JPH06183822A - Method of rapid synthesis of bi-based superconductor - Google Patents

Method of rapid synthesis of bi-based superconductor

Info

Publication number
JPH06183822A
JPH06183822A JP4260131A JP26013192A JPH06183822A JP H06183822 A JPH06183822 A JP H06183822A JP 4260131 A JP4260131 A JP 4260131A JP 26013192 A JP26013192 A JP 26013192A JP H06183822 A JPH06183822 A JP H06183822A
Authority
JP
Japan
Prior art keywords
phase
powder
raw material
rapid
activated powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4260131A
Other languages
Japanese (ja)
Inventor
Daigen Sei
台鉉 成
Kenji Furuya
健司 古谷
Toru Shiobara
融 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTS
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Nissan Motor Co Ltd
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTS
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTS, KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Nissan Motor Co Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTS
Priority to JP4260131A priority Critical patent/JPH06183822A/en
Publication of JPH06183822A publication Critical patent/JPH06183822A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a method of synthesis capable of synthesizing a Bi-based superconductor of oxide of 2,223 phase having no 2,212 phase of by-product in a short time. CONSTITUTION:Raw material powder Bi2O3, PbO and CaCO3 or Bi2O3, PbO and Ca(NO3)2.4H2O is mixed, heated and melted at >=900 deg.C, then retained for a short time and quenched to give Bi-Pb-Ca-O-based activated powder. On the other hand, raw material powder SrCO3, CaCO3 and CuO or Sr(NO3)2, Ca(NO3)2.4H2O and CuO is mixed, heated and melted at >=1,200 deg.C, retained for a short time and quenched to give Sr-Ca-Cu-O-based activated powder. The Bi-Pb-Ca-O-based activated powder is mixed with the Sr-Ca-Cu-O-based activated powder, heat-treated in an oxygen-containing atmosphere and then quenched to synthesize 2,223 phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物の合成法に関
し、特にBi系酸化物超電導体の2223相を、異相の
生成なく、短時間で合成する合成法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing an oxide, and more particularly to a method for synthesizing a 2223 phase of a Bi-based oxide superconductor in a short time without generating a different phase.

【0002】[0002]

【従来の技術】Bi系超電導体にはTc (臨界温度)1
10Kを有する2223相とTc 80Kを有する221
2相が知られている。従来、Bi系超電導体の2223
相の合成では、通常の固相法が用いられてきた。本法は
原料粉末(通常、Bi2 3 ,PbO,SrCO3 ,C
aCO3 ,CuO粉末)を混合し、仮焼、本焼して22
23相を合成する。しかし、現状では100時間以上の
かなり長い焼成時間を必要としている(例えば参考文献
1:L.R. Yuan, K. Kurosawa, Y. Takigawa, M. Okuda,
H. Naito, K. Nakahigashi,S. Nakanishi, T. Matsush
ita, Jpn. J. Appl. Phys., Vol. 30, No. 9A, 1545-15
48(1991)参照) 。最近、いくつかのグループから222
3相をPb−Bi−Ca−OとSr−Ca−Cu−O
(参考文献2:R. Liang, H. Ishi, H. Kawaji,M. Itoh
and T. Nakamura, Jpn. J. Appl. Phys,. Vol. 29 、N
o.8, 1412-1414(1990) 参照) またはPb−Bi−Cu
−OとSr−Ca−Cu−O(参考文献3:S. Hontsu,
O.Nishibuchi, T. Horiuchi, K.Ogura, J. Ishii, T.
Kawai andS. Kawai, Jpn. Appl. Phys., Vol. 31(1992)
pp. 47-48 参照) に組成分離して、それぞれを仮焼す
ることにより、本焼時間を短縮したという報告がある。
しかし、実際の出発混合物から始まる2223相合成ま
で仮焼、本焼までの全体の熱処理時間は、ほとんど変わ
っていない。また、これらの方法によって合成した22
23相には多少異相が混入しているのが現状である。
BACKGROUND OF THE INVENTION Bi system superconductor T c (critical temperature) 1
2223 phase with 10K and 221 with T c 80K
Two phases are known. Conventionally, 2223 of Bi-based superconductor
Conventional solid phase methods have been used in phase synthesis. This method uses raw material powders (usually Bi 2 O 3 , PbO, SrCO 3 , C
aCO 3 , CuO powder), mixed, calcined and fired 22
23 phases are synthesized. However, at present, a considerably long firing time of 100 hours or more is required (for example, Reference 1: LR Yuan, K. Kurosawa, Y. Takigawa, M. Okuda,
H. Naito, K. Nakahigashi, S. Nakanishi, T. Matsush
ita, Jpn. J. Appl. Phys., Vol. 30, No. 9A, 1545-15
48 (1991)). 222 from some groups recently
The three phases are Pb-Bi-Ca-O and Sr-Ca-Cu-O.
(Reference 2: R. Liang, H. Ishi, H. Kawaji, M. Itoh
and T. Nakamura, Jpn. J. Appl. Phys ,. Vol. 29, N
o.8, 1412-1414 (1990)) or Pb-Bi-Cu
-O and Sr-Ca-Cu-O (Reference 3: S. Hontsu,
O.Nishibuchi, T. Horiuchi, K.Ogura, J. Ishii, T.
Kawai and S. Kawai, Jpn. Appl. Phys., Vol. 31 (1992)
pp. 47-48), the composition was separated and calcined to reduce the main firing time.
However, the total heat treatment time from the actual starting mixture to the 2223 phase synthesis starting from the calcination to the main firing is almost unchanged. In addition, 22 synthesized by these methods
The present situation is that the 23-phase is somewhat mixed with a different phase.

【0003】[0003]

【発明が解決しようとする課題】従来の固相法では、例
えば参考文献1のように2223相の合成には、かなり
の長い時間が必要であった。また、組成分離法を用いる
ことにより(参考文献2,3)、本焼にかかる時間を短
くすることができたが、依然、前駆体作りに長い時間が
必要であり、全体の2223相合成時間は短縮できてい
ない。従って本発明の目的は、従来の固相法および組成
分離法の問題点を解決し、短時間で2223相単層から
なるBi系超電導体を合成する方法を提供することにあ
る。
In the conventional solid phase method, for example, as in Reference 1, the synthesis of the 2223 phase requires a considerably long time. Also, by using the composition separation method (references 2 and 3), the time required for the main firing could be shortened, but a long time is still required to make the precursor, and the total 2223 phase synthesis time is required. Has not been shortened. Therefore, an object of the present invention is to solve the problems of the conventional solid phase method and composition separation method, and to provide a method for synthesizing a Bi-based superconductor composed of a 2223 phase single layer in a short time.

【0004】[0004]

【課題を解決するための手段】上記目的を達成した本発
明のBi系超電導体の急速合成法においては、原料粉末
Bi,PbおよびCaの酸化物と、炭酸塩あるいは硝酸
塩の原料粉末を所定量混合し、これ等の原料粉末を均一
に溶融するため900℃以上の温度で加熱溶融し、次い
で短時間保持した後、急冷、粉砕してBi−Pb−Ca
−O系の活性化粉末を得、一方原料粉末Sr,Caおよ
びCuの酸化物と炭酸塩あるいは硝酸塩原料粉末を所定
量混合し、これ等の原料粉末を均一に溶融するため12
00℃以上の温度で加熱溶融し、次いで短時間、好まし
くは60分以内の時間保持した後、急冷、粉砕してSr
−Ca−Cu−O系の活性化粉末を得、上記Bi−Pb
−Ca−O系活性化粉末とSr−Ca−Cu−O系の活
性化粉末を混合し、酸素を含む雰囲気中で熱処理した
後、好ましくは低酸素分圧雰囲気で850℃以下の温度
で熱処理するかまたは空気中で880℃以下の温度で熱
処理した後、急冷し、2223相を合成することを特徴
とする。
In the rapid method for synthesizing a Bi-based superconductor according to the present invention which has achieved the above object, a predetermined amount of raw material powders of Bi, Pb and Ca and carbonate or nitrate raw material powders are used. After mixing, these raw material powders are heated and melted at a temperature of 900 ° C. or more in order to uniformly melt them, and after holding for a short time, rapidly cooled and crushed to obtain Bi-Pb-Ca.
In order to obtain an —O-based activation powder, and to mix a predetermined amount of raw material powders Sr, Ca, and Cu oxides and carbonate or nitrate raw material powders, to uniformly melt these raw material powders.
It is heated and melted at a temperature of 00 ° C. or higher, and then held for a short time, preferably within 60 minutes, then rapidly cooled and crushed to obtain Sr.
-Ca-Cu-O-based activation powder was obtained, and the above Bi-Pb
-Ca-O-based activation powder and Sr-Ca-Cu-O-based activation powder are mixed and heat-treated in an atmosphere containing oxygen, and then preferably heat-treated at a temperature of 850 ° C or lower in a low oxygen partial pressure atmosphere. Or a heat treatment in air at a temperature of 880 ° C. or lower, followed by rapid cooling to synthesize the 2223 phase.

【0005】本発明の方法においては、原料粉末を加熱
溶融し、短時間保持するが保持時間を短時間、好ましく
は60分以内とするのは、いずれの場合も長時間溶融を
行うとPbが蒸発してしまい、またるつぼの材料である
PtとBiが反応してしまうためで、通常は10分間程
度保持する。
In the method of the present invention, the raw material powder is melted by heating and held for a short time, but the holding time is short, preferably within 60 minutes. Since it evaporates and Pt and Bi, which are the materials of the crucible, react with each other, it is usually held for about 10 minutes.

【0006】更に、Bi−Pb−Ca−O系の加熱溶融
温度およびSr−Ca−Cu−O系の加熱溶融温度をそ
れぞれ900℃以上、1200℃以上とするのはBi−
Pb−Ca−OまたはSr−Ca−Cu−Oを均一に溶
融するためである。
Further, the Bi-Pb-Ca-O-based heating melting temperature and the Sr-Ca-Cu-O-based heating melting temperature are 900 ° C or higher and 1200 ° C or higher, respectively.
This is for uniformly melting Pb-Ca-O or Sr-Ca-Cu-O.

【0007】上記本発明の方法によると、次に2223
相の合成における従来法と本発明の方法を比較して示す
ように従来の固相法では2223相の合成に100時間
以上の長時間を要し、また組成分離法では本焼時間は短
縮されても仮焼する前駆体作りに長い時間が必要であ
り、全体として長時間を要するのに対して、副生成物で
ある2212相の生成を防ぐための組成分離法と、活性
な原料粉末を得る溶融冷却法を組合せたことにより短時
間で副生成物2212相のない2223相を合成するこ
ができる。
According to the method of the present invention described above,
As shown by comparing the conventional method in phase synthesis with the method of the present invention, in the conventional solid phase method, it takes a long time of 100 hours or more to synthesize 2223 phase, and in the composition separation method, the firing time is shortened. However, it takes a long time to make the precursor for calcination, and it takes a long time as a whole. On the other hand, the composition separation method for preventing the formation of the byproduct 2212 phase and the active raw material powder are used. By combining the obtained melt cooling methods, the 2223 phase without the by-product 2212 phase can be synthesized in a short time.

【表1】 [Table 1]

【0008】[0008]

【実施例】次に本発明を実施例により説明する。EXAMPLES The present invention will now be described with reference to examples.

【0009】実施例1 Bi1.8 Pb0.3 Sr1.9 Ca1.9 Cu3 y の合成 Bi1.8 Pb0.3 Ca0.8 p とSr1.9 Ca1.1 Cu
3 q を、純度99.9%の原料粉末Bi2 3 ,Pb
O,SrCO3 ,CaCO3 ,CuOを用いてそれぞれ
合成した。Bi1.8 Pb0.3 Ca0.8 p は15.78
97gのBi23 ,2.5214gのPbOおよび
3.0148gのCaCO3 を秤量し、十分混合を行っ
た後、1000℃で、10分間加熱溶融後、急冷して合
成した。Sr1.9 Ca1.1 Cu3 q は11.2830
gのSrCO3 ,4.4287gのCaCO3 および
9.5993gのCuOを秤量し、十分混合を行った
後、1400℃で10分間加熱溶融後急冷して合成し
た。溶融急冷して得られた、Bi1. 8 Pb0.3 Ca0.8
p およびSr1.9 Ca1.1 Cu3 q を、それぞれ粉
砕し、それぞれの粉砕粉末(活性化粉末)を、Bi1.8
Pb0.3 Sr1.9 Ca1.9 Cu3 y となるように秤
量、混合し直径20mm×2mmのペレットに成形し
た。このペレットを、低酸素圧雰囲気(アルゴンガス:
酸素=93:7)(Po2=7%)で845℃、24時
間熱処理し103 ℃/secの降下速度で急冷した。これ
を、さらに再粉砕、成形し、845℃で、12時間また
は24時間熱処理し急冷し、2223相単層のBi1.8
Pb0.3 Sr1.9 Ca1.9 Cu3 y を合成した。
[0009] Example 1 Bi 1.8 Pb 0.3 Sr 1.9 Ca 1.9 Cu 3 O y synthetic Bi 1.8 Pb 0.3 Ca 0.8 O p and Sr 1.9 Ca 1.1 Cu
3 O q is a raw material powder of purity 99.9% Bi 2 O 3 , Pb
O, SrCO 3 , CaCO 3 , and CuO were used for synthesis. Bi 1.8 Pb 0.3 Ca 0.8 O p is 15.78
97 g of Bi 2 O 3 , 2.5214 g of PbO and 3.0148 g of CaCO 3 were weighed, sufficiently mixed, heated and melted at 1000 ° C. for 10 minutes, and then rapidly cooled for synthesis. Sr 1.9 Ca 1.1 Cu 3 O q is 11.2830
g of SrCO 3 , 4.4287 g of CaCO 3 and 9.5993 g of CuO were weighed, sufficiently mixed, heated and melted at 1400 ° C. for 10 minutes, and then rapidly cooled for synthesis. Obtained by melt quenching, Bi 1. 8 Pb 0.3 Ca 0.8
O p and Sr 1.9 Ca 1.1 Cu 3 O q were crushed respectively, and each crushed powder (activated powder) was converted into Bi 1.8
Pb 0.3 Sr 1.9 Ca 1.9 Cu 3 O y was weighed and mixed to form pellets having a diameter of 20 mm × 2 mm. The pellets were placed in a low oxygen pressure atmosphere (argon gas:
Oxygen = 93: 7) (Po 2 = 7%) was heat-treated at 845 ° C. for 24 hours and rapidly cooled at a rate of 10 3 ° C./sec. This is reground, molded further at 845 ° C., a heat treatment and then rapidly cooled 12 hours or 24 hours, Bi 1.8 of 2223 monolayers
Pb 0.3 Sr 1.9 Ca 1.9 Cu 3 O y was synthesized.

【0010】図1に、このようにして合成されたBi
1.8 Pb0.3 Sr1.9 Ca1.9 Cu3y のX線回折図
を示す。また図2に、温度と磁化率の関係を示す。温度
が下がると共に、磁化率が約110Kを境に急激に低下
し始めることとX線回折結果からこの試料が2223相
単相からなっていることがわかる。また、同様に上記ペ
レットを空気中862℃で(24+24)時間加熱し
て、2223相単相のBi1.8 Pb0.3 Sr1.9 Ca
1.9 Cu3 y を得ることができた。
FIG. 1 shows the Bi thus synthesized.
1.8 Pb 0.3 Sr 1.9 Ca 1.9 Cu 3 shows the O y X-ray diffraction pattern of. Further, FIG. 2 shows the relationship between temperature and magnetic susceptibility. It can be seen from the result of X-ray diffraction that the magnetic susceptibility begins to drop sharply at a boundary of about 110 K as the temperature lowers, and this sample is composed of 2223 single phase. Similarly, the pellet was heated in air at 862 ° C. for (24 + 24) hours to obtain 2223 phase single phase Bi 1.8 Pb 0.3 Sr 1.9 Ca.
1.9 Cu 3 O y could be obtained.

【0011】実施例2 Bi2-x Pbx Sr2 Ca2 Cu3 y (0.2≦x≦
0.4)の合成 Bi2-x Pbx Ca0.8 y とSr2 Ca1.2 Cu3
w を実施例1と同様の条件で合成し、更に同様の手順を
経てBi2-x Pbx Sr2 Ca2 Cu3 y (式中のx
は0.2または0.4を示す)を合成した。
Example 2 Bi 2-x Pb x Sr 2 Ca 2 Cu 3 O y (0.2≤x≤
Synthesis of 0.4) Bi 2-x Pb x Ca 0.8 O y and Sr 2 Ca 1.2 Cu 3 O
w was synthesized under the same conditions as in Example 1, and the same procedure was followed to obtain Bi 2-x Pb x Sr 2 Ca 2 Cu 3 O y (x in the formula:
Indicates 0.2 or 0.4).

【0012】実施例3 Bi1.8 Pb0.3 Sr1.9 Ca1.9 Cu3 y の硝酸塩
原料粉末による合成 Bi1.8 Pb0.3 Ca0.8 p とSr1.9 Ca1.1 Cu
3 q を純度99.9%の原料粉末Bi2 3 ,PbO,S
r(NO3 2 ,Ca(NO3 2 ・4H2 O,CuO
を用いてそれぞれ合成した。Bi1.8 Pb0.3 Ca0.8
p は15.7897gのBi2 3 、2.5214の
PbO、7.1112g のCa(NO32 ・4H2
を用いて実施例1と同様の条件で合成した。Sr1.9
1.1 Cu3 q は16.1745gのSr(NO3
2 、10.4463gのCa(NO3 2 ・4H2 O、
9.5993gのCuOを用いて実施例1と同様の条件
で合成した。更に同様の手順を経てBi1.8 Pb0.3
1.9 Ca1.9 Cu3 yを合成した。
[0012] Example 3 Bi 1.8 Pb 0.3 Sr 1.9 Ca 1.9 Cu 3 O synthesis by nitrate raw material powder of y Bi 1.8 Pb 0.3 Ca 0.8 O p and Sr 1.9 Ca 1.1 Cu
3 O q is a raw material powder with a purity of 99.9% Bi 2 O 3 , PbO, S
r (NO 3) 2, Ca (NO 3) 2 · 4H 2 O, CuO
Were synthesized respectively. Bi 1.8 Pb 0.3 Ca 0.8
O p is Bi 2 O 3 of 15.7897g, PbO of 2.5214, Ca (NO 3) of 7.1112g 2 · 4H 2 O
Was used under the same conditions as in Example 1. Sr 1.9 C
a 1.1 Cu 3 O q is 16.1745 g of Sr (NO 3 ).
2, Ca (NO 3) of 10.4463g 2 · 4H 2 O,
Synthesis was performed under the same conditions as in Example 1 using 9.5993 g of CuO. Bi 1.8 Pb 0.3 S
r 1.9 Ca 1.9 Cu 3 O y was synthesized.

【0013】[0013]

【発明の効果】従来の組成分離法は本焼する時間を短く
したことは事実であるが、本焼するための前駆体作りに
数十時間をかけていて、合成の作製時間を考えるとそれ
ほど短くなってはいない。本発明では本焼のための前駆
体作製時間を数十時間からわずか10分程度に縮めるこ
とができ、産業上かなりの経済性を向上させることがで
きる。さらに合成された試料の特性や単相の程度をいま
まで論文に発表されたものと比べるとXRDとSQUI
Dの結果からより良い超電導特性を示し、より単相化し
ていることが分かった。
It is true that the conventional composition separation method shortened the firing time, but it took several tens of hours to prepare the precursor for the firing, and considering the production time of synthesis, It's not getting shorter. According to the present invention, the precursor preparation time for the main firing can be shortened from several tens of hours to only about 10 minutes, and the economical efficiency in the industry can be improved considerably. Furthermore, comparing the characteristics and the degree of single phase of the synthesized sample with those published in the paper so far, XRD and SQUI
From the result of D, it was found that the superconducting property was better and the phase was more single phase.

【図面の簡単な説明】[Brief description of drawings]

【図1】2223単相のBi1.8 Pb0.3 Sr1.9 Ca
1.9 Cu3 y のX線回折図である。
FIG. 1 2223 single-phase Bi 1.8 Pb 0.3 Sr 1.9 Ca
It is an X-ray diffraction pattern of 1.9 Cu 3 O y .

【図2】2223単相のBi1.8 Pb0.3 Sr1.9 Ca
1.9 Cu3 y の温度と磁化率の関係を示すグラフであ
る。
FIG. 2 2223 single-phase Bi 1.8 Pb 0.3 Sr 1.9 Ca
9 is a graph showing the relationship between the temperature and magnetic susceptibility of 1.9 Cu 3 O y .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古谷 健司 東京都江東区東雲1丁目14番3号 財団法 人 国際超電導産業技術研究センター 超 電導工学研究所内 (72)発明者 塩原 融 東京都江東区東雲1丁目14番3号 財団法 人 国際超電導産業技術研究センター 超 電導工学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Furuya 1-14-3 Shinonome, Koto-ku, Tokyo Metropolitan Institute of Superconductivity Technology Research Center for Superconductivity Engineering (72) Inventor Tsuru Shiobara Koto-ku, Tokyo Shinonome 1-14-3, Foundation Law Institute for Superconductivity Engineering, Superconductivity Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Bi,PbおよびCaの酸化物と、炭酸
塩あるいは硝酸塩の原料粉末を所定量混合し、900℃
以上の温度で加熱溶融し、次いで短時間保持した後急
冷、粉砕してBi−Pb−Ca−O系の活性化粉末を
得、一方原料粉末Sr,CaおよびCuの酸化物と炭酸
塩あるいは硝酸塩原料粉末を所定量混合し、1200℃
以上の温度で加熱溶融し、次いで短時間保持した後、急
冷、粉砕してSr−Ca−Cu−O系の活性化粉末を
得、上記Bi−Pb−Ca−O系活性化粉末とSr−C
a−Cu−O系の活性化粉末を混合し、酸素を含む雰囲
気中で熱処理した後急冷し、2223相を合成すること
を特徴とするBi系超電導体の急速合成法。
1. A mixture of Bi, Pb and Ca oxides and a predetermined amount of a raw material powder of carbonate or nitrate is mixed at 900 ° C.
The mixture is heated and melted at the above temperature, then held for a short time, then rapidly cooled and pulverized to obtain an activated powder of Bi-Pb-Ca-O system, while raw material powders Sr, Ca and Cu oxides and carbonates or nitrates. Mix a predetermined amount of raw material powder, 1200 ℃
After being heated and melted at the above temperature, and then held for a short time, it is rapidly cooled and pulverized to obtain an Sr-Ca-Cu-O-based activated powder. The Bi-Pb-Ca-O-based activated powder and the Sr- C
A rapid method for synthesizing a Bi-based superconductor characterized in that an a-Cu-O-based activated powder is mixed, heat-treated in an atmosphere containing oxygen and then rapidly cooled to synthesize a 2223 phase.
【請求項2】 上記短時間保持が60分以内であること
を特徴とする請求項1記載のBi系超電導体の急速合成
法。
2. The rapid method for synthesizing a Bi-based superconductor according to claim 1, wherein the holding time is within 60 minutes.
【請求項3】 上記Bi−Pb−Ca−O系の活性化粉
末を得るための加熱溶融は、900℃以上に加熱して行
なうことを特徴とする請求項1または2記載のBi系超
電導体の急速合成法。
3. The Bi-based superconductor according to claim 1, wherein the heating and melting to obtain the activated powder of Bi—Pb—Ca—O system is performed by heating at 900 ° C. or higher. Rapid synthetic method.
【請求項4】 上記Sr−Ca−Cu−O系の活性化粉
末を得るための加熱溶融は、1200℃以上に加熱して
行なうことを特徴とする請求項1または2記載のBi系
超電導体の急速合成法。
4. The Bi-based superconductor according to claim 1, wherein the heating and melting to obtain the Sr—Ca—Cu—O-based activated powder is performed by heating to 1200 ° C. or higher. Rapid synthetic method.
【請求項5】 上記熱処理は、低酸素分圧雰囲気中で、
850℃以下で行なうことを特徴とする請求項1ないし
4のいずれか一つの項に記載のBi系超電導体の急速合
成法。
5. The heat treatment is performed in a low oxygen partial pressure atmosphere.
The method for rapid synthesis of a Bi-based superconductor according to any one of claims 1 to 4, wherein the method is performed at 850 ° C or lower.
【請求項6】 上記熱処理は、空気中で、880℃以下
で行なうことを特徴とする請求項1ないし4のいずれか
一つの項に記載のBi系超電導体の急速合成法。
6. The rapid synthesis method of a Bi-based superconductor according to claim 1, wherein the heat treatment is performed in air at 880 ° C. or lower.
JP4260131A 1992-09-29 1992-09-29 Method of rapid synthesis of bi-based superconductor Pending JPH06183822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4260131A JPH06183822A (en) 1992-09-29 1992-09-29 Method of rapid synthesis of bi-based superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4260131A JPH06183822A (en) 1992-09-29 1992-09-29 Method of rapid synthesis of bi-based superconductor

Publications (1)

Publication Number Publication Date
JPH06183822A true JPH06183822A (en) 1994-07-05

Family

ID=17343735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4260131A Pending JPH06183822A (en) 1992-09-29 1992-09-29 Method of rapid synthesis of bi-based superconductor

Country Status (1)

Country Link
JP (1) JPH06183822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031266A (en) * 2005-06-23 2007-02-08 Sumitomo Electric Ind Ltd Bi-BASE SUPERCONDUCTOR AND ITS MANUFACTURING METHOD, SUPERCONDUCTING WIRE MATERIAL AND SUPERCONDUCTING DEVICE
JP2008074686A (en) * 2006-09-25 2008-04-03 Sumitomo Electric Ind Ltd Bi based superconductive object, superconductive wire rod, and superconductive apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031266A (en) * 2005-06-23 2007-02-08 Sumitomo Electric Ind Ltd Bi-BASE SUPERCONDUCTOR AND ITS MANUFACTURING METHOD, SUPERCONDUCTING WIRE MATERIAL AND SUPERCONDUCTING DEVICE
JP4631813B2 (en) * 2005-06-23 2011-02-16 住友電気工業株式会社 Bi-based superconductor and manufacturing method thereof, superconducting wire and superconducting equipment
JP2008074686A (en) * 2006-09-25 2008-04-03 Sumitomo Electric Ind Ltd Bi based superconductive object, superconductive wire rod, and superconductive apparatus

Similar Documents

Publication Publication Date Title
JPH06183822A (en) Method of rapid synthesis of bi-based superconductor
JPH0796443B2 (en) Method for synthesizing complex oxide by citrate method
WO1989007579A1 (en) Superconducting oxide and method of producing the same
JP2555734B2 (en) Production method of superconducting material
JP2879448B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JPH01270516A (en) Production of oxide superconductor
RU2071448C1 (en) Method for production of isomorphous cuprates of rare-earth elements and cuprate of barium
JPH0264018A (en) Oxide superconducting substance and production thereof
JPH03223118A (en) Production of oxide superconductor
JP2773482B2 (en) Manufacturing method of oxide superconducting material
JP3115357B2 (en) Manufacturing method of oxide superconducting material
JPH04124016A (en) Oxide superconductor and its production
JPH01257132A (en) Oxide superconducting material and production thereof
JPH04124030A (en) Production of oxide superconductor
JPH0446015A (en) Oxide superconducting material and its production
JPH04124031A (en) Oxide superconductor and its production
JPH04124017A (en) Oxide superconductor and its production
JPH05166425A (en) Manufacture of superconductive oxide conductor
JPH02149425A (en) Oxide superconducting material and its production
JPH0214826A (en) Oxide superconductor and production thereof
JPH02149426A (en) Oxide superconducting material and its production
JPH03112815A (en) Oxide superconducting substance and its production
JPH11268915A (en) Raw material for oxide superconductor and production of oxide superconductor
JPH04124029A (en) Oxide superconductor and its production
JPH0269321A (en) Oxide superconducting material and its production