JPH02289429A - Production of iron-based multiple oxide - Google Patents

Production of iron-based multiple oxide

Info

Publication number
JPH02289429A
JPH02289429A JP10779189A JP10779189A JPH02289429A JP H02289429 A JPH02289429 A JP H02289429A JP 10779189 A JP10779189 A JP 10779189A JP 10779189 A JP10779189 A JP 10779189A JP H02289429 A JPH02289429 A JP H02289429A
Authority
JP
Japan
Prior art keywords
iron
aqueous solution
ions
garnet
coprecipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10779189A
Other languages
Japanese (ja)
Inventor
Minoru Imaeda
美能留 今枝
Emi Asai
浅井 恵美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10779189A priority Critical patent/JPH02289429A/en
Priority to DE69016699T priority patent/DE69016699T2/en
Priority to EP90304505A priority patent/EP0399665B1/en
Priority to CA002015606A priority patent/CA2015606C/en
Priority to US07/516,907 priority patent/US5256242A/en
Publication of JPH02289429A publication Critical patent/JPH02289429A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable conversion into garnet by calcining at a low temp. and to produce an iron-based multiple oxide at a low cost by coprecipitating hydroxides from an aq. soln. contg. Fe<2+> ions and ions of other metal, synthesizing a coprecipitate while oxidizing iron to trivalent iron and separating the coprecipitate, which is then calcined, molded and sintered. CONSTITUTION:A mixed aq. soln. contg. Fe<2+> ions and ions of other metal such as Y or a rare earth metal in the form of metallic salts is prepd. and mixed with a base such as ammonia. After hydroxides are coprecipitated from the soln., oxygen-contg. gas is blown into the soln. to synthesize a coprecipitate as well as to perfectly oxidize Fe<2+> ions to Fe<3+> ions. The coprecipitate is separated, washed, dried and calcined at about 600-1,300 deg.C. The resulting calcined body is crushed, mixed, molded and sintered at about 1,000 deg.C to produce the subject oxide.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄系複合酸化物の製造方法に関し、とくに
光アイソレーターなどの磁気光学素子に有用なガーネッ
ト型フェライト、なかでも固相反応法によるところのガ
ーネット型フェライト単結晶の製造に用いたり、透光性
のあるガーネット型フェライト多結晶体を得るのに好適
な鉄系複合酸化物の製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing iron-based composite oxides, particularly garnet-type ferrite useful for magneto-optical elements such as optical isolators, particularly by solid phase reaction method. The present invention relates to a method for producing an iron-based composite oxide suitable for producing a garnet-type ferrite single crystal or for obtaining a translucent garnet-type ferrite polycrystal.

(従来の技術) 従来よりガーネット型フェライト製造用の原料粉末(以
下ガーネット型フェライト粉末と記す)を得る方法とし
て、粉末混合法あるいは湿式共沈法などが知られている
(Prior Art) Powder mixing methods, wet coprecipitation methods, and the like have been known as methods for obtaining raw material powder for producing garnet-type ferrite (hereinafter referred to as garnet-type ferrite powder).

粉末混合法は、具体的に所望組成の酸化物もしくは炭酸
塩等の原料粉末を混合し、この混合物を仮焼、粉砕する
ことによってガーネット型フェライト粉末を得る方法で
あり、一方式式共沈法は原料塩水溶液に塩基を加え、水
酸化物を生成させたのち、該水酸化物を洗浄ろ過、乾燥
しそれを仮焼、粉砕してガーネット型フェライト粉末を
得る方法である。
The powder mixing method is a method in which a garnet-type ferrite powder is obtained by mixing raw material powders such as oxides or carbonates with a desired composition, and calcining and pulverizing this mixture. This is a method in which a base is added to an aqueous raw material salt solution to produce a hydroxide, and then the hydroxide is washed, filtered, dried, calcined, and ground to obtain a garnet-type ferrite powder.

(発明が解決しようとする課題) ところで、従来の粉末混合法によれば原料粒子間の固相
反応によってガーネットが生成しそしてその生成温度は
YTG(イツトリウム鉄ガーネット)を対象とした場合
1200″C以上の高温になるため粒成長が生じ、粉砕
後の粒子径が大きくなり、このため成形性、焼結密度が
十分でないという欠点があった。
(Problem to be Solved by the Invention) By the way, according to the conventional powder mixing method, garnet is produced by a solid phase reaction between raw material particles, and the production temperature is 1200''C when YTG (yttrium iron garnet) is used. Due to the high temperature, grain growth occurs and the particle size after pulverization becomes large, resulting in insufficient formability and sintered density.

また、ビスマス置換鉄ガーネツト粉末を得ようとする場
合においては、原料粒子間の反応が起こる温度でビスマ
ス成分が揮発し所期した組成になるガーネットが得られ
ないという問題があった。
Furthermore, when attempting to obtain bismuth-substituted iron garnet powder, there is a problem in that the bismuth component volatilizes at the temperature at which the reaction between raw material particles occurs, making it impossible to obtain garnet having the desired composition.

この点、従来の湿式共沈法においては、金属イオンの混
合物から直接水酸化物を得るため、例えばYIGでは、
分子オーダーでの混合が可能となり900°C以上の仮
焼で微細なガーネット粉末を得ることができるが、3価
の鉄水溶液を出発原料として共沈を行った場合には、生
成する共沈物が非常に微細で、しかも仮焼後の粉末の粒
度分布が広く、成形性焼結密度も不十分であり、このよ
うな粉末を原料とした場合は満足のいくガーネット型フ
ェライトを得ることができなかった。
In this regard, in the conventional wet coprecipitation method, hydroxide is obtained directly from a mixture of metal ions, so for example, in YIG,
Mixing on the molecular order is possible, and fine garnet powder can be obtained by calcining at 900°C or higher; however, when coprecipitation is performed using a trivalent iron aqueous solution as a starting material, the coprecipitate produced The powder is extremely fine, and the particle size distribution of the powder after calcination is wide, and the formability and sintering density are insufficient, making it impossible to obtain a satisfactory garnet-type ferrite using such powder as a raw material. There wasn't.

なお湿式共沈法にてビスマス置換鉄ガーネツト粉末を得
ようとする場合には、原料となる鉄等の硫酸イオンや塩
化物イオンを含む水溶液から共沈反応により水酸化物を
得ると、これらのイオンの吸′着により低温においてガ
ーネット化しにくくなり、仮焼温度を900°C以上に
する必要があった。
In addition, when attempting to obtain bismuth-substituted iron garnet powder by a wet coprecipitation method, these hydroxides are obtained by coprecipitation reaction from an aqueous solution containing sulfate ions and chloride ions of iron, etc. as raw materials. Due to the adsorption of ions, it becomes difficult to turn into garnet at low temperatures, so it was necessary to set the calcination temperature to 900°C or higher.

このため、ビスマスを多量に置換した場合、900°C
未満の温度では硫酸根や塩酸根が完全には分解せず、成
形性のよい仮焼粉末を得ることはできない。
For this reason, if a large amount of bismuth is substituted, 900°C
If the temperature is lower than that, the sulfuric acid radicals and hydrochloric acid radicals will not be completely decomposed, making it impossible to obtain a calcined powder with good moldability.

上述したような従来の問題を解消すべく、とくに共沈法
に工夫を加えることにより、所望とするガーネットの組
成に応じた粒度分布の狭い原料粉末を作製し、これによ
って特性の良好なガーネット型フェライトを比較的容易
に得ることができる新規な手法を与えることがこの発明
の目的である。
In order to solve the above-mentioned conventional problems, we have created a raw material powder with a narrow particle size distribution according to the desired garnet composition by particularly making improvements to the coprecipitation method, and this has enabled us to create a garnet type with good properties. It is an object of the present invention to provide a new method by which ferrite can be obtained relatively easily.

(課題を解決するための手段) この発明は2価の鉄イオンと、その他の金属イオンを含
む混合水溶液から塩基により水酸化物を共沈させ、鉄を
3価に酸化しつつ共沈物を合成し、次いで分離・乾燥・
仮焼して得た粉末をさらに混合・成形・焼結したことを
特徴とする鉄系複合酸化物の製造方法(第1発明)であ
り、またこの発明は3価の硝酸鉄とその他の金属の硝酸
塩を含む混合水溶液を原料にして、この金属塩混合水溶
液を塩基の水溶液中に滴下することにより水酸化物を共
沈さ、ついで分離・乾燥・仮焼して得た粉末をさらに混
合・成形・焼結することを特徴とする鉄系複合酸化物の
製造方法(第2発明)である。
(Means for Solving the Problems) This invention coprecipitates hydroxide from a mixed aqueous solution containing divalent iron ions and other metal ions with a base, oxidizes iron to trivalent iron, and converts the coprecipitate. Synthesis, then separation, drying,
A method for producing an iron-based composite oxide (first invention) characterized by further mixing, molding, and sintering the powder obtained by calcining, and this invention also provides a method for producing an iron-based composite oxide, which is characterized in that the powder obtained by calcining is further mixed, molded, and sintered. Using a mixed aqueous solution containing nitrates as a raw material, the hydroxide is coprecipitated by dropping this metal salt mixed aqueous solution into an aqueous base solution, and then the powder obtained by separating, drying, and calcining is further mixed. This is a method for producing an iron-based composite oxide (second invention), characterized by molding and sintering.

(作 用) 第1発明においては、とくにガーネット型フェライト粉
末を製造するに当り、水酸化物を共沈させたのちの水溶
液中に、酸素を含有するガスを吹込むことによって3価
の水酸化鉄を徐々に成長させるので均一な粒径となり、
その後さらに加熱、熟成を施すので熔解・析出反応によ
って、とくに微細粒子は皆無となる。
(Function) In the first invention, especially when producing garnet type ferrite powder, trivalent hydroxide is produced by blowing oxygen-containing gas into the aqueous solution after co-precipitating the hydroxide. Gradual growth of iron results in uniform grain size,
After that, further heating and aging are performed, so that there are no particularly fine particles due to melting and precipitation reactions.

また第2の発明においては、共沈反応の出発原料を60
0″C程度の温度で分解可能な硝酸塩とし、これをアン
モニア等の塩基中に滴下し、水酸化物を生成させるpt
+が大きくなる金属成分を、混合の際に偏析が発生しな
いようにして共沈反応を行うので600°C程度の低温
における仮焼においても充分にガーネット化させること
ができる。
Further, in the second invention, the starting material for the coprecipitation reaction is
A nitrate that can be decomposed at a temperature of about 0"C is dropped into a base such as ammonia to generate a hydroxide.
Since the coprecipitation reaction is carried out in such a way that segregation does not occur during mixing of metal components with a large + value, sufficient garnetization can be achieved even during calcination at a low temperature of about 600°C.

なお、第2発明のように出発原料として主に硝酸塩を用
いる場合には、ビスマス置換したガーネット型フェライ
トを低温で製造できる利点がある。
In addition, when nitrate is mainly used as a starting material as in the second invention, there is an advantage that bismuth-substituted garnet type ferrite can be produced at a low temperature.

以下この発明に従うガーネット型フェライトの製造方法
を、とくに原料粉末を得る場合につき第1発明、第2発
明のそれぞれに区別して詳細に説明する。
The method for producing garnet type ferrite according to the present invention will be explained in detail below, with particular reference to the case of obtaining raw material powder, distinguishing between the first invention and the second invention.

まず、第1発明について、 少なくとも2価の鉄イオンと、イツトリウム又は希土類
金属イオンを含む混合水溶液を作成する。
First, regarding the first invention, a mixed aqueous solution containing at least divalent iron ions and yttrium or rare earth metal ions is prepared.

ここに混合水溶液には、硫酸根を共沈させないため炭酸
イオンを共存させてもよい。
Here, carbonate ions may be present in the mixed aqueous solution in order to prevent coprecipitation of sulfate groups.

次に上記の金属塩混合水溶液とアンモニアの如き塩基を
混合し水酸化物を得る。この際、水酸化物を生成するp
Hがほぼ同等になる金属を用いる場合には、該混合水溶
液に塩基を加えるが、pl(が大きく異なる金属を用い
る場合は、同時に水酸化物を生成させるためp)Iを一
定とした水?’jJ f&中に上記混合水溶液を徐々に
滴下するのがよい。また、共沈の際に使用する塩基とし
ては、アンモニアや水酸化テトラメチルアンモニウム、
水酸化テトラエチルアンモニウム、水酸化トリエチルフ
ェニルアンモニウムなどの金属イオンを含まない塩基と
するのがよい。
Next, the metal salt mixed aqueous solution and a base such as ammonia are mixed to obtain a hydroxide. At this time, p which produces hydroxide
When using metals with approximately the same H, a base is added to the mixed aqueous solution, but when using metals with significantly different pl, hydroxides are simultaneously generated, so water with a constant p)I is used. It is preferable to gradually drop the above mixed aqueous solution into 'jJ f&. In addition, the bases used during coprecipitation include ammonia, tetramethylammonium hydroxide,
It is preferable to use a base that does not contain metal ions, such as tetraethylammonium hydroxide and triethylphenylammonium hydroxide.

その理由は、塩基に金属イオンが含まれていると、それ
が不純物として残留して焼結時に液相が生成する等の悪
影響があるからである。
The reason for this is that if the base contains metal ions, they will remain as impurities and have adverse effects such as the formation of a liquid phase during sintering.

次に、共沈後の水溶液に、酸素を含有するガスを吹込む
。ここで酸化速度は吹込む酸素の濃度と気泡のサイズに
よって異なり、酸素100%のガスを用い、細かい気泡
を多(発生させるのが最も速く、また酸化反応時の液温
は反応速度、反応時間を考慮すると40°C以上が適当
である。なおこの操作は通常は1〜2時間で終了する。
Next, a gas containing oxygen is blown into the aqueous solution after coprecipitation. Here, the oxidation rate varies depending on the concentration of oxygen blown in and the size of the bubbles.It is fastest to use 100% oxygen gas and generate a large number of small bubbles, and the liquid temperature during the oxidation reaction depends on the reaction rate and reaction time. Considering this, a temperature of 40°C or higher is appropriate.This operation is usually completed in 1 to 2 hours.

酸化反応終了後は水溶液の加熱と酸素の吹込みを30分
以上継続して行い、一部未反応の2価鉄イオンを完全に
3価として共沈させるとともに極微粒子の溶解析出反応
により粒子径を均一にする。
After the oxidation reaction is completed, the aqueous solution is heated and oxygen is blown continuously for 30 minutes or more to completely convert unreacted divalent iron ions into trivalent co-precipitates, and to reduce the particle size by dissolution precipitation reaction of ultrafine particles. make it uniform.

第2発明について、 まず、3価の硝酸鉄水溶液と、イツトリウムまたは希土
類金属の硝酸塩を含む金属水溶液とを所望のモル比とな
るように秤量し、混合水溶液を作成する。
Regarding the second invention, first, an aqueous solution of trivalent iron nitrate and an aqueous metal solution containing a nitrate of yttrium or a rare earth metal are weighed to have a desired molar ratio to create a mixed aqueous solution.

次に、金属塩混合水溶液とアンモニウムの如き塩基を混
合し水酸化物を得る。この際、この発明においては、金
属塩混合水溶液中の3価の鉄イオンとイツトリウムまた
は希土類金属のイオンとのpHが大きく異なっていて、
同時に水酸化物を生成させるために塩基の水溶液中に金
属塩混合水溶液を徐々に滴下する必要がある。例えば、
水酸化物の生成pHは、Bi : pH1以上、Fe”
 : pH2以上、Y:9117以上である。また、共
沈時に使用する塩基としては、アンモニアや水酸化テト
ラメチルアンモニウムなどの金属イオンを含まない塩基
とするのがよい。というのは、塩基に金属イオンが含ま
れていると、それが不純物として残留し焼結時に液相が
生成する等の悪影響があるからである。
Next, a metal salt mixed aqueous solution and a base such as ammonium are mixed to obtain a hydroxide. At this time, in this invention, the pH of the trivalent iron ion and the yttrium or rare earth metal ion in the metal salt mixed aqueous solution is significantly different,
At the same time, in order to generate hydroxide, it is necessary to gradually drop the metal salt mixed aqueous solution into the aqueous base solution. for example,
The pH of hydroxide generation is: Bi: pH 1 or higher, Fe”
: pH is 2 or more, Y: 9117 or more. Furthermore, the base used during coprecipitation is preferably a base that does not contain metal ions, such as ammonia or tetramethylammonium hydroxide. This is because if the base contains metal ions, they will remain as impurities and have adverse effects such as the formation of a liquid phase during sintering.

次に、上記した要領に従い得られた共沈物を分離・洗浄
するが、第1発明および第2発明の何れにおいても洗浄
液に硫酸、硝酸、アンモニウム等の出発原料の陰イオン
がほとんど検出されなくなるまで分離洗浄操作を繰返す
Next, the coprecipitate obtained according to the above procedure is separated and washed, but in both the first invention and the second invention, anions of starting materials such as sulfuric acid, nitric acid, ammonium, etc. are hardly detected in the washing solution. Repeat the separation and washing operation until

次に、分離した共沈水酸化物を乾燥する。Next, the separated coprecipitated hydroxide is dried.

第1発明に従って得た乾燥微粉末は600℃〜1300
°Cの温度域で仮焼成する。最適の仮焼温度はガーネッ
トの組成によって大きく異なる。特に低融点のビスマス
系のガーネットでは低温にする必要がある。仮焼温度を
600〜1300°Cであると好ましい理由は、600
 ”C未満ではほとんどガーネット化反応が起らず、一
方1300℃を超えると粉体が焼結してしまい、成形性
のよい粉体が得られないからである。
The dry fine powder obtained according to the first invention has a temperature of 600°C to 1300°C.
Calcinate in the temperature range of °C. The optimum calcination temperature varies greatly depending on the composition of the garnet. In particular, bismuth-based garnet with a low melting point requires a low temperature. The reason why the calcination temperature is preferably 600 to 1300°C is that 600°C
This is because if the temperature is less than 1,300°C, the garnetization reaction hardly occurs, whereas if it exceeds 1,300°C, the powder will sinter, making it impossible to obtain a powder with good moldability.

第1発明における粉末はYIGを例とすると、900″
C程度からガーネット化が始まり、1000’Cでほぼ
90%以上がガーネット化し粉末混合法を適用した場合
に比べ200〜300°C低温化することができる。
Taking YIG as an example, the powder in the first invention is 900″
Garnetization begins at about C, and at 1000'C, more than 90% of the garnetization occurs, making it possible to lower the temperature by 200 to 300°C compared to when the powder mixing method is applied.

また第2発明に従って得た乾燥微粉末については600
°C〜1100°Cの温度域で仮焼成する。最適の仮焼
温度は、ガーネットの組成特にビスマスの置換量により
大きく異なる。この発明において仮焼温度が600°C
〜1100°Cであると好ましい理由は、600°C未
満ではほとんどガーネット化反応が起らず、一方110
0°Cを超えると粉体が焼結しやすくなり、成形性のよ
い粉体が得られないためである。
600 for the dry fine powder obtained according to the second invention.
Preliminary firing is performed at a temperature range of 1100°C to 1100°C. The optimum calcination temperature varies greatly depending on the composition of garnet, especially the amount of bismuth substitution. In this invention, the calcination temperature is 600°C.
The reason why the temperature is preferably 1100°C is that below 600°C, almost no garnetization reaction occurs;
This is because if the temperature exceeds 0°C, the powder tends to sinter, making it impossible to obtain a powder with good moldability.

この第2発明における粉末はBit、 oYz、 oF
esO+zを例とすると700″C程度からガーネット
化が始まり、800″Cでほぼ100%がガーネット化
し、粉末混合法を適用した場合に比べて400〜500
 ’C低温化することができる。
The powder in this second invention is Bit, oYz, oF
Taking esO+z as an example, garnetization starts at about 700"C, and almost 100% becomes garnetization at 800"C, which is 400~500% lower than when applying the powder mixing method.
'C can be lowered.

得られた仮焼体は次に粉砕するが、粉砕後の粒子径は第
1発明、第2発明の何れにおいても0.5〜2.5μm
であり、粒子径分布の狭い粉体となる。
The obtained calcined body is then pulverized, and the particle size after pulverization is 0.5 to 2.5 μm in both the first invention and the second invention.
This results in a powder with a narrow particle size distribution.

なお、この発明ではM、Fe、0゜になるガーネットの
基体構造においてイツトリアおよび希土類元素(La、
 ce、 Pr、 Nb、 Pm、 Sml Eu、G
d、 Tb、 oy、 Ho、 Er、 Tm+ Yb
、 Lu、)であるMもしくはFeの元素置換を行うこ
とによって、下表の如く磁気光学特性の改善を図ること
ができる。
In addition, in this invention, itria and rare earth elements (La,
ce, Pr, Nb, Pm, Sml Eu, G
d, Tb, oy, Ho, Er, Tm+ Yb
, Lu, ), the magneto-optical properties can be improved as shown in the table below.

表−1 (実施例) まず第1発明の実施例について説明する。Table-1 (Example) First, an embodiment of the first invention will be described.

災旌拠土 硫酸第一鉄水溶液と硝酸イツトリウム水溶液を混合して
YJ’L’sO+zの組成で約600gとなる濃度の水
溶成約101を用意し、この水溶液をアンモニア水にて
pHBに調整した液温75℃になる約2ONの水溶液に
撹拌しながら約30分で滴下した。この間pH8を保つ
ように併せてアンモニア水を滴下した。次に、生成した
緑色スラリーに101 /minの酸素ガスを細かい気
泡状にして吹込んだ。反応は約2時間程度で終了し茶か
っ色のスラリーとなったが、この発明ではさらに粉末の
粒子を均一にすべく加熱および酸素の吹込みを約3時間
継続した。この工程では、酸化反応とともにやはりpH
は下がるのでアンモニア水を滴下してpHを8.0に保
つようにした。
Prepare an aqueous solution of about 101 with a composition of YJ'L'sO+z of about 600 g by mixing an aqueous solution of ferrous sulfate and an aqueous solution of yttrium nitrate, and adjust this aqueous solution to pHB with aqueous ammonia. It was added dropwise to an approximately 2ON aqueous solution with stirring at a temperature of 75°C over approximately 30 minutes. During this time, aqueous ammonia was added dropwise to maintain the pH at 8. Next, oxygen gas was blown into the green slurry at a rate of 101/min in the form of fine bubbles. The reaction was completed in about 2 hours, resulting in a brownish slurry, but in the present invention, heating and oxygen injection were continued for about 3 hours in order to make the powder particles uniform. In this process, along with the oxidation reaction, the pH
Since the pH would drop, ammonia water was added dropwise to maintain the pH at 8.0.

生成したスラリーを分離、洗浄し、洗浄液に硫酸イオン
、硝酸イオンがほとんどふくまれなくなるまで洗浄後、
乾燥した。
The generated slurry is separated and washed until the cleaning solution contains almost no sulfate ions and nitrate ions.
Dry.

乾燥後の微粉末は、次に1100°Cで4時間仮焼した
のち、アトライタ粉砕機で粉砕し、次いでそれをプレス
成形、1400°C14時間という条件で焼結し厚さ7
 m、幅20mm、長さ30mmになる焼結体を得た。
After drying, the fine powder was calcined at 1100°C for 4 hours, then crushed using an attritor pulverizer, and then press-formed and sintered at 1400°C for 14 hours to a thickness of 7.
A sintered body having a width of 20 mm and a length of 30 mm was obtained.

次にこれを厚さ5M、幅10mm、長さ10mmに加工
したのち、Y3Fe50.□単結晶から作成した種単結
晶に接合し1520°Cに加熱した結果、種結晶が5M
以上成長し、固相反応法による単結晶の育成が可能であ
ることが確認できた。
Next, after processing this into a thickness of 5M, a width of 10mm, and a length of 10mm, Y3Fe50. □As a result of joining a seed single crystal made from a single crystal and heating it to 1520°C, the seed crystal became 5M.
It was confirmed that it is possible to grow single crystals using the solid phase reaction method.

劃ffi 硫酸第一鉄水溶液と硝酸イツトリウム水溶液および塩化
テルビウム水溶液を混合して、Tbo、 hYz、 a
FesOrzの組成で約600gとなる濃度の約lO1
の水溶液を用意し、これを用いて上記実施例1と同様の
条件にてガーネット型のフェライト粉末を製造し、この
粉末の焼結体に、 Tbo、 6Y1.aFesO+□単結晶から作成した
種単結晶を接合し、1500°Cに加熱したところ種単
結晶が5鴫以上成長することがTIII認できた。
Mix ferrous sulfate aqueous solution, yttrium nitrate aqueous solution, and terbium chloride aqueous solution to obtain Tbo, hYz, a
About 1O1 with a concentration of about 600g based on the composition of FesOrz
An aqueous solution of Tbo, 6Y1. When the seed single crystal made from the aFesO+□ single crystal was bonded and heated to 1500°C, it was confirmed that the seed single crystal grew in size of 5 or more.

尖隻拠主 硫酸第一鉄水溶液と硝酸イツトリウム水溶液および硝酸
ビスマス水溶液を混合して、 旧。、 SY!、 5Fe50□の組成で約600gと
なる濃度の約102の水溶液を用意し、これに、200
 gの炭酸アンモニウムを添加、溶解しアンモニア水で
pH8に調整しだ液温75°Cになる水溶液2042に
約30分で滴下し、以後仮焼温度、焼成温度のみをそれ
ぞれ900゛C11100°Cに変更してガーネット型
フェライト粉末を製造し、得られた粉末の焼結体にBi
b、 SY2.5FesO□単結晶より作成した種単結
晶を接合し、1200°Cに加熱処理した結果、実施例
1,2同様種単結晶が5−以上成長することが確かめら
れた。
Old ferrous sulfate aqueous solution, yttrium nitrate aqueous solution and bismuth nitrate aqueous solution are mixed. , SY! , Prepare an aqueous solution of about 102 with a composition of 5Fe50□ and a concentration of about 600 g, and add 200
g of ammonium carbonate was added, dissolved, and adjusted to pH 8 with aqueous ammonia.The solution was then added dropwise to the aqueous solution 2042 at a temperature of 75°C in about 30 minutes.Then, only the calcination temperature and firing temperature were adjusted to 900°C and 11100°C, respectively. A garnet-type ferrite powder was produced by changing the method, and Bi was added to the sintered body of the obtained powder.
b. As a result of joining a seed single crystal made from a SY2.5FesO□ single crystal and heat-treating it at 1200°C, it was confirmed that the seed single crystal grew 5- or more as in Examples 1 and 2.

土較桝よ 酸化第二鉄粉末324.6gと酸化イツトリウム粉末2
75.4gを600gの水に添加し、ボールミルにて2
時間湿式混合した。そして得られた混合スラリーを乾燥
した後1200°Cで4時間仮焼してからアトライタ粉
砕機で粉砕後プレス成形衣いで1400″C14時間焼
成し厚さ7 mm、幅20m++++、長さ30+nm
の焼成体を作製した。
324.6g of ferric oxide powder and 2 yttrium oxide powder
Add 75.4g to 600g of water and mix in a ball mill for 2
Wet mixed for an hour. After drying the obtained mixed slurry, it was calcined at 1200°C for 4 hours, crushed using an Atreita crusher, and then baked at 1400''C for 14 hours in a press molding cloth to form a product with a thickness of 7 mm, a width of 20 m++++, and a length of 30+ nm.
A fired body was produced.

次にこれを厚さ5IIII11、幅10+nm、長さ3
0胴に加工してから実施例1と同様の試験を行ったが種
単結晶の成長距離は0.5〜2M程度であり、また成長
した単結晶内に気孔が多く残留していることが判った。
Next, this is made to have a thickness of 5III11, a width of 10+nm, and a length of 3
After processing into a zero cylinder, the same test as in Example 1 was conducted, but the growth distance of the seed single crystal was about 0.5 to 2M, and it was found that many pores remained in the grown single crystal. understood.

、比較」Rユ 硫酸第二鉄水溶液と硝酸イツトリウム水溶液を混合して
Y3Fe、O,□の組成で約600gとなる濃度の約t
OXの水溶液を用意し、以後実施例1と同一の条件のも
とくこの場合酸化反応は伴わない。)にガーネット型フ
ェライト粉末を作製し、その焼結体につき同様の試験を
行った。その結果種結晶の成長距離は0.5〜2 mm
であり、単結晶内に気孔が多く残留していることが確か
められた。
, Comparison "R ferric sulfate aqueous solution and yttrium nitrate aqueous solution are mixed to give a concentration of about 600 g with a composition of Y3Fe, O, □.
An aqueous solution of OX is prepared, and the same conditions as in Example 1 are subsequently used, in which case no oxidation reaction is involved. ), and a similar test was conducted on the sintered body. As a result, the growth distance of the seed crystal is 0.5 to 2 mm.
It was confirmed that many pores remained within the single crystal.

なお、表−2に上記実施例1〜3および比較例1〜2に
おける粉末の平均粒径と焼結密度の調査結果を、また第
1図に粒度分布の調査結果をそれぞれ示す。
Table 2 shows the results of the average particle diameter and sintered density of the powders in Examples 1 to 3 and Comparative Examples 1 to 2, and FIG. 1 shows the results of the particle size distribution.

表−2 次に第2発明の実施例について説明する。Table-2 Next, an embodiment of the second invention will be described.

力1例」ユ GYi酸ビスマス、硝酸鉄、硝酸イツトリウムを混合シ
てYJiPe50H□の組成で約600gとなる濃度の
水溶液を5 Q f4t (+iii シた。次に、7
0°Cに保温したアンモニア水溶液10fに、準備した
混合液を約1時間かけて滴下した。この間、水溶液を攪
拌し、反応が均一に起こるようにした。滴下終了後、約
2時間加熱、攪拌を続け、生成した共沈物を熟成した。
Example 1: Mixing bismuth yate, iron nitrate, and yttrium nitrate, an aqueous solution having a concentration of about 600 g with the composition of YJiPe50H□ was mixed with 5 Q f4t (+iii).
The prepared mixed solution was added dropwise to 10 f of ammonia aqueous solution kept at 0° C. over about 1 hour. During this time, the aqueous solution was stirred to ensure that the reaction occurred uniformly. After the dropwise addition was completed, heating and stirring were continued for about 2 hours to ripen the produced coprecipitate.

次に、生成したスラリーを分離洗浄後、乾燥し、800
°Cで仮焼したところ、ガーネット化率はぼ100%の
ビスマス置換イツトリウム鉄ガーネツト粉末が得られた
。この粉末を成形し、950″Cで10時間焼成したと
ころ、99.9%の密度の単相のガーネット焼結体が得
られた。
Next, the generated slurry was separated and washed, dried, and
When calcined at °C, a bismuth-substituted yttrium iron garnet powder with a garnet conversion rate of nearly 100% was obtained. When this powder was molded and fired at 950''C for 10 hours, a single-phase garnet sintered body with a density of 99.9% was obtained.

つぎに得られた焼結体を厚さ5mm、幅10mm、長さ
10胴に加工したのち、同組成の種結晶を接合しこれを
1000’Cに加熱した結果、種結晶が5 mm以上成
長し、固相反応法による単結晶の育成が可能であること
が確t=できた。
Next, the obtained sintered body was processed into a cylinder with a thickness of 5 mm, a width of 10 mm, and a length of 10 mm, and then a seed crystal of the same composition was joined and heated to 1000'C. As a result, the seed crystal grew over 5 mm. However, it was confirmed that it is possible to grow a single crystal by the solid phase reaction method.

実■I鉗足 硝酸ビスマス、硝酸鉄、硝酸イツトリウム、硝酸ガドリ
ニウムを混合してB11Y+、 :+Gdo、Pe5O
+zで約600gとなる濃度の水溶液を51準備した。
Fruit■I Tripod Bismuth nitrate, iron nitrate, yttrium nitrate, and gadolinium nitrate are mixed to produce B11Y+, :+Gdo, Pe5O
51 aqueous solutions having a concentration of approximately 600 g at +z were prepared.

次に、70゛Cに保温したアンモニア水ン容ン夜10f
fに、準備した混合液を約1時間かけて滴下した。この
間、水)容液を攪1↑し、反応が均一に起こるようにし
た。
Next, add ammonia water kept at 70°C to 10°C at night.
The prepared mixed solution was added dropwise to f over a period of about 1 hour. During this time, the aqueous solution was stirred 1↑ to ensure that the reaction occurred uniformly.

滴下終了後、約2時間加熱、攪拌を続け、生成した共沈
物を熟成した。
After the dropwise addition was completed, heating and stirring were continued for about 2 hours to ripen the produced coprecipitate.

次に、生成したスラリーを分離洗浄後、乾燥し、750
°Cで仮焼したところ、ガーネット化率はぼ100%の
ビスマス置換イツトリウムガドリニウム鉄ガーネツトが
得られた。この粉末を成形し、950″Cで10時間焼
成したところ、99.9%の密度の単相のガーネット焼
結体が得られた。
Next, the generated slurry was separated and washed, dried, and
When calcined at °C, a bismuth-substituted yttrium gadolinium iron garnet with a garnetization rate of nearly 100% was obtained. When this powder was molded and fired at 950''C for 10 hours, a single-phase garnet sintered body with a density of 99.9% was obtained.

つぎに得られた焼結体を厚さ5 mm、幅10皿、長さ
10mmに加工したのち、同組成の種結晶を接合しこれ
を1000°Cに加熱した結果、種結晶が5 mm以上
成長し、固相反応法による弔結晶の育成が可能であるこ
とが確認できた。
Next, the obtained sintered body was processed to have a thickness of 5 mm, a width of 10 plates, and a length of 10 mm, and then a seed crystal of the same composition was joined and heated to 1000°C. As a result, the seed crystal became larger than 5 mm. We were able to confirm that it is possible to grow Matsu crystals using the solid phase reaction method.

ス11津影 硝酸ビスマス、硝酸鉄、硝酸イツトリウム、硝酸ガリウ
ムを混合してB11YzFeiGa10+zで約600
gとなる濃度の水溶液を51準備した。次に、70’C
に保温したアンモニア水溶液101に、準備した混合液
を約1時間かけて滴下した。この間、水溶液を攪拌し、
反応が均一に起こるようにした。滴下終了後、約2時間
加熱、攪拌を続け、生成した共沈物を熟成した。
Mix bismuth nitrate, iron nitrate, yttrium nitrate, and gallium nitrate to make B11YzFeiGa10+z approximately 600
Fifty-one aqueous solutions having a concentration of 1.5 g were prepared. Next, 70'C
The prepared mixed solution was added dropwise to the ammonia aqueous solution 101 kept warm over about 1 hour. During this time, stir the aqueous solution,
This ensured that the reaction occurred uniformly. After the dropwise addition was completed, heating and stirring were continued for about 2 hours to ripen the produced coprecipitate.

次に、生成したスラリーを分離洗浄後、乾燥し、780
°Cで仮焼したところ、ガーネット化率はぼ100%の
ビスマス置換イツトリウムガリウム鉄ガーネツトが得ら
れた。この粉末を成形し、960 ’Cで10時間焼成
したところ、99.9%の密度の単相のガーネット焼結
体が得られた。
Next, the generated slurry was separated and washed, dried, and
When calcined at °C, bismuth-substituted yttrium gallium iron garnet with a garnetization rate of approximately 100% was obtained. When this powder was molded and fired at 960'C for 10 hours, a single-phase garnet sintered body with a density of 99.9% was obtained.

つぎに得られた焼結体を厚さ5mm、幅10mm、長さ
10mmに加工したのち、同組成の種結晶を接合しこれ
を1000°Cに加熱した結果、種結晶が5 mm以上
成長し、固相反応法による単結晶の育成が可能であるこ
とが確認できた。
Next, the obtained sintered body was processed to have a thickness of 5 mm, a width of 10 mm, and a length of 10 mm, and then a seed crystal of the same composition was joined and heated to 1000°C. As a result, the seed crystal grew over 5 mm. It was confirmed that it is possible to grow single crystals using the solid phase reaction method.

此1津1 塩化ビスマス、硝酸鉄、硝酸インドリウムを混合してY
JiFesO+ 2で約600gの濃度の水溶液を5i
!。
This 1 Tsu 1 Mix bismuth chloride, iron nitrate, and indolium nitrate to make Y
About 600 g of an aqueous solution was mixed with JiFesO+ 2 for 5i.
! .

阜備した。以下、実施例1と同様の工程によりスラリー
を乾燥後仮焼した。
Prepared. Thereafter, the slurry was dried and calcined using the same steps as in Example 1.

この仮焼において、800°Cの仮焼ではガーネット化
がほとんど起こらず、950°Cの仮焼で95%のガー
ネット化が起きた。この粉末を成形し、1050°Cで
焼成したところ、密度は99,5%で、ガーネット相以
外の第2相(ヘマタイト相)を含む焼結体であった。こ
の焼結体の組成を分析したところ、調合組成よりも旧が
減少していることが明らかであった。また固相反応法に
よる単結晶の育成は不可能であった。
In this calcination, almost no garnet formation occurred when calcination was performed at 800°C, and 95% garnet formation occurred during calcination at 950°C. When this powder was molded and fired at 1050°C, the density was 99.5%, and it was a sintered body containing a second phase (hematite phase) other than the garnet phase. When the composition of this sintered body was analyzed, it was clear that the old content was lower than that of the blended composition. Furthermore, it has been impossible to grow single crystals using solid phase reaction methods.

ル校桝土 酸化ビスマス粉末、酸化第2鉄粉末、酸化イツトリウム
粉末を混合してY2BiFesO+ 2となるよう約6
00g秤量した。これに600gの水を添加して、ボー
ルミルにて2時間湿式混合した。得られた混合スラリー
を乾燥後仮焼した。
Mix bismuth oxide powder, ferric oxide powder, and yttrium oxide powder to make Y2BiFesO+2.
00g was weighed. 600 g of water was added to this and wet mixed in a ball mill for 2 hours. The obtained mixed slurry was dried and then calcined.

この仮焼において、800″Cの仮焼ではガーネット化
がほとんど起こらず、1000’Cの仮焼で80%のガ
ーネット化が起きた。この粉末を成形し、1050°C
で焼成したところ、密度は99.0%で、ガーネット相
以外の第2相(ヘマタイト相)を含む焼結体であった。
In this calcination, almost no garnetization occurred at 800"C, and 80% garnetization occurred at 1000"C.This powder was molded and heated at 1050C.
When fired, the density was 99.0%, and the sintered body contained a second phase (hematite phase) other than the garnet phase.

この焼結体の組成を分析したところ、調合組成よりも旧
が減少していることが明らかであった。また固相反応法
による単結晶の育成は不可能であった。
When the composition of this sintered body was analyzed, it was clear that the old content was lower than that of the blended composition. Furthermore, it has been impossible to grow single crystals using solid phase reaction methods.

以上の結果を、使用した粉末の平均粒子径の範囲ととも
に表−3にま七めて示す。
The above results are summarized in Table 3 along with the range of the average particle diameter of the powders used.

表−3 (発明の効果) 以上の説明から明らかなように、第1発明、第2発明の
鉄系複合酸化物の製造方法によれば、所望のガーネット
組成に応じて共沈の方法を選択できるため、低温の仮焼
でガーネット化が可能となり、成形性、焼結性の良好な
ガーネット型フェライト粉末を得ることができる。
Table 3 (Effects of the invention) As is clear from the above explanation, according to the methods for producing iron-based composite oxides of the first and second inventions, the coprecipitation method is selected depending on the desired garnet composition. Therefore, it is possible to form garnet by low-temperature calcination, and it is possible to obtain garnet-type ferrite powder with good moldability and sinterability.

また得られたガーネッI・型フェライト粉末から作成し
て得られた透光性鉄ガーネツト多結晶または固相反応法
によって育成した鉄ガーネット単結晶は、光通信等に用
いられる光アイソレータ用素材として好適に使用するこ
とができる。
Translucent iron garnet polycrystals prepared from the obtained garnet I-type ferrite powder or iron garnet single crystals grown by the solid phase reaction method are suitable as materials for optical isolators used in optical communications, etc. It can be used for.

また第1発明、第2発明とも種\の元素を含む均質なガ
ーネット型フェライト単結晶を安価にできる。
Further, in both the first invention and the second invention, a homogeneous garnet type ferrite single crystal containing a seed element can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガーネット型フェライト粉末の粒度分布を示す
グラフである。 h+径011N)
FIG. 1 is a graph showing the particle size distribution of garnet type ferrite powder. h+diameter 011N)

Claims (1)

【特許請求の範囲】 1、2価の鉄イオンとその他の金属イオンを含む混合水
溶液から塩基により水酸化物を共沈させ、鉄を3価に酸
化しつつ共沈物を合成し、次いで共沈物の分離・乾燥・
仮焼によって得た粉末をさらに混合・成形・焼結するこ
とを特徴とする鉄系複合酸化物の製造方法。 2、3価の硝酸鉄とその他の金属の硝酸塩を含む混合水
溶液を原料にして、この金属塩混合水溶液を塩基の水溶
液中に滴下することにより水酸化物を共沈させ、次いで
共沈物の分離・乾燥・仮焼によって得た粉末をさらに混
合・成形・焼結することを特徴とする鉄系複合酸化物の
製造方法。
[Claims] Hydroxide is coprecipitated with a base from a mixed aqueous solution containing monovalent and divalent iron ions and other metal ions, a coprecipitate is synthesized while iron is oxidized to trivalent, and then a coprecipitate is synthesized, and then a coprecipitate is synthesized while iron is oxidized to trivalent. Separation and drying of sediment
A method for producing an iron-based composite oxide, characterized by further mixing, molding, and sintering the powder obtained by calcination. Using a mixed aqueous solution containing di- and trivalent iron nitrate and nitrates of other metals as a raw material, the metal salt mixed aqueous solution is dropped into an aqueous base solution to coprecipitate the hydroxide, and then the coprecipitate is A method for producing an iron-based composite oxide, characterized by further mixing, molding, and sintering the powder obtained by separation, drying, and calcination.
JP10779189A 1989-04-28 1989-04-28 Production of iron-based multiple oxide Pending JPH02289429A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10779189A JPH02289429A (en) 1989-04-28 1989-04-28 Production of iron-based multiple oxide
DE69016699T DE69016699T2 (en) 1989-04-28 1990-04-26 Process for the production of ferrite crystals and process for the production of preferably used ferrite powders.
EP90304505A EP0399665B1 (en) 1989-04-28 1990-04-26 Method of manufacturing ferrite crystals and method of producing ferrite powders preferably used therefor
CA002015606A CA2015606C (en) 1989-04-28 1990-04-27 Method of manufacturing shaped body made of ferrite crystals of garnet polycrystal structure
US07/516,907 US5256242A (en) 1989-04-28 1990-04-30 Method of manufacturing ferrite crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10779189A JPH02289429A (en) 1989-04-28 1989-04-28 Production of iron-based multiple oxide

Publications (1)

Publication Number Publication Date
JPH02289429A true JPH02289429A (en) 1990-11-29

Family

ID=14468121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10779189A Pending JPH02289429A (en) 1989-04-28 1989-04-28 Production of iron-based multiple oxide

Country Status (1)

Country Link
JP (1) JPH02289429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292421A (en) * 1990-06-29 1992-10-16 General Electric Co <Ge> Transparent polycrystalline quality garnet
WO2014087627A1 (en) * 2012-12-06 2014-06-12 信越化学工業株式会社 Light-transmitting bismuth-substituted rare-earth iron garnet-type sintered material, and magnetooptical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292421A (en) * 1990-06-29 1992-10-16 General Electric Co <Ge> Transparent polycrystalline quality garnet
WO2014087627A1 (en) * 2012-12-06 2014-06-12 信越化学工業株式会社 Light-transmitting bismuth-substituted rare-earth iron garnet-type sintered material, and magnetooptical device
CN104822638A (en) * 2012-12-06 2015-08-05 信越化学工业株式会社 Light-transmitting bismuth-substituted rare-earth iron garnet-type sintered material, and magnetooptical device
US20150315084A1 (en) * 2012-12-06 2015-11-05 Shin-Etsu Chemical Co., Ltd. Light-transmitting bismuth-substituted rare-earth iron garnet-type calcined material, and magneto-optical device
JP5950478B2 (en) * 2012-12-06 2016-07-13 信越化学工業株式会社 Magneto-optical device using translucent bismuth-substituted rare earth iron garnet-type fired body and method for producing the fired body
US9533917B2 (en) 2012-12-06 2017-01-03 Shin-Etsu Chemical Co., Ltd. Light-transmitting bismuth-substituted rare-earth iron garnet-type calcined material, and magneto-optical device

Similar Documents

Publication Publication Date Title
JP5105503B2 (en) ε Iron oxide production method
EP0399665B1 (en) Method of manufacturing ferrite crystals and method of producing ferrite powders preferably used therefor
Khan et al. Influence of preparation method on structural, optical and magnetic properties of nickel ferrite nanoparticles
US4372865A (en) Carbonate/hydroxide coprecipitation process
Patil et al. Preparation of High-Density Ferrites
JP6244675B2 (en) Method for producing magnetic particles
EP0127427B1 (en) Production of microcrystralline ferrimagnetic spinels
Parkin et al. Self‐propagating high temperature synthesis of hexagonal ferrites MFe12O19 (M= Sr, Ba)
CN112591801A (en) Preparation method of Z-shaped hexaferrite ultrafine powder
US4486401A (en) Production of fine ferrimagnetic spinels
JP2003521431A (en) Manufacturing method of ferrite magnet
JPH02289429A (en) Production of iron-based multiple oxide
US3438900A (en) Ferrimagnetic material suitable for use at frequencies of at least 50 mc./sec. with improved properties
KR970008749B1 (en) Process for the preparation of nickel-zinc ferrite powder
TWI768299B (en) SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR MANUFACTURING SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR MANUFACTURING GREEN COMPACT AND ELECTROMAGNETIC WAVE ABSORBER
KR960002625B1 (en) Process for producing microcrystalline barium ferrite platelets
CN110182853A (en) A kind of preparation method of Co-Ti codope hexad ferrite nano-powder
US3461072A (en) Ferrimagnetic material for use at frequencies higher than 50 mc./sec. having reduced loss factor and higher quality factor
CN110511012A (en) A kind of preparation method of the ferrite permanent-magnet materials with ultra-fine grained structure
JPH0927430A (en) Manufacture of ferrite magnet
US5626788A (en) Production of magnetic oxide powder
KR102357085B1 (en) Magnetic powder and manufacturing method of magnetic powder
JPH06654B2 (en) M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder
Martirosyan et al. La 3+ and Ce 3+ doping of hard-magnetic ferrites
JPH10144513A (en) Manufacture of oriented ferrite sintered body