JPS63270319A - Production of ceramic superconductor - Google Patents

Production of ceramic superconductor

Info

Publication number
JPS63270319A
JPS63270319A JP62106721A JP10672187A JPS63270319A JP S63270319 A JPS63270319 A JP S63270319A JP 62106721 A JP62106721 A JP 62106721A JP 10672187 A JP10672187 A JP 10672187A JP S63270319 A JPS63270319 A JP S63270319A
Authority
JP
Japan
Prior art keywords
solution containing
carbonate
oxalate
ceramic superconductor
citrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62106721A
Other languages
Japanese (ja)
Other versions
JPH07106893B2 (en
Inventor
Koji Yamamura
康治 山村
Shigeo Kondo
繁雄 近藤
Susumu Yoshimura
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62106721A priority Critical patent/JPH07106893B2/en
Publication of JPS63270319A publication Critical patent/JPS63270319A/en
Publication of JPH07106893B2 publication Critical patent/JPH07106893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable uniform blending of fine particles and to enable production of a product having excellent characteristics at a low synthesis temperature in coprecipitation method, by blending a solution containing constituent metals of superconductor with a solution containing a carbonate of guanidine type and specifying pH to obtain a coprecipitated material. CONSTITUTION:A solution containing elements having a composition ratio of 0.5<=(A+B)/Cu<=2.5 is blended with a solution containing one or more salts of guanidine type carbonate, oxalate, citrate and tartrate and made into an end point of pH 5-9 with the proviso that A is one or more of Sc, Y and lanthanide 57-71 elements and B is one or more of elements of group IIa. A coprecipitated material of metallic salts for a superconductive material are prepared. A solution containing one or more of an aliphatic amine carbonate, oxalate, citrate and tartrate may be blended and made into the end point of pH 7-9. The coprecipitated material thus obtained is calcined to give a superconductive material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高温で電気抵抗がほとんどゼロになり高効率
電力貯蔵、強磁場発生、高効率送電等に利用できるセラ
ミックス超電導体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a ceramic superconductor whose electrical resistance becomes almost zero at high temperatures and which can be used for highly efficient power storage, strong magnetic field generation, highly efficient power transmission, etc.

従来の技術 従来の超電導体としては、ニオブ3スズ(18K)、ニ
オブ3ガリウム(20K)、ニオブ3ゲルマニウム(2
4K)等の合金系があり、これら合金系超電導体のほと
んどが液体ヘリウムを必要とするものであった。しかし
、1986年4月IBMチューリッヒ研究所のに、A、
  ミュラーとJ、G、ベドノルッ両博士によってLa
−Ba−Cu−0系セラミツクスの高温における超電導
現象の示唆があって以来、種々検討され、La−Ba−
Cu−0系(30K)、La−8r−Cu−0系(54
K)、Y−Ba−Cu−0系(98K)、Y−Ba−C
u−0系(123K)、5c−Ba−Cu−0系(17
5K)とセラミックス超電導体の臨界湿度はますます高
(なってきておリ、その応用研究も盛んに行われている
Conventional technology Conventional superconductors include niobium tritin (18K), niobium trigallium (20K), and niobium trigermanium (20K).
4K), and most of these alloy-based superconductors require liquid helium. However, in April 1986, at the IBM Zurich Research Institute, A.
La by Dr. Muller and Dr. J.G.
-Since the suggestion of superconductivity in Ba-Cu-0 ceramics at high temperatures, various studies have been conducted, and La-Ba-
Cu-0 series (30K), La-8r-Cu-0 series (54
K), Y-Ba-Cu-0 system (98K), Y-Ba-C
u-0 series (123K), 5c-Ba-Cu-0 series (17
5K) and the critical humidity of ceramic superconductors is becoming higher and higher, and applied research is actively being carried out.

発明が解決しようとする問題点 セラミックス超電導体の製造法としては、一般的には酸
化物や炭酸塩を粉砕混合して焼成する方法が知られてい
る。この方法では、特にバリウムを含むセラミックス超
電導体材料の合成に際しては炭酸バリウムを分解するた
めに1000℃付近、あるいは、それ以上の温度で焼成
合成する必要がある。しかるに、これらの材料系では1
000℃付近でセラミックス超電導体材料に含まれる酸
化鋼が焼成時に使用するセラミックス基板やボートの成
分、即ち、アルミナ、シリカ、ジルコニア、窒化ケイ素
等、はとんどのセラミックスと反応するため得られた超
電導体材料中に含まれる銅の損失量が多く、また、その
偏析等も起こり、均一で超電導特性の安定したものを作
成するのが難しかった。また、セラミックス超電導体の
もう1つの製造法としてシュウ酸を用いた共沈法による
合成の報告がある。しかし、例えばマグネシウム、カル
シウム、ストロンチウム、バリウム等のIIa族元素の
シュウ酸塩が酸に溶は易いため、一定の組成比で共沈さ
せることは極めて困難なものであった。
Problems to be Solved by the Invention As a method for producing ceramic superconductors, a method is generally known in which oxides or carbonates are ground, mixed, and fired. In this method, especially when synthesizing a ceramic superconductor material containing barium, it is necessary to perform firing synthesis at a temperature of around 1000° C. or higher in order to decompose barium carbonate. However, in these material systems, 1
At around 000℃, the oxidized steel contained in the ceramic superconductor material reacts with the components of the ceramic substrate and boat used during firing, such as alumina, silica, zirconia, silicon nitride, etc., resulting in superconductivity. There was a large loss of copper contained in the body material, and its segregation also occurred, making it difficult to create a material with uniform superconducting properties. Furthermore, there is a report on synthesis by coprecipitation using oxalic acid as another method for producing ceramic superconductors. However, since oxalates of Group IIa elements such as magnesium, calcium, strontium, and barium are easily dissolved in acids, it has been extremely difficult to co-precipitate them at a constant composition ratio.

問題点を解決するための手段 本発明は、上記の問題点を解決するため、セラミックス
超電導体の構成金属の各成分を含む溶液にグアニジン系
の炭酸塩、シュウ酸塩、クエン酸塩、または酒石酸塩の
うち少なくとも一種の塩を含む溶液を混合しpH5〜9
を終点として超電導体材料の各金属塩の共沈物を作成し
、また、脂肪族アミン炭酸塩、シュウ酸塩、クエン酸塩
、または酒石酸塩のうち少なくとも一種の塩を含む溶液
を用いる場合には、脂肪族アミン炭酸塩、シュウ酸塩、
クエン酸塩、または酒石酸塩のうち少なくとも一種の塩
を含む溶液に各金属成分を含む溶液を混合しpH7〜9
を終点として超電導体材料の各金属塩の共沈物を作成、
焼成し超電導体材料を合成するものである。
Means for Solving the Problems The present invention solves the above problems by adding guanidine carbonate, oxalate, citrate, or tartaric acid to a solution containing each constituent metal component of a ceramic superconductor. A solution containing at least one type of salt is mixed and the pH is adjusted to 5 to 9.
When a coprecipitate of each metal salt of the superconductor material is created as the end point, and a solution containing at least one salt of aliphatic amine carbonate, oxalate, citrate, or tartrate is used, are aliphatic amine carbonates, oxalates,
A solution containing each metal component is mixed with a solution containing at least one salt of citrate or tartrate, and the pH is 7 to 9.
Create a coprecipitate of each metal salt of the superconductor material with
It is used to synthesize superconductor materials by firing.

作用 本発明によるセラミックス超電導体の製造法により合成
した超電導体は、構成金属の各成分が、使用する有機塩
基物塩により炭酸塩、シュウ酸塩、クエン酸塩、あるい
は酒石酸塩と水酸化物の混合物として共沈されるため、
その粒子径は1μm以下の非常に微細なものになり、粒
子の混合に際しても均一に混合されるために、従来の合
成方法による金属酸化物や金属炭酸塩を使用して合成す
る方法に比べて合成に必要な焼成温度も低(、また、作
成された焼成体も極めて緻密な焼成体であり、超電導特
性が優れ、かつ安定した特性をもつセラミックス超電導
体が合成される。 特に、グアニジン系の塩では、グア
ニジン系有機物の水中での塩基度がUa族元素に比べて
強いためpH5〜9を終点とすることで容易に仕込み組
成比と同様の組成比をもつ各金属塩の共沈物を得ること
ができ、また、脂肪族アミンの塩を用いた場合にでも、
脂肪族アミン塩を含む溶液に構成金属の各成分を含む溶
液を注ぎpH7〜9を終点とすることで仕込み組成比と
ほぼ同様の組成比をもつ金属塩共沈物を得ることができ
、超電導特性が、再現性よく得られる。
Function The superconductor synthesized by the method for producing a ceramic superconductor according to the present invention has a structure in which the constituent metal components are carbonate, oxalate, citrate, or tartrate and hydroxide, depending on the organic base salt used. Because it is coprecipitated as a mixture,
The particle size is very fine, less than 1 μm, and the particles are mixed evenly when mixed, compared to conventional synthesis methods using metal oxides and metal carbonates. The firing temperature required for synthesis is low (in addition, the created fired body is an extremely dense fired body, and a ceramic superconductor with excellent and stable superconducting properties is synthesized. In particular, guanidine-based Regarding salts, since the basicity of guanidine-based organic substances in water is stronger than that of Ua group elements, by setting the end point at pH 5 to 9, it is easy to create a coprecipitate of each metal salt with a composition ratio similar to the charged composition ratio. can be obtained, and even when using salts of aliphatic amines,
By pouring a solution containing each constituent metal component into a solution containing an aliphatic amine salt and setting the pH to 7 to 9 as the end point, it is possible to obtain a metal salt coprecipitate with a composition ratio that is almost the same as the charged composition ratio. characteristics can be obtained with good reproducibility.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

(実施例1) Y:Ba:Cu=1:2:3のモル比で各金属硝酸塩を
含む水溶液を撹拌し、pH計でpHMを確認しながらグ
アニジン炭酸塩水溶液を添加した。沈殿物は、pH4以
上から確認されpH5付近からグアニジン炭酸塩水溶液
を添加してもpH値の変動の少ない領域が現れ、沈殿物
が生成する。その間pH値は7付近まで徐々に上昇する
(Example 1) An aqueous solution containing each metal nitrate at a molar ratio of Y:Ba:Cu=1:2:3 was stirred, and a guanidine carbonate aqueous solution was added while checking the pHM with a pH meter. Precipitates are confirmed at a pH of 4 or above, and even when a guanidine carbonate aqueous solution is added from around pH 5, a region in which the pH value does not fluctuate appears, and a precipitate is formed. During this time, the pH value gradually increases to around 7.

pH7〜9付近までは急激に変動し、pH9より高い値
で再びpHの変動が少なくなり、この領域で鋼の溶出が
起こる。本実施例では、p H8を終点としてグアニジ
ン炭酸塩の添加を止め、静置後、濾過し室温で予備乾燥
させた後、アルミナルツボに入れ空気中700℃で仮焼
した。仮焼後、混合摺潰機で粉砕混合し、アルミナルツ
ボに入れ空気中900℃で焼成し、セラミックス超電導
体粉末を得た。
The pH fluctuates rapidly up to around 7 to 9, and the pH fluctuations decrease again at a value higher than 9, and elution of steel occurs in this region. In this example, the addition of guanidine carbonate was stopped at pH 8 as the end point, and after being allowed to stand, the mixture was filtered, pre-dried at room temperature, and then placed in an alumina crucible and calcined in air at 700°C. After calcining, the mixture was pulverized and mixed using a mixing grinder, placed in an aluminium crucible, and fired at 900°C in air to obtain ceramic superconductor powder.

このセラミックス超電導体粉末を硝酸水溶液に入れ二酸
化炭素の発生を調べたが二酸化炭素は発生しなかった。
This ceramic superconductor powder was placed in a nitric acid aqueous solution to examine the generation of carbon dioxide, but no carbon dioxide was generated.

同一組成比で酸化イツトリウム。Yttrium oxide in the same composition ratio.

炭酸バリウム、酸化銅を混合拮潰機で充分に粉砕混合し
、前述と同様の操作を行い作成した。
Barium carbonate and copper oxide were thoroughly pulverized and mixed using a mixing crusher, and the same operations as described above were performed to prepare the product.

従来の方法で作成した粉末では、多量の二酸化炭素が発
生し、炭酸バリウムが分解して反応していないことが認
められた。このため従来の合成法、即ち、酸化イツトリ
ウム、炭酸バリウム、酸化鋼を原料とする試料について
は1ooo℃以上の温度で焼成し、粉砕混合した。
It was observed that with the powder prepared using the conventional method, a large amount of carbon dioxide was generated and the barium carbonate decomposed and did not react. For this reason, samples using the conventional synthesis method, ie, samples made from yttrium oxide, barium carbonate, and oxidized steel, were fired at a temperature of 100° C. or higher, and pulverized and mixed.

本実施例による製造法と従来の合成法である酸化物と炭
酸塩で合成したセラミックス超電導体粉末を各々1 ’
、/ c!以上で加圧成型し、空気中9゜0℃で焼成し
た後、ダイヤモンドカッターで2 n+n角の棒状に切
り出して電気抵抗の温度特性を測定し、その結果を第1
図に示した。酸化物と炭酸塩で合成した場合、焼成温度
が偏析やルツボとの反応を起こす温度であるために特性
の高いものが得られにり(、また電流密度を高(した場
合、臨界温度付近で電気抵抗はゼロにならずテーリング
を起こした。これに対して、本実施例の製造法で合成し
た試料では電流密度を高くしても臨界温度付近で電気抵
抗はゼロであり特性の優れたものであった。
Ceramic superconductor powders synthesized using oxides and carbonates using the production method according to this example and the conventional synthesis method were each
,/c! After the above pressure molding and firing in air at 9°0°C, the pieces were cut into 2n+n square rods using a diamond cutter and the temperature characteristics of electrical resistance were measured.
Shown in the figure. When synthesizing with oxides and carbonates, it is difficult to obtain products with high properties because the firing temperature is high enough to cause segregation and reaction with the crucible. The electrical resistance did not become zero and tailing occurred.On the other hand, in the sample synthesized using the production method of this example, the electrical resistance was zero near the critical temperature even when the current density was increased, indicating excellent characteristics. Met.

(実施例2) n−ブチルアミン2倍希釈の水溶液を氷で冷やして二酸
化炭素ガスを送りn−ブチルアミン炭酸塩を含む水溶液
を作成した。次に、共沈物の組成比をY:Ba:Cu=
1 :2:3のモル比にするためにBaとCuの量を多
くした各金m6に酸塩を含む水溶液を作成した。n−ブ
チルアミン炭酸塩を含む水溶液を撹拌し、pH計でp 
H値を確認しながら各金属硝酸塩を含む水溶液を添加し
て共沈を行った。各金属硝酸塩を含む水溶液の添加はp
H7付近で止め撹拌を行いながら加温、あるい減圧処理
と希硝酸水溶液によるpH値の調整を行い共沈物の組成
比がY:Ba:Cu=1:2:3になっていることを確
認して、濾過した。特に、Baについてはn〜ブチルア
ミンに比べ塩基度が強いため徐々に溶出する傾向にあり
、また、一旦溶出したBaは、Baより塩基度の強いア
ルカリを添加しないと沈殿しない。
(Example 2) An aqueous solution containing n-butylamine carbonate was prepared by cooling an aqueous solution of n-butylamine twice diluted with ice and supplying carbon dioxide gas. Next, the composition ratio of the coprecipitate is determined as Y:Ba:Cu=
An aqueous solution containing an acid salt of each gold m6 was prepared in which the amounts of Ba and Cu were increased to obtain a molar ratio of 1:2:3. Stir the aqueous solution containing n-butylamine carbonate and check the pH with a pH meter.
Co-precipitation was performed by adding an aqueous solution containing each metal nitrate while checking the H value. The addition of aqueous solutions containing each metal nitrate is p
The composition ratio of the coprecipitate was confirmed to be Y:Ba:Cu=1:2:3 by heating or reducing the pressure while stirring and adjusting the pH value with a dilute nitric acid aqueous solution at around H7. Checked and filtered. In particular, since Ba has a stronger basicity than n-butylamine, it tends to be gradually eluted, and once eluted, Ba does not precipitate unless an alkali having a stronger basicity than Ba is added.

合成のための焼成条件、電気抵抗測定試料の作成条件は
すべて実施例1と同様の条件で行った。
The firing conditions for synthesis and the conditions for preparing samples for electrical resistance measurement were all the same as in Example 1.

この試料の電気抵抗の温度特性の結果を第2図に示した
。実施例1とほぼ同様の結果が得られ電流密度が高くて
も臨界温度付近で電気抵抗はゼロであり、酸化物と炭酸
塩合成物に比べ特性の優れたものであった。
The results of the temperature characteristics of the electrical resistance of this sample are shown in FIG. Almost the same results as in Example 1 were obtained; even though the current density was high, the electrical resistance was zero near the critical temperature, and the properties were superior to those of oxide and carbonate composites.

(実施例3) シュウ酸水溶液にn−ブチルアミンを加えpH約10の
n−ブチルアミンシュウ酸塩を含む水溶液を作成した。
(Example 3) n-Butylamine was added to an oxalic acid aqueous solution to create an aqueous solution containing n-butylamine oxalate having a pH of about 10.

次に、共沈物の組成比をLa5sr:cu=1.2:0
.8: 1のモル比にするためSrとCuの量を多くし
た各金属硝酸塩を含む水溶液を作成した。n−ブチルア
ミンシュウ酸塩を含む水溶液を撹拌し、pH計でpH値
を確認しながら各金属硝酸塩を含む水溶液を添加して共
沈を行った。各金属硝酸塩を含む水溶液の添加は、pH
8付近で止め、La:Sr:Cu=1.2:O,S:1
になっていることを確認して濾過した。室温で予備乾燥
させた後、アルミナルツボに入れ空気中500℃で仮焼
した。仮焼後、混合描潰機で粉砕混合し、アルミナルツ
ボに入れて空気中800℃で焼成し、セラミックス超電
導体粉末を作成した。この超電導体粉末を1)=/c−
以上で加圧成型し、空気中800℃で焼成した後、ダイ
ヤモンドカッターで2+nm角の棒状に切り出して電気
抵抗の温度特性を測定した。比較のために、酸化ランタ
ン、炭酸ストロンチウム、酸化鋼を出発原料としてセラ
ミックス超電導体を作成し電気抵抗の温度特性を測定し
た。合成は、空気中1000℃で焼成し、電気抵抗測定
試料は、粉砕混合後、11ツ/ cd以上で加圧成型し
800℃で焼成して作成した。その結果、電気抵抗は、
40に付近で急激に減少しゼロになった。しがし、酸化
物と炭酸塩で合成した試料では電流密度を高(した場合
、臨界温度付近で電気抵抗はゼロにならずテーリングを
起こした。これに対して、本実施例の製透性で合成した
試料では電流密度を高くしても臨界温度付近で電気抵抗
はゼロであり特性の優れたものであった。
Next, the composition ratio of the coprecipitate was set as La5sr:cu=1.2:0
.. An aqueous solution containing each metal nitrate with increased amounts of Sr and Cu was prepared to achieve a molar ratio of 8:1. An aqueous solution containing n-butylamine oxalate was stirred, and while checking the pH value with a pH meter, an aqueous solution containing each metal nitrate was added to perform coprecipitation. The addition of an aqueous solution containing each metal nitrate will adjust the pH
Stop at around 8, La:Sr:Cu=1.2:O,S:1
After confirming that it was, it was filtered. After preliminary drying at room temperature, it was placed in an aluminum crucible and calcined in air at 500°C. After calcining, the mixture was pulverized and mixed using a mixer and crusher, placed in an aluminum crucible, and fired in air at 800°C to produce ceramic superconductor powder. This superconductor powder is 1)=/c-
After pressure molding and firing in air at 800° C., the product was cut into a 2+ nm square rod shape using a diamond cutter, and the temperature characteristics of electrical resistance were measured. For comparison, we created ceramic superconductors using lanthanum oxide, strontium carbonate, and oxidized steel as starting materials, and measured the temperature characteristics of their electrical resistance. Synthesis was performed by firing in air at 1000°C, and samples for electrical resistance measurement were prepared by pulverizing and mixing, molding under pressure at 11 T/cd or higher, and firing at 800°C. As a result, the electrical resistance is
Around 40, it suddenly decreased to zero. However, in the case of samples synthesized with oxides and carbonates, when the current density was high (at high current density), the electrical resistance did not become zero near the critical temperature and tailing occurred.In contrast, the permeability of this example The sample synthesized in 1 had excellent characteristics, with zero electrical resistance near the critical temperature even when the current density was increased.

(実施例4) Sc:Ba:Cu=1 :2:3のモル比で各金属硝酸
塩を含む水溶液を撹拌し、pH計でpH値を確認しなが
らグアニジン炭酸塩水溶液を添加した。本実施例ではp
H8を終点としてグアニジン炭酸塩水溶液の添加を止め
、静置後、濾過し室温で予備乾燥させた後、アルミナル
ツボに入れ空気中700℃で仮焼した。仮焼後、混合描
潰機で粉砕混合し、アルミナルツボに入れ空気中900
℃で焼成してセラミックス超電導体粉末を得た。この超
電導体粉末を1 ’>/ cd以上で加圧成型し、空気
中900℃で焼成後、ダイヤモンドカッターで2m角の
棒状に切り出し電気抵抗の温度特性を測定した。比較の
ために酸化スカンジウム、炭酸バリウム、酸化鋼を出発
原料としてセラミックス超電導体を作成し、電気抵抗の
温度特性を測定した。合成は、空気中1000℃以上の
温度で焼成し、粉砕混合後、本実施例の製造法で合成し
たものと同様の操作で電気抵抗測定試料を作成した。
(Example 4) An aqueous solution containing each metal nitrate at a molar ratio of Sc:Ba:Cu=1:2:3 was stirred, and a guanidine carbonate aqueous solution was added while checking the pH value with a pH meter. In this example, p
The addition of the guanidine carbonate aqueous solution was stopped at H8 as the end point, and after being allowed to stand, the mixture was filtered and preliminarily dried at room temperature, and then placed in an alumina crucible and calcined in air at 700°C. After calcining, it is crushed and mixed using a mixing and crushing machine, and then placed in an aluminum crucible and heated to 900% in the air.
Ceramic superconductor powder was obtained by firing at ℃. This superconductor powder was pressure-molded at 1'>/cd or higher, fired in air at 900°C, and then cut into 2m square rods using a diamond cutter to measure the temperature characteristics of electrical resistance. For comparison, ceramic superconductors were created using scandium oxide, barium carbonate, and oxidized steel as starting materials, and the temperature characteristics of electrical resistance were measured. The synthesis was performed by firing in air at a temperature of 1000° C. or higher, and after grinding and mixing, an electrical resistance measurement sample was prepared in the same manner as that synthesized by the manufacturing method of this example.

その結果、電気抵抗は、100K付近で急激に減少しゼ
ロになった。しかし、酸化物と炭酸塩で合成した試料で
は電流密度を高くした場合、臨界温度付近で電気抵抗は
ゼロにならずテーリングをおこした。これに対して、本
実施例の製造法で合成した試料では電流密度を高くして
も臨界温度付近で電気抵抗はゼロであり特性の優れたも
のであった。
As a result, the electrical resistance suddenly decreased to zero at around 100K. However, in samples synthesized from oxides and carbonates, when the current density was increased, the electrical resistance did not become zero near the critical temperature and tailing occurred. In contrast, the sample synthesized by the manufacturing method of this example had excellent characteristics, with zero electrical resistance near the critical temperature even when the current density was increased.

さらに、本実施例ではAがSc、Y、La、BがSr、
Baの場合のみを述べたがこれに限らず、Aがランタノ
イド58〜71の元素の場合についても、また、BがS
r、Ba以外の■a族の元素の場合についても本実施例
と同様、酸化物と炭酸塩を用いた場合に比べ合成温度が
低くでき、しかも、均一で緻密なものができ特性の優れ
たものが得られる。ことは当然であり、本発明の範噴に
属するものである。
Furthermore, in this example, A is Sc, Y, La, B is Sr,
Although only the case of Ba has been described, the case is not limited to this, but also the case where A is a lanthanoid element of 58 to 71, and the case where B is S
Similarly to this example, in the case of elements in the group ■a other than r and Ba, the synthesis temperature can be lower than when using oxides and carbonates, and moreover, a uniform and dense product can be produced with excellent properties. You can get something. Of course, this is within the scope of the present invention.

また、グアニジン塩のみ述べたが、グアニジンの水素を
他の有機物に置換した場合にも同様の効果を得ることは
当然であり、n−ブチルアミンだけでなく、これと同程
度以上の塩基度をもつ脂肪族アミンでも同様の効果を得
ることができることは容易に推測されるものである。有
機塩基物塩として炭酸塩、シュウ酸塩のみ述べたが、ク
エン酸塩、酒石酸塩でも同様の効果を得ることができる
In addition, although only guanidine salts have been described, it is natural that similar effects can be obtained when the hydrogen of guanidine is replaced with other organic substances. It is easily inferred that similar effects can be obtained with aliphatic amines. Although only carbonates and oxalates have been described as organic base salts, similar effects can be obtained with citrates and tartrates.

発明の効果 本発明は、グアニジン系、あるいは脂肪族アミンの炭酸
塩、シュウ酸塩、クエン酸塩、または酒石酸塩のうち少
なくとも一種の塩を含む溶液を用いてpH値を調整して
セラミックス超電導体の構成金属の各成分を含む溶液と
混合し、共沈させることで微細な粒子を均一に混合する
ことができ、そのため従来に比べて低い温度で合成する
ことができ、しかも、均一で緻密な超電導特性の優れた
セラミックス超電導体を得ることができる。
Effects of the Invention The present invention provides a ceramic superconductor by adjusting the pH value using a solution containing at least one of guanidine-based or aliphatic amine carbonate, oxalate, citrate, or tartrate. By mixing with a solution containing each constituent metal component and co-precipitating it, fine particles can be mixed uniformly. Therefore, it is possible to synthesize at a lower temperature than conventional methods, and it is possible to produce uniform and dense particles. A ceramic superconductor with excellent superconducting properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造法で作成したセラミッ
クス超電導体の電気抵抗の温度特性図、第2図は本発明
の異なる実施例の製造法で作成したセラミクス超電導体
の電気抵抗の温度特性図である。
Fig. 1 is a temperature characteristic diagram of the electrical resistance of a ceramic superconductor produced by a production method according to an embodiment of the present invention, and Fig. 2 is a diagram of the electrical resistance of a ceramic superconductor produced using a production method according to a different embodiment of the present invention. It is a temperature characteristic diagram.

Claims (2)

【特許請求の範囲】[Claims] (1)組成比0.5≦(A+B)/Cu≦2.5(Aは
Sc、Y、ランタノイド57〜71元素のうち少なくと
も一種の元素、BはIIa族元素のうち少なくとも一種の
元素)の元素を含む溶液と、グアニジン系の炭酸塩、シ
ュウ酸塩、クエン酸塩、酒石酸塩のうち少なくとも一種
の塩を含む溶液とを混合してpH5〜9を終点として金
属成分を共沈させ、焼成したことを特徴とするセラミッ
クス超電導体の製造法。
(1) Composition ratio 0.5≦(A+B)/Cu≦2.5 (A is at least one element among Sc, Y, and 57 to 71 lanthanoid elements, B is at least one element among group IIa elements) A solution containing the element and a solution containing at least one kind of guanidine-based carbonate, oxalate, citrate, and tartrate are mixed, and the metal components are co-precipitated with a pH of 5 to 9 as the end point, followed by firing. A method for producing a ceramic superconductor characterized by the following.
(2)脂肪族アミンの炭酸塩、シュウ酸塩、クエン酸塩
、酒石酸塩のうち少なくとも一種の塩を含む溶液に、各
金属成分を含む溶液を入れ前記各金属成分をpH7〜9
を終点として共沈させ、焼成したことを特徴とする特許
請求の範囲第1項記載のセラミックス超電導体の製造法
(2) A solution containing each metal component is added to a solution containing at least one salt of an aliphatic amine carbonate, oxalate, citrate, and tartrate, and the pH of each metal component is adjusted to pH 7 to 9.
2. The method for producing a ceramic superconductor according to claim 1, wherein the ceramic superconductor is co-precipitated with a final point of .
JP62106721A 1987-04-30 1987-04-30 Manufacturing method of ceramics superconductor Expired - Fee Related JPH07106893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106721A JPH07106893B2 (en) 1987-04-30 1987-04-30 Manufacturing method of ceramics superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106721A JPH07106893B2 (en) 1987-04-30 1987-04-30 Manufacturing method of ceramics superconductor

Publications (2)

Publication Number Publication Date
JPS63270319A true JPS63270319A (en) 1988-11-08
JPH07106893B2 JPH07106893B2 (en) 1995-11-15

Family

ID=14440815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106721A Expired - Fee Related JPH07106893B2 (en) 1987-04-30 1987-04-30 Manufacturing method of ceramics superconductor

Country Status (1)

Country Link
JP (1) JPH07106893B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437418A (en) * 1987-07-31 1989-02-08 Mitsubishi Metal Corp Production of compound metal oxide
JPH01215711A (en) * 1988-02-24 1989-08-29 Oki Electric Ind Co Ltd Formation of superconducting thick film
US5252314A (en) * 1990-11-30 1993-10-12 Case Western Reserve University Method for producing coprecipitated multicomponent oxide powder precursors using guanidine oxalate as precipitating agent
CN114180942A (en) * 2020-09-14 2022-03-15 日本碍子株式会社 Composite sintered body, semiconductor manufacturing apparatus member, and method for manufacturing composite sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252925A (en) * 1987-04-10 1988-10-20 Kazuo Fueki Production of superconductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252925A (en) * 1987-04-10 1988-10-20 Kazuo Fueki Production of superconductive material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437418A (en) * 1987-07-31 1989-02-08 Mitsubishi Metal Corp Production of compound metal oxide
JPH01215711A (en) * 1988-02-24 1989-08-29 Oki Electric Ind Co Ltd Formation of superconducting thick film
US5252314A (en) * 1990-11-30 1993-10-12 Case Western Reserve University Method for producing coprecipitated multicomponent oxide powder precursors using guanidine oxalate as precipitating agent
US5298654A (en) * 1990-11-30 1994-03-29 Case Western Reserve University Method for producing coprecipitated multicomponent oxide powder precursors
CN114180942A (en) * 2020-09-14 2022-03-15 日本碍子株式会社 Composite sintered body, semiconductor manufacturing apparatus member, and method for manufacturing composite sintered body

Also Published As

Publication number Publication date
JPH07106893B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US5118659A (en) Production of superconductor materials using a helicoidal flow of hot gases to effect pulverization and drying
JPS63270319A (en) Production of ceramic superconductor
US5066636A (en) Citrate/ethylenediamine gel method for forming high temperature superconductors
US5011822A (en) Preparation of a uniform mixed metal oxide and superconductive oxides
AU617357B2 (en) Process for preparing superconducting materials and materials thereby obtained
JPH0791054B2 (en) Manufacturing method of complex metal oxide
US5071827A (en) Production of superconductor materials
EP0287064A2 (en) Process for producing superconductive ceramics
JPH02157110A (en) Manufacture of mixed metallic oxide materials and molded product composed of said materials
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JP3073229B2 (en) Manufacturing method of oxide superconducting material
JPH01172211A (en) Production of raw material for compound oxide superconductor
JPH01294561A (en) Production of compound oxide ceramics
JPH0477316A (en) Oxide superconductor and its production
JPH01239053A (en) Ceramic superconductor, precursor thereof and production thereof
JPS63288912A (en) Production of inorganic oxide superconductor
JPS63252925A (en) Production of superconductive material
JPH01264954A (en) Production of high-temperature superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JPH0222164A (en) Production of oxide superconducting material
JPH07110766B2 (en) Method for manufacturing oxide superconductor
JPH01138122A (en) Production of mixed powder for superconductor
JPH01108121A (en) Production of superconducting material
JPS63288911A (en) Production of high temperature superconductor
JPH02102122A (en) Production of rare earth element high-temperature superconductor powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees