is to exhibit superconductivity above the liquefaction temperature of nitrogen,
In particular, it is an object of the present invention to provide an oxide superconducting material having a high Tc of about 120, and a method for producing the same.

そして、本発明の上記目的はストロンチウム、カルシウ
ム、ビスマス、銅およびクロムを特定の割合で含有する
酸化物超伝導物質により達成される。
The above object of the present invention is achieved by an oxide superconducting material containing strontium, calcium, bismuth, copper and chromium in specific proportions.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係る酸化物超伝導物質は、ストロンチウム、カ
ルシウム、ビスマス、銅およびクロムの酸化物であり、
下記組成式 %式% (式中、αI D lγ、δ、εおよびXはそれぞれの
元素のモル数を表わし、α/p≦1.0 、 O<ε/
p≦0.6゜γ>0.0.5≦α/(γ+ε)≦1,2
゜0.25≦δl(α十〇+γ+δ+8)≦0.65好
ましくは、1.8≦α≦2.2 、1.8≦p≦2.2
゜2.7≦δ≦3.3 、0.1≦ε≦1.0 、1.
0≦γ≦2.2である。)で示される。
The oxide superconducting material according to the present invention is an oxide of strontium, calcium, bismuth, copper and chromium,
The following composition formula % formula % (In the formula, αI D lγ, δ, ε and X represent the number of moles of each element, α/p≦1.0, O<ε/
p≦0.6゜γ>0.0.5≦α/(γ+ε)≦1,2
゜0.25≦δl (α10+γ+δ+8)≦0.65, preferably 1.8≦α≦2.2, 1.8≦p≦2.2
゜2.7≦δ≦3.3, 0.1≦ε≦1.0, 1.
0≦γ≦2.2. ).

本発明に係る酸化物超伝導物質は、ストロンチウム、カ
ルシウム、ビスマス、鋼およびクロムの炭酸塩、水酸化
物、硝酸塩、硫酸塩、蓚酸塩、塩化物、アルコキサイド
等を原料として製造することができる。これらの原料化
合物から適宜選択して、Sr 、 Ca 、 Bi 、
 CuおよびCrの原子比が前記組成になるように秤量
し、粉末混合法、湿式共沈法、蒸発乾固法、アルコキサ
イド法等、従来から知られている均一混合を目的とする
方法により混合される。得られた混合物は乾燥されたの
ち焼成される。
The oxide superconducting material according to the present invention can be produced using carbonates, hydroxides, nitrates, sulfates, oxalates, chlorides, alkoxides, etc. of strontium, calcium, bismuth, steel, and chromium as raw materials. By appropriately selecting from these raw material compounds, Sr, Ca, Bi,
The atomic ratio of Cu and Cr is weighed so as to have the above composition, and mixed by a conventionally known method aiming at uniform mixing such as a powder mixing method, a wet coprecipitation method, an evaporation drying method, an alkoxide method, etc. Ru. The resulting mixture is dried and then fired.

この際、固相反応を十分ならしめるためには、粉末を加
圧成形してペレット状で焼成することが好ましい。焼成
温度は、通常、各塩類を分解させるため、500℃以上
で行なうことが好ましい。ビスマス化合物としては酸化
ビスマスが好ましく使用されるが、酸化ビスマスの融点
は825℃であるため、−次焼成を750〜8200C
で十分行ない、複合酸化物の生成により酸化ビスマスが
実質上比められなくなった後、830〜860℃で二次
焼成される。酸化ビスマスの消失はX線回折により検出
することができる。このようにして得られた複合酸化物
は超伝導特性について解析することにより、Tc−12
0Kを有する酸化物超伝導物質であることを確認するこ
とができる。
At this time, in order to ensure a sufficient solid phase reaction, it is preferable that the powder be pressure-molded and fired in the form of pellets. Generally, the firing temperature is preferably 500° C. or higher in order to decompose each salt. Bismuth oxide is preferably used as the bismuth compound, but since the melting point of bismuth oxide is 825°C, the second firing is performed at 750 to 8200°C.
After this is carried out sufficiently and bismuth oxide becomes virtually incomparable due to the formation of a composite oxide, secondary firing is carried out at 830 to 860°C. Disappearance of bismuth oxide can be detected by X-ray diffraction. By analyzing the superconducting properties of the composite oxide thus obtained, Tc-12
It can be confirmed that the material is an oxide superconducting material with 0K.

超伝導物質であることを確認する一般的な方法は、電気
抵抗の温度特性を調べることにより、急激な電気抵抗の
減少からTcを求めることができる。但し、この場合、
超伝導物質の薄皮モデルで考えられるように極めて微量
な場合でも、見掛は上は全体が超伝導物質であるかのよ
うな情報を与えることがあるので、注意が必要である。
A common method for confirming that a material is a superconducting material is to examine the temperature characteristics of electrical resistance, and Tc can be determined from the rapid decrease in electrical resistance. However, in this case,
Even if the amount is extremely small, as is the case with the thin-skinned model of superconducting materials, care must be taken because it may give information that appears to be entirely superconducting material.

材料として超伝導物質を評価するには、電気抵抗の温度
特性を調べることだけでは必ずしも十分とは言えないの
で、本発明においては、超伝導物質の含有量の指標とし
て粉末X線解析法を採用した。
In order to evaluate superconducting materials as materials, it is not always sufficient to examine the temperature characteristics of electrical resistance, so in the present invention, powder X-ray analysis is used as an indicator of the content of superconducting materials. did.

すなわち、Cu Ka線(1,5418人)による粉末
X線回折を行なうと、ビスマス、ストロンチウム、カル
シウムおよび鋼を必須成分として含む公知の酸化物超伝
導物質の回折パターンに現われるピークと同様のTc−
80にの超伝導物質による回折ピークおよびTc−12
0にの超伝導物質による回折ピークが現われる。また、
その他に不純物であるCuO、Ca2CuO3等のピー
クが現われる。
That is, when powder X-ray diffraction is performed using Cu Ka rays (1,5418 people), a Tc-
Diffraction peak due to superconducting material at 80 and Tc-12
0, a diffraction peak due to the superconducting material appears. Also,
In addition, peaks of impurities such as CuO and Ca2CuO3 appear.

焼結体中でのTc−120にの回折ピーク群を有する物
質の体積分率の大小は、粉末X線回折において、Tc−
80にの超伝導物質に特異的に現われる2θ= 23.
3±0.2°の回折ピークの強度(L)に対するTc−
120にの超伝導物質に特異的に現われる2θ:24.
0±0.2°の回折ピークの強度(H)の比率を求める
ことにより比較することができる。
The volume fraction of the substance having a diffraction peak group at Tc-120 in the sintered body is determined by powder X-ray diffraction.
2θ which appears specifically in superconducting materials at 80 = 23.
Tc- for the intensity (L) of the diffraction peak at 3±0.2°
2θ that appears specifically in superconducting materials at 120:24.
Comparison can be made by determining the ratio of the intensities (H) of the diffraction peaks at 0±0.2°.

焼結体中でのTc−120にの回折ピーク群を有する物
質の体積分率が大きいほどTcが高< 、H/Lが1.
5以上、好ましくは3.0以上の超伝導体は、極めて良
好な超伝導特性を示す。
The larger the volume fraction of the substance having a diffraction peak group at Tc-120 in the sintered body, the higher the Tc< and the H/L of 1.
A superconductor with a molecular weight of 5 or more, preferably 3.0 or more exhibits extremely good superconducting properties.

[実施例J 次に本発明を実施例により更に具体的に説明するが、本
発明はその要旨を越えない限り、以下の実施例に限定さ
れるものではない。
[Example J] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1 炭酸ストロンチウム0.7789 g 、炭酸カルシウ
ム0.5281 g 、酸化ビスマス(III ) 0
.9833 g 、酸化鋼(II ) 0.6295 
gおよび酸化クロム0.0802 g (いずれも高純
度化学社製、純度99.9%以上の粉末)をメノウ乳鉢
に入れ、エタノールを約1m(添加してスラリー状にし
、エタノール臭がなくなるまで充分撹拌混合した。混合
物のSr 、 Ca 、 Bi 、 CuおよびCrの
原子比は、2:2:1.6:3:0.4である。
Example 1 Strontium carbonate 0.7789 g, calcium carbonate 0.5281 g, bismuth (III) oxide 0
.. 9833 g, oxidized steel (II) 0.6295
g and 0.0802 g of chromium oxide (all manufactured by Kojundo Kagaku Co., Ltd., powders with a purity of 99.9% or higher) are placed in an agate mortar, and approximately 1 m of ethanol is added (to form a slurry, stir until the ethanol smell disappears). The mixture was stirred and mixed.The atomic ratio of Sr, Ca, Bi, Cu, and Cr in the mixture was 2:2:1.6:3:0.4.

得られた混合粉末0.4gを、常法により加圧成形(1
ton / cm2) L、直径10mmのペレットを
作成した。このペレットを空気中にてsoo ’cで5
時間−次焼成し、次いで850℃で24時時間法焼成し
た。
0.4 g of the obtained mixed powder was press-molded (1
ton/cm2) L, a pellet with a diameter of 10 mm was created. This pellet is soo'c in the air for 5
A time-second firing was performed, followed by a 24-hour method firing at 850°C.

得られた焼成物の電気抵抗および交流複素帯磁率の温度
依存性を測定した結果、120°にで臨界温度に達し、
本物質が120に級超伝導物質であることが確認された
As a result of measuring the temperature dependence of the electrical resistance and AC complex magnetic susceptibility of the obtained fired product, the critical temperature was reached at 120°,
It was confirmed that this material is a 120 class superconducting material.

Tc−120にの超伝導物質の体積分率の大小を比較す
るために、Tc−80にの超伝導物質に特異的に現われ
る2θ= 23.3±0.2°の回折ピークの強度(図
1におけるL)に対するTc−120にの超伝導物質に
特異的に現われる2θ:24.0±0.2°の回折ピー
クの強度(図1におけるH)の比率(H/L)を求め、
焼成物の原子比とともに表−1に示す。
In order to compare the volume fraction of the superconducting material in Tc-120, the intensity of the diffraction peak at 2θ = 23.3 ± 0.2° that appears specifically in the superconducting material in Tc-80 (Fig. Find the ratio (H/L) of the intensity of the diffraction peak at 2θ:24.0±0.2° (H in Figure 1) that appears specifically in the superconducting material in Tc-120 to L) in Figure 1,
Table 1 shows the atomic ratio of the fired product.

実施例2〜6および比較例1〜2 Sr 、 Ca 、 Bi 、 CuおよびCrの原子
比を変更して実施例1と同様の方法で超伝導物質を製造
し、(H/L)を求めた。得られた結果を表−1に示す
Examples 2 to 6 and Comparative Examples 1 to 2 Superconducting materials were produced in the same manner as in Example 1 by changing the atomic ratios of Sr, Ca, Bi, Cu, and Cr, and (H/L) was determined. . The results obtained are shown in Table-1.

表−1Table-1

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明の超伝導物質のCuKa線(1,541
8人)による粉末X!8回折における回折角(2θ)が
23〜24°付近の拡大図であり、Hは2θ= 24.
0±0.2°の回折ピークの強度を、Lは2θ:23.
3±0.2°の回折ピークの強度を表わす。
Figure 1 shows the CuKa line (1,541
Powder X by 8 people)! This is an enlarged view where the diffraction angle (2θ) in 8 diffraction is around 23 to 24°, and H is 2θ=24.
The intensity of the diffraction peak at 0±0.2°, L is 2θ:23.
It represents the intensity of the diffraction peak at 3±0.2°.

Claims (1)

【特許請求の範囲】 (1)組成式 SrαCaβBiγCuδCrεOx (式中、α,β,γ,δ,εおよびxはそれぞれの元素
のモル数を表わし、 α/β≦1.0 0<ε/β≦0.6 γ>0 0.5≦α/(γ+ε)≦1.2 0.25≦δ/(α+β+γ+δ+ε)≦0.65であ
る。) で示される酸化物超伝導物質。 (2)組成式 SrαCaβBiγCuδCrεOx (式中、α,β,γ,δ,εおよびxはそれぞれの元素
のモル数を表わし、 1.8≦α≦2.2 1.8≦β≦2.2 2.7≦δ≦3.3 0.1≦ε≦1.0 1.0≦γ≦2.2 である。) で示される酸化物超伝導物質。 (3)ストロンチウム化合物、カルシウム化合物、ビス
マス化合物、銅化合物およびクロム化合物の混合物を、
酸素含有ガス雰囲気下、750〜820℃で酸化ビスマ
スが実質上認められなくなるまで一次焼成した後、83
0〜860℃で二次焼成することを特徴とする特許請求
の範囲第1項または第2項記載の酸化物超伝導物質の製
造法。
[Claims] (1) Compositional formula SrαCaβBiγCuδCrεOx (wherein α, β, γ, δ, ε and x represent the number of moles of each element, α/β≦1.0 0<ε/β≦ 0.6 γ>0 0.5≦α/(γ+ε)≦1.2 0.25≦δ/(α+β+γ+δ+ε)≦0.65). (2) Composition formula SrαCaβBiγCuδCrεOx (in the formula, α, β, γ, δ, ε and x represent the number of moles of each element, 1.8≦α≦2.2 1.8≦β≦2.2 2 .7≦δ≦3.3 0.1≦ε≦1.0 1.0≦γ≦2.2). (3) A mixture of strontium compounds, calcium compounds, bismuth compounds, copper compounds and chromium compounds,
After primary firing in an oxygen-containing gas atmosphere at 750 to 820°C until bismuth oxide is virtually no longer observed, 83
3. A method for producing an oxide superconducting material according to claim 1 or 2, characterized in that secondary firing is performed at 0 to 860°C.
JP63216756A 1988-02-12 1988-08-31 Oxide superconducting material and its production Pending JPH0269321A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63216756A JPH0269321A (en) 1988-08-31 1988-08-31 Oxide superconducting material and its production
PCT/JP1989/000133 WO1989007579A1 (en) 1988-02-12 1989-02-10 Superconducting oxide and method of producing the same
EP19890902293 EP0359827A4 (en) 1988-02-12 1989-02-10 Superconducting oxide and method of producing the same
KR1019890701879A KR900700394A (en) 1988-02-12 1989-10-12 Oxide superconductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216756A JPH0269321A (en) 1988-08-31 1988-08-31 Oxide superconducting material and its production

Publications (1)

Publication Number Publication Date
JPH0269321A true JPH0269321A (en) 1990-03-08

Family

ID=16693426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216756A Pending JPH0269321A (en) 1988-02-12 1988-08-31 Oxide superconducting material and its production

Country Status (1)

Country Link
JP (1) JPH0269321A (en)

Similar Documents

Publication Publication Date Title
Song et al. Rapid Formation of the 110 K Phase in BI‐Pb‐Sr‐Ca‐Cu‐O through Freeze‐Drying Powder Processing
HUT52645A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JPH0269321A (en) Oxide superconducting material and its production
EP0359827A1 (en) Superconducting oxide and method of producing the same
JPH01257132A (en) Oxide superconducting material and production thereof
JPH0264018A (en) Oxide superconducting substance and production thereof
JPH0264017A (en) Oxide superconducting substance and production thereof
JPH02503789A (en) Improved manufacturing method for 90K superconductor
JPH03242322A (en) Production of oxide superconductor
US5194421A (en) Bi-Pb-Sr-Mg-Ba-Ca-Cu-O oxide superconductors and production thereof
JPH0214826A (en) Oxide superconductor and production thereof
JPH03112815A (en) Oxide superconducting substance and its production
JPH01234326A (en) Oxide superconductor
JPH02225319A (en) Production of oxide superconductive material
JP2637617B2 (en) Manufacturing method of superconducting material
JPH02248321A (en) Oxide superconductor
JPH0393627A (en) Oxide superconductor
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
KR100928553B1 (en) SUPERCONDUCTING COMPOSITIONS WITH HIGH Tc AND PROCESSES FOR PREPARING BULK MATERIALS COMPRISED OF THE SAME
JPH06183822A (en) Method of rapid synthesis of bi-based superconductor
JPH0222129A (en) Production of oxide superconducting substance
JP2879448B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JPH01257133A (en) Oxide superconductor
JPH03223118A (en) Production of oxide superconductor
JPH0375261A (en) Oxide superconductor and production thereof