JPH03112815A - Oxide superconducting substance and its production - Google Patents

Oxide superconducting substance and its production

Info

Publication number
JPH03112815A
JPH03112815A JP1251538A JP25153889A JPH03112815A JP H03112815 A JPH03112815 A JP H03112815A JP 1251538 A JP1251538 A JP 1251538A JP 25153889 A JP25153889 A JP 25153889A JP H03112815 A JPH03112815 A JP H03112815A
Authority
JP
Japan
Prior art keywords
compound
firing
stage
delta
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1251538A
Other languages
Japanese (ja)
Inventor
Atsushi Tsuchiya
淳 土屋
Hozumi Endo
穂積 遠藤
Naoto Kijima
直人 木島
Akihiko Sumiyama
住山 昭彦
Masaaki Mizuno
正明 水野
Yasuo Oguri
康生 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1251538A priority Critical patent/JPH03112815A/en
Publication of JPH03112815A publication Critical patent/JPH03112815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a Bi-Sr-Ca-Cu-O-based oxide superconducting substance having high critical temperature by blending a Sr compound with Ca compound, Bi compound and copper compound in a given ratio and calcining the blend in an oxygen-containing atmosphere at specific two stages. CONSTITUTION:A strontium compound (e.g. strontium carbonate) is blended with a calcium compound (e.g. CaCO3), a bismuth compound (e.g. bismuth oxide) and a copper compound (e.g. CuO) to give a compound shown by the formula [alpha/beta<=1.5;0.8<= alpha/gamma<=2; 0.25<=delta/(alpha+beta+gamma+delta)<=0.8; 0.5<=beta/delta<=0.85; 0.57<=(alpha+delta)/(alpha+ beta+gamma+delta)<=0.65]. Then the blend is calcined in an oxygen-containing atmosphere at 600-820 deg.C as first stage and then further burnt at 830-895 deg.C as a second stage to give a superconducting substance having high critical temperature of about 120K class and a small amount of impurity phase.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高い臨界温度(Tc−12OK )を有する
Bi −Sr −Ca −Cu −0系酸化物超伝導物
質およびその製造法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a Bi-Sr-Ca-Cu-0 based oxide superconducting material having a high critical temperature (Tc-12OK) and a method for producing the same. be.

[従来の技術とその課題] 窒素の液化温度(77K )以上で超伝導を示す希土類
系超伝導物質が発見されて以来、希土類系超伝導物質に
ついて数多くの研究がなされているが、RBa2Cu3
07−x(R;希土類元素)で示されるペロブスカイト
型化合物の超伝導転移温度は77によりは高いものの、
90に程度であって、冷媒に安価な液化窒素を使用する
限り、温度的に近接していることが不安材料であり、工
業材料として実用化するためには、窒素の液化温度の少
なくとも1.5倍である120に以上の高Tc超伝導物
質の開発が望まれていた。しかるに、90に級の超伝導
物質である前記ペロブスカイト型化合物について本物質
周辺の組成や元素置換を行なっても90に級を越える高
Tc超伝導物質は得られていなかった。
[Prior art and its issues] Since the discovery of rare earth superconducting materials that exhibit superconductivity above the liquefaction temperature of nitrogen (77 K), numerous studies have been conducted on rare earth superconducting materials.
Although the superconducting transition temperature of the perovskite compound represented by 07-x (R; rare earth element) is higher than that of 77,
As long as cheap liquefied nitrogen is used as a refrigerant, it is a concern that the temperatures are close to each other. It has been desired to develop a superconducting material with a high Tc of 120 or higher, which is five times that of the previous one. However, even if the perovskite type compound, which is a 90 class superconducting material, were subjected to composition changes and element substitutions around the material, a high Tc superconducting material exceeding 90 class could not be obtained.

一方、Bi −Sr −Ca −Cu −0系の酸化物
超伝導物質が、H,Maedaら(Jap、 J、 A
ppl、 Phys、 Lett、 27L209 (
1988) )により報告され、該系には臨界温度の異
なる少なくとも3種の化合物(Tc−2OK、 80 
K。
On the other hand, Bi-Sr-Ca-Cu-0-based oxide superconducting materials have been proposed by H., Maeda et al. (Jap, J., A.
ppl, Phys, Lett, 27L209 (
(1988)), and the system contains at least three compounds with different critical temperatures (Tc-2OK, 80
K.

120 K )が存在することが明らかになった。これ
らの3種の化合物のうち臨界温度が高いため実用上有望
な物質であるTc−120にの化合物(以下、H相とい
う。)は、焼成時間を長くすればある程度多く取得しう
ろことが知られている。しかしながら、仕込組成がH相
の組成と一致しない場合には、過剰に仕込んだ元素が超
伝導物質ではない別の不純物相を形成してしまう。した
がって、H相を多量に含有するBi系酸化物超伝導物質
を得るためには、組成およびその製造条件を最適化する
ことが必要であった。
120 K) was found to exist. Among these three types of compounds, it is known that a certain amount of the Tc-120 compound (hereinafter referred to as H phase), which is a promising material for practical use due to its high critical temperature, can be obtained by increasing the firing time. It is being However, if the charged composition does not match the composition of the H phase, the excessively charged elements will form another impurity phase that is not a superconducting material. Therefore, in order to obtain a Bi-based oxide superconducting material containing a large amount of H phase, it was necessary to optimize the composition and manufacturing conditions.

[課題を解決するための手段1 本発明の目的は、120に級の高Tcを有するBi系酸
化物超伝導物質の最適組成およびその製造法を提供する
ことにある。
[Means for Solving the Problems 1] An object of the present invention is to provide an optimal composition of a Bi-based oxide superconducting material having a high Tc of about 120, and a method for producing the same.

即ち、本発明の要旨は、 組成式 Sr a Ca p Bi 7 CuδOx(
式中、αeDtγ、δおよびXはそれぞれの元素のモル
数を表し、 α/p≦1.5 0.8≦αlγ≦2.0 0.25≦δ/(α+β+γ+δ)≦0.800.50
≦131δ≦0.85 0.57≦(β+δ)/(α+β+γ+δ)≦0.65
である。)で示される酸化物超伝導物質、およびストロ
ンチウム化合物、カルシウム化合物、ビスマス化合物お
よび銅化合物の混合物を、酸素含有ガス雰囲気下、60
0〜820℃で焼成を行なった後、さらに830〜89
5℃で焼成を行なうことを特徴とする上記酸化物超伝導
物質の製造法に存する。
That is, the gist of the present invention is as follows: Compositional formula: Sr a Cap Bi 7 CuδOx (
In the formula, αeDtγ, δ and X represent the number of moles of each element, α/p≦1.5 0.8≦αlγ≦2.0 0.25≦δ/(α+β+γ+δ)≦0.800.50
≦131δ≦0.85 0.57≦(β+δ)/(α+β+γ+δ)≦0.65
It is. ) and a mixture of a strontium compound, a calcium compound, a bismuth compound, and a copper compound in an oxygen-containing gas atmosphere at 60°C.
After firing at 0 to 820°C, further 830 to 89°C
The method for producing the oxide superconducting material described above is characterized in that firing is performed at 5°C.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明によって製造される酸化物超伝導物質は、ストロ
ンチウム、カルシウム、ビスマスおよび銅の酸化物であ
り、下記組成式 %式% (式中、α1p2γ、δおよびXはそれぞれの元素のモ
ル数を表し、α/p≦1.5.0.8≦α/γ≦2.0
.0.25≦δ/(α+p+γ+δ)≦0.80.0.
50≦43/δ≦0.85.0.57≦(p+δ)/(
α十p十γ+δ)≦0.65である。)で示される組成
物であって、ストロンチウム、カルシウム、ビスマスお
よび鋼の炭酸塩、水酸化物、硝酸塩、硫酸塩、塩化物、
アルコキサイド等を原料として製造することができる。
The oxide superconducting material produced by the present invention is an oxide of strontium, calcium, bismuth, and copper, and has the following compositional formula (%) (where α1p2γ, δ, and X represent the number of moles of each element. , α/p≦1.5.0.8≦α/γ≦2.0
.. 0.25≦δ/(α+p+γ+δ)≦0.80.0.
50≦43/δ≦0.85.0.57≦(p+δ)/(
α1p1γ+δ)≦0.65. ) of carbonates, hydroxides, nitrates, sulfates, chlorides of strontium, calcium, bismuth and steel;
It can be produced using alkoxides and the like as raw materials.

これらの原料化合物から適宜選択して、Sr、Ca。Sr, Ca, etc. are suitably selected from these raw material compounds.

BiおよびCuの原子比が前記組成になるように秤量し
、粉末混合法、湿式共沈法、蒸発乾固法、アルコキサイ
ド法等、従来から知られている均一混合を目的とする方
法により混合される。得られた混合物は乾燥されたのち
焼成される。
Bi and Cu are weighed so that the atomic ratio is the above composition, and mixed by a conventionally known method for uniform mixing, such as a powder mixing method, wet coprecipitation method, evaporation drying method, or alkoxide method. Ru. The resulting mixture is dried and then fired.

この際、固相反応を十分ならしめるために、粉末を加圧
成形してペレット状で焼成することが好ましい。焼成は
、各塩類を分解させるために、酸素含有ガス雰囲気下で
行なわれ、本発明においては二段階で焼成される。
At this time, in order to ensure a sufficient solid phase reaction, it is preferable that the powder is pressure-molded and fired in the form of pellets. The calcination is performed in an oxygen-containing gas atmosphere in order to decompose each salt, and in the present invention, the calcination is performed in two stages.

まず、600〜820℃において一段目の焼成を行なう
。焼成温度にもよるが、焼成時間は短すぎても長すぎて
もH相の生成する割合が低下する傾向にある。また、該
焼成は、ある一定温度に保持しても徐々に昇温してもよ
く、その焼成パターンは適宜選択することができる。
First, a first stage firing is performed at 600 to 820°C. Although it depends on the firing temperature, if the firing time is too short or too long, the proportion of H phase produced tends to decrease. Further, the firing may be performed by keeping the temperature at a certain constant level or gradually increasing the temperature, and the firing pattern can be selected as appropriate.

H相は酸素含有ガス雰囲気下、かなりの高温においても
熱力学的に安定であるので、−段目の焼成でできるだけ
多量のH相を生成させておけば、二段目の焼成時間を短
くすることができる。
Since the H phase is thermodynamically stable even at considerably high temperatures in an oxygen-containing gas atmosphere, by generating as much H phase as possible in the -th stage firing, the second stage firing time can be shortened. be able to.

次いで、830〜895℃において二段目の焼成を行な
う。焼成時間は、少なくとも1時間は必要であり、好ま
しくは24時間以上、さらに好ましくは120時間以上
行なうことが推奨され、長時間焼成するほど得られる超
伝導体の特性が向上する。
Next, a second stage of firing is performed at 830 to 895°C. The firing time is required to be at least 1 hour, preferably 24 hours or more, more preferably 120 hours or more, and the longer the firing time, the better the properties of the obtained superconductor will be.

二段目の焼成パターンも一段目の場合と同様に適宜選択
することができるが、通常はある一定温度に保持するこ
とにより行なうことが好ましい。
Although the second stage firing pattern can be selected as appropriate in the same manner as the first stage, it is usually preferable to carry out the firing by maintaining the temperature at a certain constant temperature.

また、H相の生成割合を増大させるためには、雰囲気中
の酸素分圧により二次焼成の温度(T2℃)を変更する
ことが好ましく、常圧で焼成する場合、経験的に、 830≦T2≦32.5 X 1θgP02+ 895
好ましくは、 20.3X1θgP02+860≦T2≦32.5 X
 log PO2+ 895(但し、PO2は焼成時の
酸素分圧(気圧)を示す。)で二次焼成を行なうことが
効果的であることがわかっている。
In addition, in order to increase the generation rate of the H phase, it is preferable to change the temperature (T2°C) of the secondary firing depending on the oxygen partial pressure in the atmosphere, and when firing at normal pressure, empirically, 830≦ T2≦32.5 X 1θgP02+ 895
Preferably, 20.3X1θgP02+860≦T2≦32.5X
It has been found that it is effective to perform the secondary firing at log PO2+ 895 (where PO2 indicates the oxygen partial pressure (atmospheric pressure) at the time of firing).

このようにして得られた複合酸化物は超伝導特性につい
て解析することにより、Tc−120Kを有する酸化物
超伝導物質であることを確認することができる。超伝導
物質であることを確認する一般的な方法は、電気抵抗の
温度特性を調べることにより、急激な電気抵抗の減少か
らTcを求めることができる。但し、この場合、超伝導
物質の薄皮モデルで考えられるように極めて微量な場合
でも、見掛は上は全体が超伝導物質であるかのような情
報を与えることがあるので、注意が必要である。
By analyzing the superconducting properties of the thus obtained composite oxide, it can be confirmed that it is an oxide superconducting material having Tc-120K. A common method for confirming that a material is a superconducting material is to examine the temperature characteristics of electrical resistance, and Tc can be determined from the rapid decrease in electrical resistance. However, in this case, care must be taken as even if the amount is extremely small as in the thin-skin model of superconducting materials, information may be given that appears to be entirely superconducting material. be.

材料として超伝導物質を評価するには、電気抵抗の温度
特性を調べることだけでは必ずしも十分とは言えないの
で、本発明においては、超伝導物質の含有量の指標とし
て粉末X線解析法を採用した。
In order to evaluate superconducting materials as materials, it is not always sufficient to examine the temperature characteristics of electrical resistance, so in the present invention, powder X-ray analysis is used as an indicator of the content of superconducting materials. did.

すなわち、CuKa線(1,5418入)による粉末X
線回折を行なうと、ビスマス、ストロンチウム、カルシ
ウムおよび銅を必須成分として含む公知の酸化物超伝導
物質の回折パターンに現われるピークと同様のTc−8
0にの超伝導物質(以下、L相という)による回折ピー
クおよびH相による回折ピークが現われる。また、その
他に不純物であるCub。
That is, powder X by CuKa wire (1,5418 pieces)
When line diffraction is performed, Tc-8, which is similar to the peak that appears in the diffraction pattern of known oxide superconducting materials containing bismuth, strontium, calcium, and copper as essential components, is found.
0, a diffraction peak due to the superconducting material (hereinafter referred to as L phase) and a diffraction peak due to the H phase appear. In addition, Cub is an impurity.

Ca2CuO3等のピークが現われる。Peaks such as Ca2CuO3 appear.

超伝導物質中でのH相の体積分率の大小は、粉末X線回
折において、L相に特異的に現われる2θ= 23.3
±0.2°の回折ピークの強度(L)に対するH相に特
異的に現われる2θ:24.0±0.2°の回折ピーク
の強度(H)の比率を求めることにより比較することが
できる。
The volume fraction of the H phase in a superconducting material is determined by 2θ = 23.3, which specifically appears in the L phase in powder X-ray diffraction.
Comparison can be made by determining the ratio of the intensity (H) of the diffraction peak at 2θ:24.0±0.2°, which appears specifically in the H phase, to the intensity (L) of the diffraction peak at ±0.2°. .

本発明の超伝導物質において、主たる不純物であるCa
2CuO3は一般に超伝導物質の粒間に存在し、超伝導
電流の導通を妨げる。
In the superconducting material of the present invention, Ca is the main impurity.
2CuO3 generally exists between grains of superconducting materials and prevents conduction of superconducting current.

Ca2CuO3に特徴的に現われる2θ= 36.2±
0.2゜の回折ピークの強度(A)とHの比率(A/H
)を求めることにより、不純物相の生成量を比較するこ
とができる。
2θ which characteristically appears in Ca2CuO3 = 36.2±
The intensity of the diffraction peak at 0.2° (A) and the ratio of H (A/H
), the amount of impurity phase produced can be compared.

H相の体積分率が大きいほど良好な超伝導特性を示す。The larger the volume fraction of the H phase, the better the superconducting properties.

H/Lが0.4を越えると120にの相が多くなるため
交流帯磁率からは試料全体がほとんど120 kの相を
形成していること測定される。このため、実質的にH/
Lの値0.4を目安として、これ以上ならば良好な超伝
導体ということができる。
When H/L exceeds 0.4, the 120K phase increases, so it can be determined from the AC magnetic susceptibility that the entire sample forms almost the 120K phase. Therefore, in practice H/
A value of L of 0.4 is used as a guideline, and if it is greater than this value, it can be said that it is a good superconductor.

また、A/Hは小さいほど良好な超伝導特性を示す。A
/Hが0.4以下であれば不純物量の減少のため、直流
抵抗率からは、Tc−120に付近が超伝導に伴なう抵
抗落ちが顕著となる。このため、実質的にA/Hの値を
0.4を目安としてこれ以下ならば良好な超伝導体とい
うことができる。
Further, the smaller A/H is, the better the superconducting properties are. A
If /H is 0.4 or less, the amount of impurities decreases, and from the DC resistivity, a drop in resistance due to superconductivity near Tc-120 becomes noticeable. Therefore, if the value of A/H is less than 0.4, it can be said to be a good superconductor.

[実施例1 次に本発明を実施例により更に具体的に説明す、るが、
本発明はその要旨を越えない限り、以下の実施例に限定
されるものではない。
[Example 1] Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 酸化ビスマス(III)0.932g、炭酸ストロンチ
ウム0.591g、炭酸カルシウム0.601gおよび
酸化鋼(II)0.636g (いずれも高純度化学社
製、純度99.9%以上の粉末)をメノウ乳鉢に入れ、
エタノールを数m(添加しスラリー状にしてエタノール
臭がなくなるまで充分撹拌混合する操作を2回以上繰り
返した。
Example 1 0.932 g of bismuth oxide (III), 0.591 g of strontium carbonate, 0.601 g of calcium carbonate, and 0.636 g of steel oxide (II) (all manufactured by Kojundo Kagaku Co., Ltd., powder with a purity of 99.9% or more) into an agate mortar,
The operation of adding several meters of ethanol (to form a slurry) and thoroughly stirring and mixing until the ethanol odor disappeared was repeated two or more times.

混合物のBi、 Sr、 CaおよびCuの原子比は、
2:2:3:4である。
The atomic ratio of Bi, Sr, Ca and Cu in the mixture is:
The ratio is 2:2:3:4.

得られた混合物粉0.2gを常法により加圧成形(1t
on/cm2) L、直径10mmのペレットを作成し
た。このベレットを空気中にて630℃で100時間焼
成し次いで、875℃で200時間焼成した。
0.2 g of the obtained mixture powder was pressure-molded (1 t
on/cm2) L, a pellet with a diameter of 10 mm was prepared. This pellet was fired in air at 630°C for 100 hours and then at 875°C for 200 hours.

得られた焼成物の電気抵抗及び交流帯磁率の温度依存性
を測定した結果、120に前後で臨界温度を示し、本物
質が120に縁起伝導物質を含むことが確認された。
As a result of measuring the temperature dependence of the electrical resistance and AC magnetic susceptibility of the obtained fired product, the critical temperature was found around 120, and it was confirmed that this material contains an originating conductive material at 120.

Tc−120にの超伝導物質の体積分率の大小を比較す
るため、Tc−80にの超伝導物質に特異的に現れる2
θ= 23.3±0.2°の回折ピークの強度(第1図
におけるL)に対するTc−120にの超伝導物質に特
異的に現れる2θ= 24.0±0.2°の回折ピーク
の強度(第1図におけるH)の比率(H/L)を求めた
In order to compare the size of the volume fraction of the superconducting material in Tc-120, 2 which appears specifically in the superconducting material in Tc-80
The intensity of the diffraction peak at 2θ = 24.0 ± 0.2° (L in Figure 1) that appears specifically in the superconducting material at Tc-120 is The ratio (H/L) of intensity (H in FIG. 1) was determined.

また、主たる不純物であるCa2CuO3の体積分率の
大小を比較するため、上記Hに対するCa2CuO3に
特徴的に現われる2θ= 36.2±0.2°の回折ピ
ークの強度(第1図におけるA)の比率(A/H)を求
めた。
In addition, in order to compare the volume fraction of Ca2CuO3, which is the main impurity, the intensity of the diffraction peak at 2θ = 36.2 ± 0.2° (A in Figure 1), which characteristically appears in Ca2CuO3 with respect to H, is The ratio (A/H) was determined.

結果を第1表に示す。The results are shown in Table 1.

実施例2〜13、比較例1〜2 第1表に示す化学組成となるように原料粉末を秤帽して
用いたこと以外は実施例1と同様にして超伝4物質を製
造し、評価を行なった。結果を第1表に示す。
Examples 2 to 13, Comparative Examples 1 to 2 Superden 4 substances were produced and evaluated in the same manner as in Example 1, except that the raw material powder was weighed and used so as to have the chemical composition shown in Table 1. I did this. The results are shown in Table 1.

第1表 4゜ [発明の効果] 本発明によると、120に級の高い臨界温度(Tc )
を有する不純物相の少ないBi −Sr −Ca −C
u −0系酸化物超伝導物質を製造することができるた
め、工業的に有用である。
Table 1 4゜ [Effect of the invention] According to the present invention, a critical temperature (Tc) as high as 120
Bi-Sr-Ca-C with few impurity phases
It is industrially useful because u-0-based oxide superconducting materials can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超伝導物質のCuKa線(波長1.
5418 A )による粉末X線回折における回折角(
2θ)が23〜24°付近及び36°付近の拡大図であ
る。 第1図中、Hは2θ:24.0±0.2°の回折ピーク
の強度を、Lは2θ= 23.3±0.2°の回折ピー
クの強度を表わす。更にAは2θ= 36.2±0.2
°のC,a2cu03による回折ピークの強度を表わす
FIG. 1 shows the CuKa line (wavelength 1.
Diffraction angle (
2θ) is an enlarged view of around 23 to 24° and around 36°. In FIG. 1, H represents the intensity of the diffraction peak at 2θ: 24.0±0.2°, and L represents the intensity of the diffraction peak at 2θ=23.3±0.2°. Furthermore, A is 2θ=36.2±0.2
It represents the intensity of the diffraction peak due to C, a2cu03 at °C.

Claims (4)

【特許請求の範囲】[Claims] (1)組成式 SrαCaβBiγCuδOx (式中、α,β,γ,δおよびxはそれぞれの元素のモ
ル数を表し、 α/β≦1.5 0.8≦α/γ≦2.0 0.25≦δ/(α+β+γ+δ)≦0.800.50
≦β/δ≦0.85 0.57≦(β+δ)/(α+β+γ+δ)≦0.65
である。)で示される酸化物超伝導物質。
(1) Composition formula SrαCaβBiγCuδOx (In the formula, α, β, γ, δ and x represent the number of moles of each element, α/β≦1.5 0.8≦α/γ≦2.0 0.25 ≦δ/(α+β+γ+δ)≦0.800.50
≦β/δ≦0.85 0.57≦(β+δ)/(α+β+γ+δ)≦0.65
It is. ) is an oxide superconducting material.
(2)ストロンチウム化合物、カルシウム化合物、ビス
マス化合物および銅化合物の混合物を、酸素含有ガス雰
囲気下、600〜820℃で一段目の焼成を行なった後
、さらに830〜895℃で二段目の焼成を行なうこと
を特徴とする特許請求の範囲第1項記載の酸化物超伝導
物質の製造法。
(2) A mixture of a strontium compound, a calcium compound, a bismuth compound, and a copper compound is fired in the first stage at 600 to 820°C in an oxygen-containing gas atmosphere, and then the second stage is fired at 830 to 895°C. A method for producing an oxide superconducting material according to claim 1, characterized in that the method is carried out.
(3)二段目の焼成において、焼成温度(T℃)が、8
30≦T≦32.5×logP_O_2+895(但し
、P_O_2は焼成時の酸素分圧(気圧)を示す。)で
ある特許請求の範囲第2項記載の製造法。
(3) In the second stage firing, the firing temperature (T°C) is 8
The manufacturing method according to claim 2, wherein 30≦T≦32.5×logP_O_2+895 (where P_O_2 indicates the oxygen partial pressure (atmospheric pressure) at the time of firing).
(4)二段目の焼成において、焼成温度(T℃)が、2
0.3×logP_O_2+860≦T≦32.5×l
ogP_O_2+895(但し、P_O_2は焼成時の
酸素分圧(気圧)を示す。)である特許請求の範囲第3
項記載の製造法。
(4) In the second stage firing, the firing temperature (T°C) is 2
0.3×logP_O_2+860≦T≦32.5×l
ogP_O_2+895 (however, P_O_2 indicates oxygen partial pressure (atmospheric pressure) at the time of firing)
Manufacturing method described in section.
JP1251538A 1989-09-27 1989-09-27 Oxide superconducting substance and its production Pending JPH03112815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251538A JPH03112815A (en) 1989-09-27 1989-09-27 Oxide superconducting substance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251538A JPH03112815A (en) 1989-09-27 1989-09-27 Oxide superconducting substance and its production

Publications (1)

Publication Number Publication Date
JPH03112815A true JPH03112815A (en) 1991-05-14

Family

ID=17224308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251538A Pending JPH03112815A (en) 1989-09-27 1989-09-27 Oxide superconducting substance and its production

Country Status (1)

Country Link
JP (1) JPH03112815A (en)

Similar Documents

Publication Publication Date Title
Song et al. Rapid Formation of the 110 K Phase in BI‐Pb‐Sr‐Ca‐Cu‐O through Freeze‐Drying Powder Processing
HUT52645A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JPH03112815A (en) Oxide superconducting substance and its production
JPS63291817A (en) Oxide superconductor
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
EP0359827A1 (en) Superconducting oxide and method of producing the same
Bernhard et al. Formation of superconducting Bi2− yPbySr2Ca2Cu3Ox from coprecipitated oxalates
JPH01257132A (en) Oxide superconducting material and production thereof
JPH02225319A (en) Production of oxide superconductive material
JPH0264018A (en) Oxide superconducting substance and production thereof
JP4617493B2 (en) Oxide superconducting synthetic powder and manufacturing method thereof
JPH0264017A (en) Oxide superconducting substance and production thereof
JPH0269321A (en) Oxide superconducting material and its production
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPH06183822A (en) Method of rapid synthesis of bi-based superconductor
JPH02248321A (en) Oxide superconductor
JP2748943B2 (en) Oxide superconductor
JP2748942B2 (en) Oxide superconductor
JP2879448B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JPH0214826A (en) Oxide superconductor and production thereof
JPS63307110A (en) Oxide superconductor
JPH0393627A (en) Oxide superconductor
JPH02149426A (en) Oxide superconducting material and its production
JPS63307156A (en) Method for synthesizing superconducting ceramics
JPH05166425A (en) Manufacture of superconductive oxide conductor